Cancer as a potential sequela of COVID-19 — should we modify 3D cell culture models accordingly?

Authors

  • Elena Petersen Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russian Federation https://orcid.org/0000-0002-8150-7553
  • Daria Chudakova Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russian Federation https://orcid.org/0000-0002-9354-6824
  • Daiana Erdyneeva Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russian Federation https://orcid.org/0000-0003-2279-0157
  • Dulamsuren Zorigt Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russian Federation https://orcid.org/0000-0001-8133-689X
  • Evgeniya Shabalina Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Russian Federation https://orcid.org/0000-0002-8184-7363
  • Pavel Karalkin I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), ul. Trubetskaya, 8–2, Moscow, 119991, Russian Federation; P. A. Herzen Moscow Research Institute of Oncology, 2-oy Botkinskiy pr., 3, Moscow, 125284, Russian Federation https://orcid.org/0000-0002-2838-0776
  • Igor Reshetov I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), ul. Trubetskaya, 8–2, Moscow, 119991, Russian Federation

DOI:

https://doi.org/10.21638/spbu03.2023.307

Abstract

COVID-19 pandemic was caused by SARS-CoV-2, a novel virus from the family Coronaviridae, firstly identified in Wuhan, China in 2019. COVID-19 remains one of the main challenges of healthcare, given growing numbers of people with COVID-19 in anamnesis, and given the long-lasting consequences and complications of this disease. Cancer is one of the most common diseases in the world, thus a big part of the population is affected by both COVID-19 and cancer. In this succinct review we refer to several recent works expressing a view that COVID-19 might be oncogenic, and describe molecular mechanisms of such phenomena. Next, we describe several tumorigenic changes in the tissue microenvironment as COVID-19 sequelae, which can potentially affect cancer pathogenesis and response of a tumor to therapy. 3D cell culture models are a “golden standard” of in vitro studies in translational oncology. To the best of our knowledge, 3D cell culture systems to study tumor behavior in the tissue microenvironment affected by COVID-19 have not been developed yet. We propose several actionable steps which can be taken to modify existing 3D cell culture models accordingly, to address the needs of translational oncology in the COVID-19 post-pandemic times.

Keywords:

COVID-19, SARS-CoV-2, 3D cell culture models, tumor microenvironment, malignant tumors, translational medicine, personalized medicine, drug development, oncology

Downloads

Download data is not yet available.
 

References

Ahmad, S., Manzoor, S., Siddiqui, S., Mariappan, N., Zafar, I., Ahmad, A., and Ahmad, A. 2021. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Seminars in Cancer Biology 83:384–398. https://doi.org/10.1016/j.semcancer.2021.01.003

Allen, C. N., Santerre, M., Arjona, S. P., Ghaleb, L. J., Herzi, M., Llewellyn, M. D., Shcherbik, N., and Sawaya, B. E. 2022. SARS-CoV-2 Causes Lung Inflammation through Metabolic Reprogramming and RAGE. Viruses 14(5):983. https://doi.org/10.3390/v14050983

Amin, B. J. H., Kakamad, F. H., Ahmed, G. S., Ahmed, S. F., Abdulla, B. A., Mikael, T. M., Salih, R. Q., Salh, A. M., and Hussein, D. A. 2022. Post COVID-19 pulmonary fibrosis; a meta- analysis study. Annals of Medicine and Surgery:103590. https://doi.org/10.1016/j.amsu.2022.103590

Angioni, R., Bonfanti, M., Caporale, N., Sánchez-Rodríguez, R., Munari, F., Savino, A., Buratto, D., Pagani, I., Bertoldi, N., and Zanon, C. 2022. RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity. bioRxiv. https://doi.org/10.1101/2022.05.22.492693

Augustine, R., Aqel, A. H., Kalva, S. N., Joshy, K., Nayeem, A., and Hasan, A. 2021. Bioengineered microfluidic bloodbrain barrier models in oncology research. Translational Oncology 14(7):101087. https://doi.org/10.1016/j.tranon.2021.101087

Balc’h, L., Pinceaux, K., Pronier, C., Seguin, P., Tadié, J.-M., and Reizine, F. 2020. Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Critical Care 24(1):1–3. https://doi.org/10.1186/s13054-020-03252-3

Bartolomé, A., Liang, J., Wang, P., Ho, D. D., and Pajvani, U. B. 2021. Angiotensin converting enzyme 2 is a novel target of the γ-secretase complex. Scientific Reports 11(1):1–8. https://doi.org/10.1038/s41598-021-89379-x

Basu, A., Pamreddy, A., Singh, P., and Sharma, K. 2022. An adverse outcomes approach to study the effects of SARS-CoV-2 in 3D organoid models. Journal of Molecular Biology 434(3):167213. https://doi.org/10.1016/j.jmb.2021.167213

Bornstein, S. R., Cozma, D., Kamel, M., Hamad, M., Mohammad, M. G., Khan, N. A., Saber, M. M., Semreen, M. H., and Steenblock, C. 2022. Long-COVID, metabolic and endocrine disease. Hormone and Metabolic Research 54(08):562–566. https://doi.org/10.1055/a-1878-9307

Bowe, B., Xie, Y., and Al-Aly, Z. 2022. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nature Medicine 28(11):2398–2405. https://doi.org/10.1038/s41591-022-02051-3

Breisnes, H., Leeming, D., Fazleen, A., and Sand, J. 2022. COVID-19 Effects on lung extracellular matrix remodeling, wound healing, and neutrophil activity: a proof-ofconcept biomarker study; A3165–A3165 in: B57. CUTTING EDGE COVID RESEARCH: American Thoracic Society.

Burgstaller, G., Oehrle, B., Gerckens, M., White, E. S., Schiller, H. B., and Eickelberg, O. 2017. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. European Respiratory Journal 50(1):1601805. https://doi.org/10.1183/13993003.01805-2016

Buzhdygan, T. P., DeOre, B. J., Baldwin-Leclair, A., Bullock, T. A., McGary, H. M., Khan, J. A., Razmpour, R., Hale, J. F., Galie, P. A., and Potula, R. 2020. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiology of Disease 146:105131. https://doi.org/10.1016/j.nbd.2020.105131

Charvet, B., Brunel, J., Pierquin, J., Iampietro, M., Decimo, D., Queruel, N., Lucas, A., del Mar Encabo-Berzosa, M., Arenaz, I., and Marmolejo, T. P. 2022. SARS-CoV-2 induces human endogenous retrovirus type W envelope protein expression in blood lymphocytes and in tissues of COVID-19 patients. medRxiv. https://doi.org/10.1101/2022.01.18.21266111

Chen, A., Zhao, W., Sun, G., Ma, Z., Peng, L., Shi, Z., Li, X., and Yan, J. 2022. Comprehensive oncogenic features of coronavirus receptors in glioblastoma multiforme. Frontiers in Immunology 13:840785. https://doi.org/10.3389/fimmu.2022.840785

Chen, J., Dai, L., Barrett, L., James, J., Plaisance-Bonstaff, K., Post, S. R., and Qin, Z. 2021. SARS-CoV-2 proteins and anti-COVID-19 drugs induce lytic reactivation of an oncogenic virus. Communications Biology 4(1):1–6. https://doi.org/10.1038/s42003-021-02220-z

Chen, Q., Langenbach, S., Li, M., Xia, Y. C., Gao, X., Gartner, M. J., Pharo, E. A., Williams, S. M., Todd, S., and Clarke, N. 2022. ACE2 expression in organotypic human airway epithelial cultures and airway biopsies. Frontiers in Pharmacology 13:813087. https://doi.org/10.3389/fphar.2022.813087

Cheon, I., Li, C., Son, Y., Goplen, N., Wu, Y., Cassmann, T., Wang, Z., Wei, X., Tang, J., and Li, Y. 2021. Immune signatures underlying post-acute COVID-19 lung sequelae. Science Immunology 6(65):eabk1741. https://doi.org/10.1126/sciimmunol.abk1741

Costa, B. A., da Luz, K. V., Campos, S. E. V., Lopes, G. S., Leitão, J. P. V., and Duarte, F. B. 2022. Can SARS-CoV-2 induce hematologic malignancies in predisposed individuals? A case series and review of the literature. Hematology, Transfusion and Cell Therapy 44:26–31. https://doi.org/10.1016/j.htct.2021.11.015

Coussens, L. M. and Werb, Z. 2002. Inflammation and cancer. Nature 420(6917):860–867. https://doi.org/10.1038/nature01322

Däster, S., Amatruda, N., Calabrese, D., Ivanek, R., Turrini, E., Droeser, R. A., Zajac, P., Fimognari, C., Spagnoli, G. C., and Iezzi, G. 2017. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget 8(1):1725. https://doi.org/10.18632/oncotarget.13857

de Melo, B. A., Benincasa, J. C., Cruz, E. M., Maricato, J. T., and Porcionatto, M. A. 2021. 3D culture models to study SARS-CoV-2 infectivity and antiviral candidates: From spheroids to bioprinting. Biomedical Journal 44(1):31–42. https://doi.org/10.1016/j.bj.2020.11.009

Dinnon III, K. H., Leist, S. R., Okuda, K., Dang, H., Fritch, E. J., Gully, K. L., De la Cruz, G., Evangelista, M. D., Asakura, T., and Gilmore, R. C. 2022. A model of persistent post SARSCoV-2 induced lung disease for target identification and testing of therapeutic strategies. bioRxiv. https://doi.org/10.1101/2022.02.15.480515

Di Paolo, N. C. 2014. Recognition of human oncogenic viruses by host pattern-recognition receptors. Frontiers in Immunology 5:353. https://doi.org/10.3389/fimmu.2014.00353

Frank, M. G., Nguyen, K. H., Ball, J. B., Hopkins, S., Kelley, T., Baratta, M. V., Fleshner, M., and Maier, S. F. 2022. SARSCoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain, Behavior, and Immunity 100:267–277. https://doi.org/10.1016/j.bbi.2021.12.007

Gaglia, M. M. and Munger, K. 2018. More than just oncogenes: mechanisms of tumorigenesis by human viruses. Current Opinion in Virology 32:48–59. https://doi.org/10.1016/j.coviro.2018.09.003

George, P. M., Wells, A. U., and Jenkins, R. G. 2020. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. The Lancet Respiratory Medicine 8(8):807–815. https://doi.org/10.1016/S2213-2600(20)30225-3

Gottschalk, G., Knox, K., and Roy, A. 2021. ACE2: At the crossroad of COVID-19 and lung cancer. Gene Reports 23:101077. https://doi.org/10.1016/j.genrep.2021.101077

Goubran, H., Stakiw, J., Seghatchian, J., Ragab, G., and Burnouf, T. 2022. SARS-CoV-2 and cancer: the intriguing and informative cross-talk. Transfusion and Apheresis Science 61(4):103488. https://doi.org/10.1016/j.transci.2022.103488

Graeber, M. B., Scheithauer, B. W., and Kreutzberg, G. W. 2002. Microglia in brain tumors. Glia 40(2):252–259. https://doi.org/10.1002/glia.10147

Guizani, I., Fourti, N., Zidi, W., Feki, M., and Allal-Elasmi, M. 2021. SARS-CoV-2 and pathological matrix remodeling mediators. Inflammation Research 70(8):847–858. https://doi.org/10.1007/s00011-021-01487-6

Gutman, H., Aftalion, M., Melamed, S., Politi, B., Nevo, R., Havusha-Laufer, S., Achdout, H., Gur, D., Israely, T., and Dachir, S. 2022. Matrix metalloproteinases expression is associated with SARS-CoV-2-induced lung pathology and extracellular-matrix remodeling in K18-hACE2 mice. Viruses 14(8):1627. https://doi.org/10.3390/v14081627

Gómez-Carballa, A., Martinón-Torres, F., and Salas, A. 2022. Is SARS-CoV-2 an oncogenic virus? Journal of Infection 85(5):573–607. https://doi.org/10.1016/j.jinf.2022.08.005

Hemminki, K., Li, X., Försti, A., Sundquist, J., and Sundquist, K. 2014. Cancer risk in amyloidosis patients in Sweden with novel findings on non-Hodgkin lymphoma and skin cancer. Annals of Oncology 25(2):511–518. https://doi.org/10.1093/annonc/mdt544

Hikmet, F., Méar, L., Edvinsson, Å., Micke, P., Uhlén, M., and Lindskog, C. 2020. The protein expression profile of ACE2 in human tissues. Molecular Systems Biology 16(7):e9610. https://doi.org/10.15252/msb.20209610

Hohmann, U., Walsleben, C., Ghadban, C., Kirchhoff, F., Dehghani, F., and Hohmann, T. 2022. Interaction of glia cells with glioblastoma and melanoma cells under the influence of phytocannabinoids. Cells 11(1):147. https://doi.org/10.3390/cells11010147

Iourov, I. Y. and Vorsanova, S. G. 2022. COVID-19 and aging-related genome (Chromosome) instability in the brain: another possible time-bomb of SARS-CoV-2 infection. Frontiers in Aging Neuroscience 14. https://doi.org/10.3389/fnagi.2022.786264

Jacobs, J. J. 2021. Persistent SARS-2 infections contribute to long COVID-19. Medical Hypotheses 149:110538. https://doi.org/10.1016/j.mehy.2021.110538

Johnson, S. D., De Costa, A.-M. A., and Young, M. R. I. 2014. Effect of the premalignant and tumor microenvironment on immune cell cytokine production in head and neck cancer. Cancers 6(2):756–770. https://doi.org/10.3390/cancers6020756

Kapałczyńska, M., Kolenda, T., Przybyła, W., Zajączkowska, M., Teresiak, A., Filas, V., Ibbs, M., Bliźniak, R., Łuczewski, Ł., and Lamperska, K. 2018. 2D and 3D cell cultures — a comparison of different types of cancer cell cultures. Archives of Medical Science 14(4):910–919. https://doi.org/10.5114/aoms.2016.63743

Khiali, S., Rezagholizadeh, A., and Entezari-Maleki, T. 2022. SARS-CoV-2 and probable lung cancer risk. BioImpacts: BI 12(3):291. https://doi.org/10.34172/bi.2022.23266

Kiener, M., Roldan, N., Machahua, C., Sengupta, A., Geiser, T., Guenat, O. T., Funke-Chambour, M., Hobi, N., and Kruithof-de Julio, M. 2021. Human-based advanced in vitro approaches to investigate lung fibrosis and pulmonary effects of COVID-19. Frontiers in Medicine 8:644678. https://doi.org/10.3389/fmed.2021.644678

Law, A. M., de la Fuente, L. R., Grundy, T. J., Fang, G., Valdes-Mora, F., and Gallego-Ortega, D. 2021. Advancements in 3D cell culture systems for personalizing anti-cancer therapies. Frontiers in Oncology 11. https://doi.org/10.3389/fonc.2021.782766

Lehner, G. F., Klein, S. J., Zoller, H., Peer, A., Bellmann, R., and Joannidis, M. 2020. Correlation of interleukin-6 with Epstein–Barr virus levels in COVID-19. Critical Care 24(1):1‑3. https://doi.org/10.1186/s13054-020-03384-6

Li, C., Wang, R., Wu, A., Yuan, T., Song, K., Bai, Y., and Liu, X. 2022. SARS-COV-2 as potential microRNA sponge in COVID-19 patients. BMC Medical Genomics 15(2):1–10. https://doi.org/10.1186/s12920-022-01243-7

Li, J., Yang, M., Li, P., Su, Z., Gao, P., and Zhang, J. 2014. Idiopathic pulmonary fibrosis will increase the risk of lung cancer. Chinese Medical Journal 127(17):3142–3149. https://doi.org/10.3760/cma.j.issn.0366-6999.20141346

Li, Y.-S., Ren, H.-C., and Cao, J.-H. 2022. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? International Journal of Oncology 60(4):1–17. https://doi.org/10.3892/ijo.2022.5332

Lin, S.-L., Chang, D. C., Chang-Lin, S., Lin, C.-H., Wu, D. T., Chen, D. T., and Ying, S.-Y. 2008. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14(10):2115–2124. https://doi.org/10.1261/rna.1162708

Loretelli, C., Abdelsalam, A., D’Addio, F., Nasr, M. B., Assi, E., Usuelli, V., Maestroni, A., Seelam, A. J., Ippolito, E., and Di Maggio, S. 2021. PD-1 blockade counteracts post–COVID-19 immune abnormalities and stimulates the anti–SARS-CoV-2 immune response. JCI Insight 6(24). https://doi.org/10.1172/jci.insight.146701

Ma, M.-J., Qiu, S.-F., Cui, X.-M., Ni, M., Liu, H.-J., Ye, R.-Z., Yao, L., Liu, H.-B., Cao, W.-C., and Song, H.-B. 2022. Persistent SARS-CoV-2 infection in asymptomatic young adults. Signal Transduction and Targeted Therapy 7(1):1–4. https://doi.org/10.1038/s41392-022-00931-1

Malkani, N. and Rashid, M. U. 2021. SARS-COV-2 infection and lung tumor microenvironment. Molecular Biology Reports 48(2):1925–1934. https://doi.org/10.1007/s11033-021-06149-8

Mao, K., Tan, Q., Ma, Y., Wang, S., Zhong, H., Liao, Y., Huang, Q., Xiao, W., Xia, H., and Tan, X. 2021. Proteomics of extracellular vesicles in plasma reveals the characteristics and residual traces of COVID-19 patients without underlying diseases after 3 months of recovery. Cell Death & Disease 12(6):1–18. https://doi.org/10.1038/s41419-021-03816-3

McIlvanna, E., Linden, G. J., Craig, S. G., Lundy, F. T., and James, J. A. 2021. Fusobacterium nucleatum and oral cancer: a critical review. BMC Cancer 21(1):1–11. https://doi.org/10.1186/s12885-021-08903-4

Merenstein, C., Bushman, F. D., and Collman, R. G. 2022. Alterations in the respiratory tract microbiome in COVID-19: current observations and potential significance. Microbiome 10(1):1–14. https://doi.org/10.1186/s40168-022-01342-8

Mojic, M., Takeda, K., and Hayakawa, Y. 2017. The dark side of IFN-γ: its role in promoting cancer immunoevasion. International Journal of Molecular Sciences 19(1):89. https://doi.org/10.3390/ijms19010089

Morales-Sánchez, A. and Fuentes-Panana, E. 2014. Human viruses and cancer. Viruses 6:4047–4079. https://doi.org/10.3390/v6104047

Mozaffari, S. A., Salehi, A., Mousavi, E., Zaman, B. A., Nassaj, A. E., Ebrahimzadeh, F., Nasiri, H., Valedkarimi, Z., Adili, A., and Asemani, G. 2022. SARS-CoV-2-associated gut microbiome alteration; a new contributor to colorectal cancer pathogenesis. Pathology-Research and Practice 239:154131. https://doi.org/10.1016/j.prp.2022.154131

Naendrup, J.-H., Garcia Borrega, J., Eichenauer, D. A., Shimabukuro-Vornhagen, A., Kochanek, M., and Böll, B. 2022. Reactivation of EBV and CMV in severe COVID-19 — epiphenomena or trigger of hyperinflammation in need of treatment? A large case series of critically ill patients. Journal of Intensive Care Medicine 37(9):1152–1158. https://doi.org/10.1177/08850666211053990

Naqvi, A. R., Schwartz, J., Brandini, D. A., Schaller, S., Hussein, H., Valverde, A., Naqvi, R. A., and Shukla, D. 2022. COVID-19 and oral diseases: Assessing manifestations of a new pathogen in oral infections. International Reviews of Immunology 41(4):423–437. https://doi.org/10.1080/08830185.2021.1967949

Nguyen, H.-N. T., Kawahara, M., Vuong, C.-K., Fukushige, M., Yamashita, T., and Ohneda, O. 2022. SARS-CoV-2 M protein facilitates malignant transformation of breast cancer cells. Frontiers in Oncology 12:923467. https://doi.org/10.3389/fonc.2022.923467

Nystrom, S. and Hammarstrom, P. 2022. Amyloidogenesis of SARS-CoV-2 spike protein. Journal of the American Chemical Society 144(20):8945–8950. https://doi.org/10.1021/jacs.2c03925

Odun-Ayo, F. and Reddy, L. 2022. Gastrointestinal microbiota dysbiosis associated with SARS-CoV-2 infection in colorectal cancer: the implication of probiotics. Gastroenterology Insights 13(1):35–59. https://doi.org/10.3390/gastroent13010006

Onabajo, O. O., Stanifer, M., Banday, A. R., Vargas, J., Yan, W., Obajemu, A., Ring, T., Kee, C., Doldan, P., and Boulant, S. 2021. An interferon-stimulated transcriptionally independent isoform of ACE2 inhibits SARS-CoV-2 infection. The Journal of Immunology 206:20.28. https://doi.org/10.4049/jimmunol.206.Supp.20.28

Pavlacky, J. and Polak, J. 2020. Technical feasibility and physiological relevance of hypoxic cell culture models. Frontiers in Endocrinology 11:57. https://doi.org/10.3389/fendo.2020.00057

Perera, M. R., Greenwood, E. J., Crozier, T. W., Elder, E. G., Schmitt, J., Crump, C. M., Lehner, P. J., Wills, M. R., and Sinclair, J. H. 2022. Human cytomegalovirus infection of epithelial cells increases SARS-CoV-2 superinfection by upregulating the ACE2 receptor. The Journal of Infectious Diseases 227(4):543–553. https://doi.org/10.1093/infdis/jiac452

Pánico, P., Ostrosky-Wegman, P., and Salazar, A. M. 2022. The potential role of COVID-19 in the induction of DNA damage. Mutation Research / Reviews in Mutation Research 789:108411. https://doi.org/10.1016/j.mrrev.2022.108411

Ramírez-Martínez, G., Jiménez-Álvarez, L. A., Cruz-Lagunas, A., Ignacio-Cortés, S., Gómez-García, I. A., Rodríguez-Reyna, T. S., Choreño-Parra, J. A., and Zúñiga, J. 2022. Possible role of matrix metalloproteinases and TGF-β in COVID-19 severity and sequelae. Journal of Interferon & Cytokine Research 42(8):352–368. https://doi.org/10.1089/jir.2021.0222

Rosa, R. B., Dantas, W. M., do Nascimento, J. C., da Silva, M. V., de Oliveira, R. N., and Pena, L. J. 2021. In vitro and in vivo models for studying SARS-CoV-2, the etiological agent responsible for COVID-19 pandemic. Viruses 13(3):379. https://doi.org/10.3390/v13030379

Ryan, F. J., Hope, C. M., Masavuli, M. G., Lynn, M. A., Mekonnen, Z. A., Yeow, A. E. L., Garcia-Valtanen, P., Al-Delfi, Z., Gummow, J., and Ferguson, C. 2022. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Medicine 20(1):1–23. https://doi.org/10.1186/s12916-021-02228-6

Sahu, S., Singh, B., and Rai, A. K. 2022. Human endogenous retrovirus regulates the initiation and progression of cancers. Molecular and Clinical Oncology 17(4):1–11. https://doi.org/10.3892/mco.2022.2576

Sant, S., Wang, D., Agarwal, R., Dillender, S., and Ferrell, N. 2020. Glycation alters the mechanical behavior of kidney extracellular matrix. Matrix Biology Plus 8:100035. https://doi.org/10.1016/j.mbplus.2020.100035

Scagnolari, C., Bitossi, C., Viscido, A., Frasca, F., Oliveto, G., Scordio, M., Petrarca, L., Mancino, E., Nenna, R., and Riva, E. 2021. ACE2 expression is related to the interferon response in airway epithelial cells but is that functional for SARS-CoV-2 entry? Cytokine 140:155430. https://doi.org/10.1016/j.cyto.2021.155430

Shen, X.-R., Geng, R., Li, Q., Chen, Y., Li, S.-F., Wang, Q., Min, J., Yang, Y., Li, B., and Jiang, R.-D. 2022. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduction and Targeted Therapy 7(1):1–11. https://doi.org/10.1038/s41392-022-00919-x

Shirvaliloo, M. 2021. The blood-gas barrier in COVID-19: An overview of the effects of SARS-CoV-2 infection on the alveolar epithelial and endothelial cells of the lung. Tissue Barriers 9(4):1937013. https://doi.org/10.1080/21688370.2021.1937013

Simula, E. R., Manca, M. A., Noli, M., Jasemi, S., Ruberto, S., Uzzau, S., Rubino, S., Manca, P., and Sechi, L. A. 2022. Increased presence of antibodies against type I interferons and human endogenous retrovirus W in intensive care unit COVID-19 patients. Microbiology Spectrum 10(4):e01280–01222. https://doi.org/10.1128/spectrum.01280-22

Spirina, L. V., Masunova, N. V., Masunov, V. N., Makova, V. V., Dagbaeva, Y. S., and Kovaleva, I. V. 2022. SARS-CoV2 infection and comorbidities, role in oncogenesis. Asian Pacific Journal of Cancer Prevention 23(7):2191–2197. https://doi.org/10.31557/APJCP. 2022.23.7.2191

Sun, K., Chen, J., and Viboud, C. 2020. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. The Lancet Digital Health 2(4):e201–e208. https://doi.org/10.1016/S2589-7500(20)30026-1

Umesh, A., Pranay, K., Pandey, R. C., and Gupta, M. K. 2022. Evidence mapping and review of long-COVID and its underlying pathophysiological mechanism. Infection 50:1053–1066. https://doi.org/10.1007/s15010-022-01835-6

Victor, J., Deutsch, J., Whitaker, A., Lamkin, E. N., March, A., Zhou, P., Botten, J. W., and Chatterjee, N. 2021. SARS-CoV-2 triggers DNA damage response in Vero E6 cells. Biochemical and Biophysical Research Communications 579:141–145. https://doi.org/10.1016/j.bbrc.2021.09.024

Victor, J., Jordan, T., Lamkin, E., Ikeh, K., March, A., Frere, J., Crompton, A., Allen, L., Fanning, J., and Lim, W. Y. 2022. SARS-CoV-2 hijacks host cell genome instability pathways. Research Square https://doi.org/10.21203/rs.3.rs-1556634/v1

Wang, G., Xiong, Z., Yang, F., Zheng, X., Zong, W., Li, R., and Bao, Y. 2022. Identification of COVID-19-associated DNA methylation variations by integrating methylation array and scRNA-Seq data at cell-type resolution. Genes 13(7):1109. https://doi.org/10.3390/genes13071109

Wolff, L., Martiny, D., Deyi, V. Y. M., Maillart, E., Clevenbergh, P., and Dauby, N. 2021. COVID-19-associated Fusobacterium nucleatum Bacteremia, Belgium. Emerging Infectious Diseases 27(3):975. https://doi.org/10.3201/eid2703.202284

Wu, Q., Zhou, L., Sun, X., Yan, Z., Hu, C., Wu, J., Xu, L., Li, X., Liu, H., and Yin, P. 2017. Altered lipid metabolism in recovered SARS patients twelve years after infection. Scientific Reports 7(1):1–12. https://doi.org/10.1038/s41598-017-09536-z

Xiao, X., Shan, H., Niu, Y., Wang, P., Li, D., Zhang, Y., Wang, J., Wu, Y., and Jiang, H. 2022. TMPRSS2 serves as a prognostic biomarker and correlated with immune infiltrates in breast invasive cancer and lung adenocarcinoma. Frontiers in Molecular Biosciences 9:647826. https://doi.org/10.3389/fmolb.2022.647826

Yang, L., Yang, S., Ren, C., Liu, S., Zhang, X. and Sui, A. 2022. Deciphering the roles of miR-16-5p in Malignant Solid Tumorsmalignant solid tumors. Biomedicine & Pharmacotherapy 148:112703. https://doi.org/10.1016/j.biopha.2022.112703

Yao, Y., Subedi, K., Liu, T., Khalasawi, N., Pretto-Kernahan, C. D., Wotring, J. W., Wang, J., Yin, C., Jiang, A., and Fu, C. 2022. Surface translocation of ACE2 and TMPRSS2 upon TLR4/7/8 activation is required for SARS-CoV-2 infection in circulating monocytes. Cell Discovery 8(1):1–17. https://doi.org/10.1038/s41421-022-00453-8

Zalpoor, H., Akbari, A., Nayerain Jazi, N., Liaghat, M., and Bakhtiyari, M. 2022. Possible role of autophagy induced by COVID-19 in cancer progression, chemo-resistance, and tumor recurrence. Infectious Agents and Cancer 17(1):1–4. https://doi.org/10.1186/s13027-022-00450-2

Zhang, C.-Y., Liu, S., and Yang, M. 2022. Crosstalk between gut microbiota and COVID-19 impacts pancreatic cancer progression. World Journal of Gastrointestinal Oncology 14(8):1456. https://doi.org/10.4251/wjgo.v14.i8.1456

Zhang, M., Wang, P., Luo, R., Wang, Y., Li, Z., Guo, Y., Yao, Y., Li, M., Tao, T., and Chen, W. 2021. Biomimetic human disease model of SARS‐CoV‐2‐induced lung injury and immune responses on organ chip system. Advanced Science 8(3):2002928. https://doi.org/10.1101/2020.07.20.211789

Zhang, S., Wang, J., Wang, L., Aliyari, S., and Cheng, G. 2022. SARS-CoV-2 virus NSP14 Impairs NRF2/HMOX1 activation by targeting Sirtuin 1. Cellular & Molecular Immunology 19(8):872–882. https://doi.org/10.1038/s41423-022-00887-w

Østergaard, L. 2021. SARS CoV‐2 related microvascular damage and symptoms during and after COVID‐19: Consequences of capillary transit‐time changes, tissue hypoxia and inflammation. Physiological Reports 9(3):e14726. https://doi.org/10.14814/phy2.14726

Downloads

Published

2023-11-30

How to Cite

Petersen, E., Chudakova, D., Erdyneeva, D., Zorigt, D., Shabalina, E., Karalkin, P., & Reshetov, I. (2023). Cancer as a potential sequela of COVID-19 — should we modify 3D cell culture models accordingly?. Biological Communications, 68(3), 190–198. https://doi.org/10.21638/spbu03.2023.307

Issue

Section

Review communications

Categories

Most read articles by the same author(s)