Epixylic diversity in an old-growth boreal forest is influenced by dynamic substrate attributes

Authors

  • Helena Kushnevskaya Department of Geobotany and Plant Ecology, Faculty of Biology, Saint Petersburg State University, Sredniy pr., 41/43, Saint Petersburg, 199178, Russian Federation; Saint Petersburg State Forest Technical University, ul. Institutskaya, 5, Saint Petersburg, 194021, Russian Federation https://orcid.org/0000-0003-1401-2902
  • Eugene Borovichev Institute of North Industrial Ecology Problems, Kola Science Centre of the Russian Academy of Sciences, ul. Fersmana, 14a, Apatity, 184209, Russian Federation https://orcid.org/0000-0002-7310-6872
  • Ekaterina Shorohova Laboratory for Boreal Forest Dynamics and Production of Forest Research, Forest Research Institute of the Karelian Research Centre, Russian Academy of Sciences, ul. Pushkinskaya, 11, Petrozavodsk, 185910, Russian Federation; Saint Petersburg State Forest Technical University, ul. Institutskaya, 5, Saint Petersburg, 194021, Russian Federation https://orcid.org/0000-0002-8238-927X

DOI:

https://doi.org/10.21638/spbu03.2022.402

Abstract

Quantifying the factors influencing wood-inhabiting species in boreal forests is crucial for better understanding of their ecology and conservation needs. We estimated the influence of substrate attributes on epixylic diversity on logs of Picea abies, Betula pubescens, B. pendula, Populus tremula and Pinus sylvestris in a mixed European old-growth boreal forest with high substrate availability and continuity. The number of species of different taxonomic and substrate groups in respect of log attributes was estimated with generalized linear models. The composition of epixylic communities was analysed using non-metric multidimensional scaling with subsequent environmental fitting. Additionally, we calculated species interaction networks of log (tree) species and epixylic plants and lichens. Species richness per log decreased with the increasing height above the ground and increased with the increasing amount of accumulated litter. True epixylics were the most sensitive to a log position above the ground. Aspen and conifer logs harbored the highest richness of rare species of lichens and liverworts. Birch logs hosted mainly species with wide substrate amplitude. The whole epixylic community specialization index decreased in the order lichens, liverworts, mosses, vascular plants. Tree species identity and associated attributes (bark cover, pH etc.) as well as ‘dynamic’ attributes (accumulation of litter, wood decomposition and time since tree death) influenced the total species number, their taxonomic diversity, and the composition of epixylic communities. Our results indicate the importance of wood of various age and tree species for the conservation of epixylic diversity in boreal forests.

Keywords:

epixylic community, bryophytes, lichens, dead wood, coarse woody debris, decomposition, bark

Downloads

Download data is not yet available.
 

References

Andersson, L., Alexeeva, M., Kuznetsova, E. (eds). 2009. Survey of biologically valuable forests in North-Western European Russia. Vol. 2. Identification manual of species to be used during survey at stand level. St. Petersburg.

Andersson, L. and Hytteborn, H. 1991. Bryophytes and decaying wood — a comparison between managed and natural forest. Ecography 14:121–130. https://doi.org/10.1111/j.1600-0587.1991.tb00642.x

Berg, Å., Gärdenfors, U., Hallingbäck, T., et al. 2002. Habitat preferences of red-listed fungi and bryophytes in woodland key habitats in southern Sweden — analyses of data from a national survey. Biodiversity and Conservation 11:1479–1503. https://doi.org/10.1023/A:1016271823892

Blüthgen, N., Menzel, F., and Blüthgen, N. 2006. Measuring specialization in species interaction networks. BMC Ecology 6:9. https://doi.org/10.1186/1472-6785-6-9

Boudreault, C., Paquette, M., Fenton, N. J., Pothier, D., and Bergeron, Y. 2018. Changes in bryophytes assemblages along a chronosequence in eastern boreal forest of Quebec. Canadian Journal of Forest Research 48:1–14.

Botting, R. S. and DeLong, C. 2009. Macrolichen and bryophyte responses to coarse woody debris characteristics in subboreal spruce forest. Forest Ecology and Management 258:85–94. https://doi.org/10.1016/j.foreco.2009.08.036

Brūmelis, G., Oļehnoviča, E., Šūba, U., Treimane, A., Inne, S., Zviedre, E., Elferts, D., Dakša, M., and Tjarve, D. 2017. Bryophyte and polypore richness and indicators in relation to type, age and decay stage of coarse woody debris of Picea abies. Environmental and Experimental Biology 15:95–103.

Caruso, A. and Rudolphi, J. 2009. Influence of substrate age and quality on species diversity of lichens and bryophytes on stumps. The Bryologist 112(3):520–531. https://doi.org/10.1639/0007-2745-112.3.520

Cherepanov, S. K. 1995. Vascular plants of Russia and adjacent states (the former USSR). 992 pp. Mir i sem’ia, St. Petersburg. (In Russian)

Clavel, J., Julliard, R., and Devictor, V. 2011. Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment 9:222–228. https://doi.org/10.1890/080216

Crites, S. and Dale, M. R. T. 1998. Diversity and abundance of bryophytes, lichens, and fungi in relation to woody substrate and successional stage in aspen mixedwood. Canadian Journal of Botany 76:641–651. https://doi.org/10.1139/b98-030

Dynesius, M. and Jonsson, B. G. 1991. Dating uprooted trees: comparison and application of eight methods in a boreal forest. Canadian Journal of Forest Research 21:655–665. https://doi.org/10.1139/x91-089

Fedorchuk, V. N., Neshataev, V. Yu., and Kuznetsova, M. L. 2005. Forest ecosystems of the north-western regions of Russia: typology, dynamics, management features. 382 p. St. Petersburg. (In Russian)

Fedorets, N. G., Morozova, R. M., Bakhmet, A. N., and Solodovnikov, A. N. 2006. The soils and soil cover of the Kivach Strict Nature Reserve. Proceeding of Karelian Research Centre of RAS 10:3–34. (In Russian)

Frego, K. and Carleton, T. 1995. Microsite tolerance of four bryophytes in a mature black spruce stand: reciprocal transplants. The Bryologist 98(4):452–458. https://doi.org/10.2307/3243584

Frisvoll, A. A. and Prestø, T. 1997. Spruce forest bryophytes in central Norway and their relationship to environmental factors including modern forestry. Ecography 20:3–18. https://doi.org/10.1111/j.1600-0587.1997. tb00342.x

Goia, I. and Gafta, D. 2018. Beech versus spruce deadwood as forest microhabitat: does it make any difference to bryophytes? Plant Biosystems — An International Journal Dealing with all Aspects of Plant Biology 153(2):187–194. https://doi.org/10.1080/11263504.2018.1448011

Heilmann-Clausen, J., Aude, E., and Christensen, M. 2005. Cryptogam communities on decaying deciduous wood — does tree species diversity matter? Biodiversity and Conservation 14:2061–2078. https://doi.org/10.1007/s10531-004-4284-x

Heilmann-Clausen, J., Aude, E., van Dort, K., Christensen, M., Piltaver, A., Veerkamp, M., Walleyn, R., Siller, I., Standovár, T., and Òdor, P. 2014. Communities of woodinhabiting bryophytes and fungi on dead beech logs in Europe — reflecting substrate quality or shaped by climate and forest conditions? Journal of Biogeography 41:2269–2282. https://doi.org/10.1111/jbi.12388

Ignatov, M., Afonina, O., and Ignatova, E. 2006. Check-list of mosses of East Europe and North Asia. Arctoa 15:1–130. https://doi.org/10.15298/arctoa.15.01

Ignatov, M. and Ignatova, E. 2003. Moss flora of the Middle European Russia. Vol. 1: Sphagnaceae — Hedwigiaceae. KMK, Moscow. (In Russian)

Ignatov, M. and Ignatova, E. 2004. Moss flora of the Middle European Russia. Vol. 2: Fontinalaceae — Amblistegiaceae. KMK, Moscow. (In Russian)

Jansova, I. and Soldan, Z. 2006. The habitat factors that affect the composition of bryophyte and lichen communities on fallen logs. Preslia 78:67–86.

Jüriado, I., Paal, J., and Liira, J. 2003. Epiphytic and epixylic lichen species diversity in Estonian natural forests. Biodiversity and Conservation 12:1587–1607. https://doi.org/10.1023/A:1023645730446

Konechnaya, G. Yu., Kurbatova, L. E., Potemkin, A. D., Gimel’brant, D. E., et al. 2009. The identification and examination of biologically valuable forests in the NorthWest of the European part of Russia. Vol. 2. Manual for identification of species used in the survey at the level of allotments. Pobeda, St. Petersburg. (In Russian)

Kropik, M., Zechmeister, H. G., Moser, D., Bernhardt, K. G., and Dullinger, S. 2021. Deadwood volumes matter in epixylic bryophyte conservation, but precipitation limits the establishment of substrate-specific communities. Forest Ecology and Management 493:119285. https://doi.org/10.1016/j.foreco.2021.119285

Kumar, P., Chen, H. Y. H., Thomas, S. C., and Shahi, C. 2017. Effects of coarse woody debris on plant and lichen species composition in boreal forests. Journal of Vegetation Science 28:389–400. https://doi.org/10.1111/jvs.12485

Kumar, P., Chen, H. Y., Thomas, S. C., and Shahi, C. 2018. Epixylic vegetation abundance, diversity, and composition vary with coarse woody debris decay class and substrate species in boreal forest. Canadian Journal of Forest Research 48(4):399–411. https://doi.org/10.1139/cjfr-2017-0283

Kurbatova, L. 2002. Mosses of the Leningrad Province. PhD thesis. Komarov’ Bot. Inst. (In Russian)

Kushnevskaya, H. and Shorohova, E. 2018. Presence of bark influences the succession of cryptogamic wood-inhabiting communities on conifer fallen logs. Folia Geobotanica 173:175–190. https://doi.org/10.1007/s12224-018-9310-y

Laaka, S. 1993. Diversity and composition of epixylic bryophyte communities in Finland. PhD Thesis, University of Helsinki.

Lõhmus, A., Lõhmus, P., and Vellak, K. 2007. Substratum diversity explains landscape-scale co-variation in the species-richness of bryophytes and lichens. Biological Conservation 135(3):405–414. https://doi.org/10.1016/j.biocon.2006.10.015

Löbel, S., Schröder, B., and Snäll, T. 2021. Projected shifts in deadwood bryophyte communities under national climate and forestry scenarios benefit large competitors and impair small species. Journal of Biogeography 48(12):3170–3184. https://doi.org/10.1111/jbi.14278

McAlister, S. 1997. Cryptogam communities on fallen logs in the Duke Forest. North Carolina. Journal of Vegetation Science 8:115–124. https://doi.org/10.2307/3237249

Mežaka, A., Strazdiņa, L., Madžule, L., Liepiņa, L., et al. 2009. Bryophyte and lichen flora in relation to habitat characteristics in Moricsala Nature Reserve, Latvia. Latvijas Veģetācija 18:65–89.

Mills, S. E. and Macdonald, S. E. 2004. Predictors of moss and liverwort species diversity of microsites in conifer-dominated boreal forest. Journal of Vegetation Science 15:189– 198. https://doi.org/10.1111/j.1654-1103.2004.tb02254.x

Müller, J., Boch, S., Blaser, S., Fischer, M., and Prati, D. 2015. Effects of forest management on bryophyte communities on deadwood. Nova Hedwigia 100:423–438. https://doi.org/10.1127/nova_hedwigia/2015/0242

Nordin, A., Moberg, R., Tønsberg, T., Vitikainen, O., Dalsätt, Å., Myrdal, M., Snitting, D., and Ekman, S. 2011. Santesson’s Checklist of Fennoscandian Lichen-forming and Lichenicolous Fungi. Ver. April 29, 2011.

Nowinska, R., Urbanski, P., and Szewczyk, W. 2009. Species diversity of plants and fungi on logs of fallen trees of different species in oak-hornbeam forests. Roczniki Akademii Rolniczej w Poznaniu. Botanika-Steciana 13:109–124.

Ódor, P. and van Hees, A. F. M. 2004. Preferences of dead wood inhabiting bryophytes to decay phase, log size and habitat types in Hungarian beech forests. Journal of Bryology 26:79–95. https://doi.org/10.1179/037366804225021038

Oksanen, J., Blanchet, G. F., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H., and Wagner, H. 2013. Vegan: Community Ecology Package. R package version 2.0-10.

Potemkin, A. D. and Sofronova, E. V. 2009. Liverworts and hornworts of Russia. Boton-Spectr, St. Petersburg — Yakutsk. (In Russian)

Preikša, Z., Brazaitis, G., Marozas, V., and Jaroszewicz, B. 2016. Dead wood quality influences species diversity of rare cryptogams in temperate broadleaved forests. iForest 9:276–285. https://doi.org/10.3832/ifor1483-008

Proctor, M. C., Oliver, M. J., Wood, A. J., Alpert, P., Stark, L. R., Cleavitt, N. L., and Mishler, B. D. 2007. Desiccation-tolerance in bryophytes: a review. The Bryologist 110(4):595–621. https://doi.org/10.1639/00072745(2007)110[595:DIBAR]2.0.CO;2

R Core Team 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org

The Red DataBook of the Republic of Karelia. 2020. Ed. О. L. Кuznetsov. 448 pp. Konstanta, Belgorod. (In Russian)

Rastogi, S., Pandey, M. M., and Kumar, S. W. 2015. Medicinal plants of the genus Betula: Traditional uses and a phytochemical-pharmacological revie. Journal of Ethnopharmacology 159:62–83. https://doi.org/10.1016/j.jep.2014.11.010

Romashkin, I., Shorohova, E., Kapitsa, E., Galibina, N., and Nikerova, K. 2018. Carbon and nitrogen dynamics along the log bark decomposition continuum in a mesic oldgrowth boreal forest. European Journal of Forest Research 137(5):643–657. https://doi.org/10.1007/s10342-018-1131-2

Ruokolainen, A., Shorohova, E., Penttilä, R., Kotkova, V., and Kushnevskaya, H. 2018. A continuum of dead wood with various habitat elements maintains the diversity of wood-inhabiting fungi in an old-growth boreal forest. European Journal of Forest Research 137(5):707–718. https://doi.org/10.1007/s10342-018-1135-y

Sandström, J., Bernes, C., Junninen, K., Lõhmus, A., Macdonald, E., Müller, J., and Jonsson, B. G. 2019. Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. Journal of Applied Ecology 56:1770–1781. https://doi.org/10.1111/1365-2664.13395

Seibold, S., Bässler, C., Brandl, R., Gossner, M. M., Thorn, S., Ulyshen, M. D., and Müller, J. 2015. Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge. Biological Conservation 191:139–149. https://doi.org/10.1016/j.biocon.2015.06.006

Shorohova, E. and Kapitsa, E. 2014. Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests. Forest Ecology and Management 315:173–184. https://doi.org/10.1016/j.foreco.2013.12.025

Shorohova, E., Kapitsa, E., Kazartsev, I., Romashkin, I., Polevoi, A., and Kushnevskaya, H. 2016. Tree species traits are the predominant control on the decomposition rate of tree log bark in a mesic old-growth boreal forest. Forest Ecology and Management 377:36–45. https://doi.org/10.1016/j.foreco.2016.06.036

Skorohodova, S. B. 2008. The climate of “Kivach” Reserve. Proceedings of the National Nature Reserve “Kivach” 4:3–34.

Staniaszek-Kik, M. and Żarnowiec, J. 2018. Diversity of mosses on stumps and logs in the Karkonosze Mts (Sudetes Mts, Central Europe). Herzogia 31:70–87. https://doi.org/10.13158/099.031.0104

Söderström, L. 1988a. Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in Northern Sweden. Nordic Journal of Botany 8(1):89–97. https://doi.org/10.1111/j.1756-1051.1988. tb01709.x

Söderström, L. 1988b. The occurrence of epixylic bryophyte and lichen species in an old natural and a managed forest stand in northeast Sweden. Biodiversity and Conservation 45:169–178. https://doi.org/10.1016/0006-3207(88)90137-1

Söderström, L. 1989. Regional distribution patterns of bryophyte species on spruce logs in Northern Sweden. The Bryologist 92(3):349–355. https://doi.org/10.2307/3243403

Söderström, L., Hallingbäck, T., Gustafsson, L., Cronberg, L., and Hedenäs, L. 1992. Bryophyte conservation for the future. Biodiversity and Conservation 59:265–270. https://doi.org/10.1016/0006-3207(92)90595-E

Söderström, L., Hagborg, A., von Konrat, M., et al. 2016. World checklist of hornworts and liverworts. PhytoKeys 59:1– 828. https://doi.org/10.3897/phytokeys.59.6261

Táborská, M., Procházková, J., Lengyel, A., Vrška, T., Hort, L., and Ódor, P. 2017. Wood-inhabiting bryophyte communities are influenced by different management intensities in the past. Biodiversity and Conservation 26:2893– 2909. https://doi.org/10.1007/s10531-017-1395-8

Táborská, M., Kovács, B., Németh, C., and Ódor, P. 2020. The relationship between epixylic bryophyte communities and microclimate. Journal of Vegetation Science 31(6):1168–1180. https://doi.org/10.1111/jvs.12919

Tarasova, V. N., Obabko, R. M., Himelbrant, D. E., Boychuk, M. A., Stepanchikova, I. S., and Borovichev, E. A. 2017. Diversity and distribution of epiphytic lichens and bryophytes on aspen (Populus tremula) in the middle boreal forests of Republic of Karelia (Russia). Folia Cryptogamica Estonica 54:125–141. https://doi.org/10.12697/fce.2017.54.16

Uliczka, H. and Angelstam, P. 1999. Occurrence of epiphytic macrolichens in relation to tree species and age in managed boreal forest. Ecography 22:396–405. https://doi.org/10.1111/j.1600-0587.1999.tb00576.x

Wiklund, K. and Rydin, H. 2004. Ecophysiological constraints on spore establishment in bryophytes. Functional Ecology 18:907–913. https://doi.org/10.1111/j.0269- 8463.2004.00906.x

Żarnowiec, J., Staniaszek-Kik, M., and Chmura, D. 2021. Trait-based responses of bryophytes to the decaying logs in Central European mountain forests. Ecological Indicators 126:107671. https://doi.org/10.1016/j.ecolind.2021.107671

Downloads

Additional Files

Published

2022-12-31

How to Cite

Kushnevskaya, H., Borovichev, E., & Shorohova, E. (2022). Epixylic diversity in an old-growth boreal forest is influenced by dynamic substrate attributes. Biological Communications, 67(4), 253–265. https://doi.org/10.21638/spbu03.2022.402

Issue

Section

Full communications

Categories