Influence of growth regulators on microclonal propagation of Scrophularia umbrosa Dumort under in vitro conditions

Authors

  • Naomi Asomani Antwi Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, ul. Kremlevskaya, 18, Kazan, 420008, Russian Federation https://orcid.org/0000-0002-9540-5654
  • Landysh Khusnetdinova Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, ul. Kremlevskaya, 18, Kazan, 420008, Russian Federation https://orcid.org/0000-0002-7867-2013
  • Olga Timofeeva Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, ul. Kremlevskaya, 18, Kazan, 420008, Russian Federation https://orcid.org/0000-0003-4921-458X

DOI:

https://doi.org/10.21638/spbu03.2024.101

Abstract

The possibility of effective microclonal propagation of Scrophularia umbrosa Dumort for producing planting materials, aimed at preservation of the species has been shown. This will aid in the creation of artificial introduction populations of this endangered species in the Republic of Tatarstan, Russia. Optimal conditions for surface sterilization of seeds, development of microshoots, in vitro rooting and acclimatization have been developed. The most effective surface sterilization and germination was achieved with 10 % commercial bleach. Nodal explants were cultured in Murashige and Skoog’s (MS) medium with different concentrations of 6-benzylaminopurine (BAP) and indole-3-acetic acid (IAA). The maximum number of microshoots was developed on MS medium containing 1.0 mg/l of BAP and 1.0 mg/l of IAA. Full strength MS medium with only IAA or together with (indole-3-butyric acid) IBA is optimal for rapid rooting of microshoots. The combination of soil: perlite (2:1) (v/v) was the best for ex vitro acclimatization of plantlets.

Keywords:

micropropagation, S. umbrosa, surface sterilization, microshoot, morphogenesis, rhizogenesis, acclimatization

Downloads

Download data is not yet available.
 

References

Amiri, S. and Mohammadi, R. 2021. Establishment of an efficient in vitro propagation protocol for Sumac (Rhus coriaria L.) and confirmation of the genetic homoge­neity. Scientific Reports 11:173. https://doi.org/10.1038/s41598-020-80550-4

Bar-Tal, A., Saha, U. K., Raviv, M., and Tuller, M. 2019. Inorganic and synthetic organic components of soilless culture and potting mixtures, Soilless culture (2nd ed.). Elsevier. https://doi.org/10.1016/B978-0-444-63696-6.00007-4

Catapan, E., Luis, M., Da Silva, B., Moreno, F. N., and Via­na, A. M. 2002. Micropropagation, callus and root culture of Phyllanthus urinaria (Euphorbiaceae). Plant Cell, Tissue and Organ Culture 70:301–309. https://doi.org/10.1023/A:1016529110605

Chen, S., Xiong, Y., Yu, X., Pang, J., Zhang, T., Wu, K., Ren, H., Jian, S., Teixeira da Silva, J. A., Xiong, Y., Zeng, S., and Ma, G. 2020. Adventitious shoot organogenesis from leaf explants of Portulaca Pilosa L. Scientific Reports 10:3675. https://doi.org/10.1038/s41598-020-60651-w

Davoudpour, Y., Schmidt, M., Calabrese, F., Richnow, H. H., and Musat, N. 2020. High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds. PLoS One 15(11):e0242247. https://doi.org/10.1371/journal.pone.0242247

Engelmann, F. 2011. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cellular & Developmental Biology — Plant 47(1):5–16. https://doi.org/10.1007/s11627-010-9327-2

Felek, W., Mekibib, F., and Admassu, B. 2015. Optimization of explants surface sterilization condition for field grown peach (Prunus persica L. Batsch. Cv. Garnem) intended for in vitro culture. African Journal of Biotechnology 14(8):657–660. https://doi.org/10.5897/AJB2014.14266

Firoz, M. A., Uddin, M. E., Amin, R., Razzak, M. A., Manik, M. A., and Khatun, M. M. 2016. Studies on the effect of various sterilization procedures for in vitro seed germination and successful micropropagation of Cucumis sativus. International Journal of Pure and Applied Bioscience 4(1):75–81. https://doi.org/10.18782/2320-7051.2226

Gamova, N. 2016. Red Book of the Republic of Tatarstan, Kazan. Plantarium Publ. (In Russian)

George, E. F., Hall, M. A., and Deklerk, G. J. 2008. Plant propagation by tissue culture. Vol. 1. The Background. Sprin­ger. https://doi.org/10.1007/978-1-4020-5005-3

Gubanov, I. A. 2004. Illustrated determinant of plants of Central Russia. Vol. 3. Moscow. Tovarishchestvo nauchnykh izdanii KMK Publ. (In Russian)

Hariprasath, L., Jegadeesh, R., Arjun, P., and Raaman, N. 2015. In vitro propagation of Senecio candicans DC and comparative antioxidant properties of aqueous extracts of the in vivo plant and in vitro-derived callus. South African Journal of Botany 98:134–141. https://doi.org/10.1016/j.sajb.2015.02.011

Jaramillo, S. and Baena, M. 2007. Ex situ conservation of plant genetic resources: Training module. International Plant Genetic Resources Institute, Cali, Colombia.

Kalidass, C. and Mohan, V. R. 2009. In vitro rapid clonal propagation of Phyllanthus urinaria Linn. (Euphorbiaceae): A medicinal plant. Researcher 4:61–65.

Kumar, N. and Reddy, M. 2011. In vitro plant propagation: A Review. Journal of Forest and Environmental Science 27(2):61–72.

Kumar, M., Sirohi, U., Malik, S., Kumar, S., Ahirwar, G. K., Chaudhary, V., Yadav, M. K., Singh, J., Kumar, A., Pal, V., and Prakash, S. 2022. Methods and factors influencing in vitro propagation efficiency of ornamental tuberose (Polianthes Species): A systematic review of recent developments and future prospects. Horticulturae 8:998. https://doi.org/10.3390/horticulturae8110998

Maistrenko, G. G. and Krasnoborov, I. M. 2009. Microclonal propagation and biological features of Scrophularia umbrosa Dumort cultured in vitro. Contemporary Problems of Ecology 2:501–505. https://doi.org/10.1134/S1995425509060010

Mali, A. M. and Chavan, N. S. 2016. In vitro rapid regeneration through direct organogenesis and ex-vitro establishment of Cucumis trigonus Roxb.: An underutilized pharmaceutically important cucurbit. Industrial Crops and Products 83:48–54. https://doi.org/10.1016/j.indcrop.2015.12.036

Manivannan, A., Soundararajan, P., Park, Y. G., and Jeong, B. R. 2015. In vitro propagation, phytochemical analysis, and evaluation of free radical scavenging property of Scrophularia kakudensis Franch tissue extracts. BioMed Research International 2015:480564. https://doi.org/10.1155/2015/480564

Mihaljević, I., Dugalić, K., Tomaš, V., Viljeva, M., Pranjić, A., Čmelik, Z., Puškar, B., and Jurković, Z. 2013. In vitro sterilization procedures for micropropagation of ‘oblačinska’ sour cherry. Journal of Agricultural Science 58(2):117–126. https://doi.org/10.2298/JAS1302117M

Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nikkhah, E., Afshar, F. H., Babaei, H., Delazar, A., and Asgha­rian, P. 2018. Evaluation of phytochemistry and some biological activities of aerial parts and seed of Scrophularia umbrosa Dumort. Jundishapur Journal of Natural Pharmaceutical Products 13(2):e65054. https://doi.org/10.5812/jjnpp.65054

Nikule, H. A., Nitnaware, K. M., Chambhare, M. R., Kadam, N. S., Borde, M. Y., and Nikam, T. D. 2020. In-vitro propagation, callus culture and bioactive lignan production in Phyllanthus tenellus Roxb: a new source of phyllanthin, hypophyllanthin and phyltetralin. Scientific Reports 10:10668. https://doi.org/10.1038/s41598-020-67637-8

Okello, D., Yang, S., Komakech, R., Chung, Y., Rahmat, E., Gang, R., Omujal, F., Lamwaka, A., and Kang, Y. 2021. Indirect in vitro regeneration of the medicinal plant, Aspilia africana, and histological assessment at different developmental stages. Frontiers in Plant Science 12:797721. https://doi.org/10.3389/fpls.2021.797721

Sivanesan, I., Hwang, S. J., and Jeong, B. R. 2008. Influence of plant growth regulators on axillary shoot multiplication and iron source on growth of Scrophularia takesimensis Nakai — a rare endemic medicinal plant. African Journal of Biotechnology 7(24):4484–4490. https://doi.org/10.4314/AJB.V7I24.59625

Sivanesan, I., Lim, M. Y., and Jeong, B. R. 2018. Micropropagation and greenhouse cultivation of Scrophularia takesimensis Nakai, a rare endemic medicinal plant. AGRIS 44(5):1657–1662.

Tokhtar, V. K. and Volobueva, Y. E. 2012. Variability of seeds of Ambrosia artemisiifolia L. Scientific Bulletin of Belgorod State University 21(140):19–22. (In Russian)

Vetchinkina, E. M., Shirnina, I. V., Shirnin, S. Y., and Molkanova, O. I. 2012. Preservation of rare plant species in genetic collections in vitro. Vestnik Baltiyskogo Federalnogo Universiteta named after I. Kant 7:109–118. (In Russian)

Zayova, E., Petrova, M., Nikolova, M., and Dimitrova, L. 2016. Effect of medium salt strength on the micropropagation, phenolic content and antioxidant activity of Arnica montana L., threatened plant species. Bio Bulletin 2:6–13.

Downloads

Published

2024-05-31

How to Cite

Asomani Antwi, N., Khusnetdinova, L., & Timofeeva, O. (2024). Influence of growth regulators on microclonal propagation of <em>Scrophularia umbrosa</em> Dumort under <em>in vitro</em> conditions. Biological Communications, 69(1), 3–11. https://doi.org/10.21638/spbu03.2024.101

Issue

Section

Full communications

Categories