Role of the MBP protein in myelin formation and degradation in the brain

  • Aleksandr Shenfeld Vavilov Institute of General Genetics, Russian Academy of Sciences, Saint Petersburg Branch, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Laboratory of Amyloid Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-7286-2203
  • Alexey Galkin Vavilov Institute of General Genetics, Russian Academy of Sciences, Saint Petersburg Branch, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-7362-8857

Abstract

The compact myelin sheath functions as an insulator for efficient conduction of nerve impulses. The formation of myelin sheaths around the axons of the most actively functioning neurons continues not only at the stage of brain development, but also in the process of learning and acquiring certain skills. Pathological or age-related disruption in myelin results in nerve conduction failure and neurodegeneration. Myelin Basic Protein (MBP) is the main constituent of the myelin sheath, representing about 30 % of the total myelin proteins in the central nervous system. Deletion in the MBP coding gene in mutant mice causes a severe neurological phenotype associated with rapid death of newborns. In this review, we discuss the current understanding of the role of the MBP protein in the formation of compact myelin and in neurodegeneration associated with demyelination.

Keywords:

myelin, MBP, multiple sclerosis, oligodendrocyte, axon, mammalian brain, amyloid

Downloads

Download data is not yet available.
 

References

Aggarwal, S., Yurlova, L., Snaidero, N., Reetz, C., Frey, S., Zimmermann, J., Pähler, G., Janshoff, A., Friedrichs, N., Müller, D. J., Goebel, C., and Simons, M. 2011. A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets. Developmental Cell 21(3):445–56. https://doi.org/10.1016/j.devcel.2011.08.001

Aggarwal, S., Snaidero, N., Pähler, G., Frey, S., Sánchez, P., Zweckstetter, M., Janshoff, A., Schneider, A., Weil, M. T., Schaap, I. A. T., Görlich, D., and Simons, M. 2013. Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork. PLOS Biology 11(6):e1001577. https://doi.org/10.1371/journal.pbio.1001577

Ahn, J. H., Lee, T. K., Park, J. K., Cho, J. H., Kim, I. H., Lee, J. C., Hong, S., Jeon, Y. H., Kang, I. J., Lee, Y. J., Won, M. H., and Lee, C. H. 2017. Age-dependent differences in myelin basic protein expression in the hippocampus of young, adult and aged gerbils. Laboratory Animal Research 33(3):237–243. https://doi.org/10.5625/lar.2017.33.3.237

Allinquant, B., Staugaitis, S. M., D’Urso, D., and Colman, D. R. 1991. The ectopic expression of myelin basic protein isoforms in Shiverer oligodendrocytes: implications for myelinogenesis. Journal of Cell Biology (2):393–403. https://doi.org/10.1083/jcb.113.2.393

Bakhti, M., Aggarwal, S., and Simons, M. 2014. Myelin architecture: zippering membranes tightly together. Cellular and Molecular Life Sciences 71(7):1265–1277. https://doi.org/10.1007/s00018-013-1492-0

Bamm, V. V., De Avila, M., Smith, G. S. T., Ahmed, M. A. M., and Harauz, G. 2011. Structured functional domains of myelin basic protein: Cross talk between actin polymerization and Ca2+-dependent calmodulin interaction. Biophysical Journal 101(5):1248–1256. https://doi.org/10.1016/j.bpj.2011.07.035

Beniac, D. R., Luckevich, M. D., Czarnota, G. J, Tompkins, T. A., Ridsdale, R. A., Ottensmeyer, F. P., Moscarello, M. A., and Harauz, G. 1997. Three-dimensional structure of myelin basic protein. I. Reconstruction via angular reconstitution of randomly oriented single particles. Journal of Biological Chemistry 272(7):4261–4268. https://doi.org/10.1074/jbc.272.7.4261

Boggs, J. M., Rangaraj, G., Hill, C. M. D., Bates, I. R., Heng, Y.-M., and Harauz, G. 2005. Effect of arginine loss in myelin basic protein, as occurs in its deiminated charge isoform, on mediation of actin polymerization and actin binding to a lipid membrane in vitro. Biochemistry 44(9):3524–3534. https://doi.org/10.1021/bi0473760

Boggs, J. M. 2006. Myelin basic protein: A multifunctional protein. Cellular and Molecular Life Sciences 63(17):1945–1961. https://doi.org/10.1007/s00018-006-6094-7

Boggs, J. M., Homchaudhuri, L., Ranagaraj, G., Liu, Y., Smith, G. S., and Harauz, G. 2014. Interaction of myelin basic protein with cytoskeletal and signaling proteins in cultured primary oligodendrocytes and N19 oligodendroglial cells. BMC Research Notes 7(1):1–14. https://doi.org/10.1186/1756-0500-7-387

Bourre, L. M., Jacque, C., Delassalle, A., Nguyen-Legros, J., Dumont, O., Lachapelle, F., Raoul, M., Alvarez, C., and Baumann, N. 1980. Density profile and basic protein measurements in the myelin range of particulate material from normal developing mouse brain and from neurological mutants (Jimpy; quaking; Trembler; shiverer and its mld allele) obtained by zonal centrifugation. Journal of Neurochemistry 35(2):458–464. https://doi.org/10.1111/j.1471-4159.1980.tb06287.x

Calabretta, S. and Richard, S. 2015. Emerging roles of disordered sequences in RNA-binding proteins. Trends in Biochemical Sciences: Cell Press 40(11):662–672. https://doi.org/10.1016/j.tibs.2015.08.012

Campagnoni, A. T., Pribyl, T. M., Campagnoni, C. W., Kampf, K., Amur-Umarjee, C. F., Handley, V. W., Newman, S. L., Garbay, B., and Kitamura, K. 1993. Structure and developmental regulation of Golli-mbp, a 105 kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain. Journal of Biological Chemistry 268:4930–4938. https://doi.org/10.1016/S0021-9258(18)53485-2

Carson, J. H., Nielson, M. L., and Barbarese, E. 1983. Developmental regulation of myelin basic protein expression in mouse brain. Developmental Biology 96(2):485–492. https://doi.org/10.1016/0012-1606(83)90185-9

Cohen, S. R., Herndon, R. M., and McKhann, G. M. 1976. Myelin basic protein in cerebrospinal fluid as an indicator of active demyelination. Transactions of the American Neurological Association 101:45–47.

Dawson, M. R. L., Levine, J. M., and Reynolds, R. 2000. NG-2-expressing cells in the central nervous system: are they oligodendroglial progenitors? Journal of Neuroscience Research 61(5):471–479. https://doi.org/10.1002/10974547(20000901)61:5<471::AID-JNR1>3.0.CO;2-N

de Col, R., Messlinger, K., and Carr, R. W. 2008. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. The Journal of Physiology 586(4):1089–1103. https://doi.org/10.1113/jphysiol.2007.145383

de Ferra, F., Engh, H., Hudson, L., Kamholz, J., Puckett, C., Molineaux, S., and Lazzarini, R. A. 1985. Alternative splicing accounts for the four forms of myelin basic protein. Cell 43(3 Pt 2):721–727. https://doi.org/10.1016/0092-8674(85)90245-4

Feldman, M. L. and Peters, A. 1998. Ballooning of myelin sheaths in normally aged macaques. Journal of Neurocytology 27(8):605–614. https://doi.org/10.1023/a:1006926428699

Feng, J. M., Fernandes, A. O., Campagnoni, C. W., Hu, Y. H., and Campagnoni, A. T. 2004. The golli-myelin basic protein negatively regulates signal transduction in T lymphocytes. Journal of Neuroimmunology 152(1–2):57–66. https://doi.org/10.1016/j.jneuroim.2004.03.021

Fernandes, A. O., Campagnoni, C. W., Kampf, K., Feng, J. M., Handley, V. W., Schonmann, V., and Campagnoni, A. T. 2004. Identification of a protein that interacts with the golli-myelin basic protein and with nuclear LIM interactor in the nervous system. Journal of Neuroscience Research 75(4):461–471. https://doi.org/10.1002/jnr.10882

Fitzner, D., Schneider, A., Kippert, A., Möbius, W., Willig, K. I., Hell, S. W., and Simons, M. 2006. Myelin basic proteindependent plasma membrane reorganization in the formation of myelin. EMBO Journal 25(21):5037–5048. https://doi.org/10.1038/sj.emboj.7601376

Franklin, H., Clarke, B. E., and Patani, R. 2021. Astrocytes and microglia in neurodegenerative diseases: Lessons from human in vitro models. Progress in Neurobiology 200:101973. https://doi.org/10.1016/j.pneurobio.2020.101973

Fritz, R. B. and Kalvakolanu, I. 1995. Thymic expression of the golli-myelin basic protein gene in the SJL/J mouse. Journal of Neuroimmunology 57(1–2):93–99. https://doi.org/10.1016/0165-5728(94)00167-m

Fünfschilling, U., Supplie, L. M., Mahad, D., Boretius, S., Saab, A. S., Edgar, J., Brinkmann, B. G., Kassmann, C. M., Tzvetanova, I. D., Möbius, W., Diaz, F., Meijer, D., Suter, U., Hamprecht, B., Sereda, M. W., Moraes, C. T., Frahm, J., Goebbels, S., and Nave, K. A. 2012. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521. https://doi.org/10.1038/nature11007

Galkin, A. P. and Sysoev, E. I. 2021. Stress response is the main trigger of sporadic amyloidoses. International Journal of Molecular Sciences 22(8):4092. https://doi.org/10.3390/ijms22084092

Harauz, G. and Boggs, J. M. 2013. Myelin management by the 18.5–kDa and 21.5–kDa classic myelin basic protein isoforms. Journal of Neurochemistry 125(3):334–361. https://doi.org/10.1111/jnc.12195

Harauz, G. and Libich, D. 2009. The classic basic protein of myelin — conserved structural motifs and the dynamic molecular barcode involved in membrane adhesion and protein-protein interactions. Current Protein & Peptide Science 10(3):196–215. https://doi.org/10.2174/138920309788452218

Hartline, D. K. and Colman, D. R. 2007. Rapid conduction and the evolution of giant axons and myelinated fibers. Current Biology 17(1):R29–35. https://doi.org/10.1016/j.cub.2006.11.042

Hasegawa, M., Houdou, S., Mito, T., Takashima, S., Asanuma, K., and Ohno, T. 1992. Development of myelination in the human fetal and infant cerebrum: a myelin basic protein immunohistochemical study. Brain & Development 14(1):1–6. https://doi.org/10.1016/s0387-7604(12)80271-3

Huxley, A. F. and Stämpfli, R. 1949. Evidence for saltatory conduction in peripheral myelinated nerve fibres. The Journal of Physiology 108(3):315–339. https://doi.org/10.1113/jphysiol.1949.sp004335

Ishigami, A., Ohsawa, T., Hiratsuka, M., Taguchi, H., Kobayashi, S., Saito, Y., Murayama, S., Asaga, H., Toda, T., Kimura, N., and Maruyama, N. 2005. Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. Journal of Neuroscience Research 80(1):120–128. https://doi.org/10.1002/jnr.20431

Ishiyama, N., Bates, I. R., Hill, C. M., Wood, D. D., Matharu, P., Viner, N. J., Moscarello, M. A., and Harauz, G. 2001. The effects of deimination of myelin basic protein on structures formed by its interaction with phosphoinositidecontaining lipid monolayers. Journal of Structural Biology 136(1):30–45. https://doi.org/10.1006/jsbi.2001.4421

Jacobs, E. C., Pribyl, T. M., Kampf, K., Campagnoni, C., Colwell, C. S., Reyes, S. D., and Campagnoni, A. T. 2005. Region-specific myelin pathology in mice lacking the golli products of the myelin basic protein gene. Journal of Neuroscience 25(30):7004–7013. https://doi.org/10.1523/JNEUROSCI. 0288-05.2005

Jacque, C., Delassalle, A., Raoul, M., and Baumann, N. 1983. Myelin basic protein deposition in the optic and sciatic nerves of dysmyelinating mutants quaking, jimpy, Trembler, mld, and shiverer during development. Journal of Neurochemistry 41(5):1335–1340. https://doi.org/10.1111/j.1471-4159.1983.tb00830.x

Jang, B., Jin, J. K., Jeon, Y. C., Cho, H. J., Ishigami, A., Choi, K. C., and Choi, E. K. 2010. Involvement of peptidylarginine deiminase-mediated post-translational citrullination in pathogenesis of sporadic Creutzfeldt-Jakob disease. Acta Neuropathologica 119(2):199–210. https://doi.org/10.1007/s00401-009-0625-x

Kattnig, D. R., Bund, T., Boggs, J. M., Harauz, G., and Hinderberger, D. 2012. Lateral self-assembly of 18.5-kDa myelin basic protein (MBP) charge component-C1 on membranes. Biochimica et Biophysica Acta 1818(11):2636–2647. https://doi.org/10.1016/j.bbamem.2012.06.010

Kim, J. K., Mastronardi, F. G., Wood, D. D., Lubman, D. M., Zand, R., and Moscarello, M. A. 2003. Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Molecular & Cellular Proteomics 2(7):453–462. https://doi.org/10.1074/mcp.M200050-MCP200

Kimura, M., Sato, M., Akatsuka, A., Nozawa-Kimura, S., Takahashi, R., Yokoyama, M., Nomura, T., and Katsuki, T. 1989. Restoration of myelin formation by a single type of myelin basic protein in transgenic shiverer mice. Proceedings of the National Academy of Sciences USA 86(14):5661–5665. https://doi.org/10.1073/pnas.86.14.5661

Kushnirov, V. V., Dergalev, A. A., and Alexandrov, A. I. 2020. Proteinase K resistant cores of prions and amyloids. Prion 14(1):11–19. https://doi.org/10.1080/19336896.2019.1704612

Landry, C. F., Ellison, J. A., Pribyl, T. M., Campagnoni, C., Kampf, K., and Campagnoni, A. T. 1996. Myelin basic protein gene expression in neurons: developmental and regional changes in protein targeting within neuronal nuclei, cell bodies, and processes. Journal of Neuroscience 16(8):2452–2462. https://doi.org/10.1523/JNEUROSCI.16-08-02452.1996

Lefèvre-Arbogast, S., Hejblum, B. P., Helmer, C., Klose, C., Manach, C., Low, D. Y., Urpi-Sarda, M., Andres-Lacueva, C., González-Domínguez, R., Aigner, L., Altendorfer, B., Lucassen, P. J., Ruigrok, S. R., De Lucia, C., Du Preez, A., Proust-Lima, C., Thuret, S., Korosi, A., Samieri, C. 2021. Early signature in the blood lipidome associated with subsequent cognitive decline in the elderly: A case-control analysis nested within the Three-City cohort study. EBioMedicine 64:103216. https://doi.org/10.1016/j.ebiom.2021.103216

Lehmann, P. V., Rottlaender, A., and Kuerten, S. 2015. The autoimmune pathogenesis of multiple sclerosis. Die Pharmazie 70(1):5–11.

Levine, J. M., Reynolds, R., and Fawcett, J. W. 2001. The oligodendrocyte precursor cell in health and disease. Trends in Neurosciences 24(1):39–47. https://doi.org/10.1016/s0166-2236(00)01691-x

Love, S. 2006. Demyelinating diseases. Journal of Clinical Pathology 59(11):1151–1159. https://doi.org/10.1136/jcp.2005.031195

Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Rissman, R. A., Singru, P. S., and Vale, W. 2009. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325(5938):328–332. https://doi.org/10.1126/science.1173155

Marrodan, M., Alessandro, L., Farez, M. F., and Correale, J. 2019. The role of infections in multiple sclerosis. Multiple Sclerosis Journal 25(7):891–901. https://doi.org/10.1177/1352458518823940

Martini, R., Mohajeri, M. H., Kasper, S., Giese, K. P., and Schachner, M. 1995. Mice doubly deficient in the genes for P0 and myelin basic protein show that both proteins contribute to the formation of the major dense line in peripheral nerve myelin. Journal of Neuroscience 15(6):4488–4495. https://doi.org/10.1523/JNEUROSCI.15-06-04488.1995

Martini, R. and Schachner, M. 1997. Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 19(4):298–310. https://doi.org/10.1002/(SICI)1098-1136(199704)19:4<298::AIDGLIA3>3.0.CO;2-U

McKenzie, I. A., Ohayon, D., Li, H., Faria, L. P., Emery, B., Tohyama, K., and Richardson, W. D. 2014. Motor skill learning requires active central myelination. Science 346(6207):318–322. https://doi.org/10.1126/science.1254960

Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J., Fobbs, A. J., Sousa, A. M. M., Sestan, N., and Wildman, D. E. 2012. Prolonged myelination in human neocortical evolution. Proceedings of the National Academy of Sciences USA 109(41):16480–16485. https://doi.org/10.1073/pnas.1117943109

Monje, M. 2018. Myelin plasticity and nervous system function. Annual Review of Neuroscience 41:61–76. https://doi.org/10.1146/annurev-neuro-080317-061853

Moscarello, M. A., Mastronardi, F. G., and Wood, D. D. 2006. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochemical Research 32(2):251–256. https://doi.org/10.1007/s11064-006-9144-5

Murray, N. and Steck, A. J. 1984. Impulse conduction regulates myelin basic protein phosphorylation in rat optic nerve. Journal of Neurochemistry 43(1):243–248. https://doi.org/10.1111/j.1471-4159.1984.tb06702.x

Muruganandam, G., Bürck, J., Ulrich, A. S., Kursula, I., and Kursula, P. 2013. Lipid membrane association of myelin proteins and peptide segments studied by oriented and synchrotron radiation circular dichroism spectroscopy. The Journal of Physical Chemistry B 117(48):14983–14993. https://doi.org/10.1021/jp4098588

Musse, A. A., Boggs, J. M., and Harauz, G. 2006. Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proceedings of the National Academy of Sciences USA 103(12):4422–4427. https://doi.org/10.1073/pnas.0509158103

Nawaz, S., Kippert, A., Saab, A. S., Werner, H. B., Lang, T. Nave, K. A., and Simons, M. 2009. Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. Journal of Neuroscience 29(15):4794–4807. https://doi.org/10.1523/JNEUROSCI.3955-08.2009

Nave, K. A. and Werne, H. B. 2014. Myelination of the nervous system: mechanisms and functions. Annual Review of Cell and Developmental Biology 30:503–533. https://doi.org/10.1146/annurev-cellbio-100913-013101

Norton, W. T. and Cammer, W. 1984. Isolation and characterization of myelin. Myelin 1967:147–195. https://doi.org/10.1007/978-1-4757-1830-0_5

O’Connor, L. T., Goetz, B. D., Kwiecien, J. M., Delaney, K. H., Fletch, A. L., and Duncan, I. D. 1999. Insertion of a retrotransposon in Mbp disrupts mRNA splicing and myelination in a new mutant rat. Journal of Neuroscience 19(9):3404–3413. https://doi.org/10.1523/JNEUROSCI.19-09-03404.1999

Paez, P. M., Fulton, D., Spreuer, V., Handley, V., and Campagnoni, A. T. 2011. Modulation of canonical transient receptor potential channel 1 in the proliferation of oligodendrocyte precursor cells by the golli products of the myelin basic protein gene. Journal of Neuroscience 31:3625–3637. https://doi.org/10.1523/JNEUROSCI.4424-10.2011

Paresce, D. M., Chung, H., and Maxfield, F. R. 1997. Slow degradation of aggregates of the Alzheimer’s disease amyloid beta-protein by microglial cells. Journal of Biological Chemistry 272(46):29390–29397. https://doi.org/10.1074/jbc.272.46.29390

Pedraza, L., Fidler, L., Staugaitis, S. M., and Colman, D. R. 1997. The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron 18(4):579–589. https://doi.org/10.1016/s0896-6273(00)80299-8

Peters, A. 1960. The structure of myelin sheaths in the central nervous system of Xenopus laevis (Daudin). The Journal of Biophysical and Biochemical Cytology 7(1):121–126. https://doi.org/10.1083/jcb.7.1.121

Peters, A. 2002. The effects of normal aging on myelin and nerve fibers: a review. Journal of Neurocytology 31(8–9):581–593. https://doi.org/10.1023/a:1025731309829

Polverini, E., Fasano, A., Zito, F., Riccio, P., and Cavatorta, P. 1999. Conformation of bovine myelin basic protein purified with bound lipids. European Biophysics Journal 28(4):351–355. https://doi.org/10.1007/s002490050218

Pribyl, T. M., Campagnoni, C. W., Kampf, K., Kashima, T., Handley, V. W., McMahon, J., and Campagnoni, A. T. 1993. The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems. Proceedings of the National Academy of Sciences USA 90(22):10695–10699. https://doi.org/10.1073/pnas.90.22.10695

Pribyl, T. M., Campagnoni, C. W., Kampf, K., Ellison, L. A., Landry, C. F., Kashima, T., McMahon, J., and Campagnoni, A. T. 1996. Expression of the myelin basic protein gene locus in neurons and oligodendrocytes in the human fetal central nervous system. Journal of Comparative Neurology 374(3):342–353. https://doi.org/10.1002/(SICI)1096-9861(19961021)374:3<342::AIDCNE3>3.0.CO;2-1

Raasakka, A., Ruskamo, S., Kowal, J., Barker, R., Baumann, A., Martel, A., and Kursula, P. 2017. Membrane association landscape of myelin basic protein portrays formation of the myelin major dense line. Scientific Reports 7(1):1–18. https://doi.org/10.1038/s41598-017-05364-3

Riccio, P., Fasano, A., Borenshtein, N., Bleve-Zacheo, T., and Kirschner, D. A. 2000. Multilamellar packing of myelin modeled by lipid-bound MBP. Journal of Neuroscience Research 59(4):513–521. https://doi.org/10.1002/(SICI)1097-4547(20000215)59:4<513::AIDJNR6>3.0.CO;2-M

Ridsdale, R. A., Beniac, D. R., Tompkins, T. A., Moscarello, M. A., and Harauz, G. 1997. Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. Journal of Biological Chemistry 272(7):4269–4275. https://doi.org/10.1074/jbc.272.7.4269

Ritchie, J. M. 1982. On the relation between fibre diameter and conduction velocity in myelinated nerve fibres. Proceedings of the Royal Society B: Biological Sciences 217(1206):29–35. https://doi.org/10.1098/rspb.1982.0092

Sampaio-Baptista, C., Khrapitchev, A., Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S., DeLuca, G. C., Miller, K. L., Taylor, A., Thomas, N., Kleim, J., Sibson, N. R., Bannerman, D., and Johansen-Berg, H. 2013. Motor skill learning induces changes in white matter microstructure and myelination. Journal of Neuroscience 33:19499–19503. https://doi.org/10.1523/JNEUROSCI.3048-13.2013

Sams, E. C. 2021. Oligodendrocytes in the aging brain. Neuronal Signal 5(3):NS20210008. https://doi.org/10.1042/NS20210008

Safaiyan, S., Kannaiyan, N., Snaidero, N., Brioschi, S., Biber, K., Yona, S., Edinger, A. I., Jung, S. J., Rossner, M. J., and Simons, M. 2016. Age-related myelin degradation burdens the clearance function of microglia during aging. Nature Neuroscience 19(8):995–998. https://doi.org/10.1038/nn.4325

Scholz, J., Klein, M. C., Behrens, T. E. J., and Johansen-Berg, H. 2009. Training induces changes in white-matter architecture. Nature Neuroscience 12:1370–1371. https://doi.org/10.1038/nn.2412

Schönfelder, J., Pfeiffer, B., Pradhan, T., Bijzet, J., Hazenberg, B. P. C., Schönland, S. O., Hegenbart, U., Reif, B., Haupt, C., and Fändrich, M. 2021. Protease resistance of ex vivo amyloid fibrils implies the proteolytic selection of disease-associated fibril morphologies. Amyloid 28(4):243–251. https://doi.org/10.1080/13506129.2021.1960501

Schlegel, A., Rudelson, J., and Tse, P. 2012. White matter structure changes as adults learn a second language. Journal of Cognitive Neuroscience 24:1664–1670. https://doi.org/10.1162/jocn_a_00240

Sedzik, J. and Kirschner, D. A. 1992. Is myelin basic protein crystallizable? Neurochemical Research 17(2):157–166. https://doi.org/10.1007/BF00966794

Seiberlich, V., Bauer, N. G., Schwarz, L., Ffrench-Constant, C., Goldbaum, O., and Richter-Landsberg, C. 2015. Downregulation of the microtubule associated protein Tau impairs process outgrowth and myelin basic protein mRNA transport in oligodendrocytes. Glia 63(9):1621–1635. https://doi.org/10.1002/glia.22832

Shine, H. D., Readhead, C., Popko, B., Hood, L., and Sidman, R. L. 1992. Morphometric analysis of normal, mutant, and transgenic CNS: correlation of myelin basic protein expression to myelinogenesis. Journal of Neurochemistry 58(1):342–349. https://doi.org/10.1111/j.1471-4159.1992.tb09316.x

Sim, F. J., Zhao, C., Penderis, J., and Franklin, R. J. M. 2002. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. Journal of Neuroscience 22(7):2451–2459. https://doi.org/10.1523/JNEUROSCI.22-07-02451.2002

Simons, M. and Nave, K. A. 2016. Oligodendrocytes: myelination and axonal support. Cold Spring Harbor Perspectives in Biology 8(1):a020479. https://doi.org/10.1101/cshperspect.a020479

Siu, C. R., Balsor, J. L., Jones, D. R., and Murphy, K. M. 2015. Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex. Frontiers in Neuroscience 9:138. https://doi.org/10.3389/fnins.2015.00138

Smith, G. S. T., Samborska, B., Hawley, S. P., Klaiman, J. M., Gillis, T. E., Jones, N., and Harauz, G. 2013. Nucleus-localized 21.5-kDa myelin basic protein promotes oligodendrocyte proliferation and enhances neurite outgrowth in coculture, unlike the plasma membrane-associated 18.5-kDa isoform. Journal of Neuroscience Research 91(3):349–362. https://doi.org/10.1002/jnr.23166

Sopova, J. V., Koshel, E. I., Belashova, T. A., Zadorsky, S. P., Sergeeva, A. V., Siniukova, V. A., and Galkin, A. P. 2019. RNA-binding protein FXR1 is presented in rat brain in amyloid form. Scientific Reports 9(1):1–14. https://doi.org/10.1126/science.1173155

Stadelmann, C., Timmler, S., Barrantes-Freer, A., and Simons, M. 2019. Myelin in the central nervous system: structure, function, and pathology. Physiological Reviews 99(3):1381–1431. https://doi.org/10.1152/physrev.00031.2018

Steele, C., Bailey, J., Zatorre, R., and Penhune, V. 2013. Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. Journal of Neuroscience 33:1282–1290. https://doi.org/10.1523/JNEUROSCI.3578-12.2013

Stoeckenius, W. 1959. An electron microscope study of myelin figures. The Journal of Biophysical and Biochemical Cytology 5(3):491–500. https://doi.org/10.1083/jcb.5.3.491

Thériault, P. and Rivest, S. 2016. Microglia: senescence impairs clearance of myelin debris. Current Biology 26(16):R772–775. https://doi.org/10.1016/j.cub.2016.06.066

Tse, K. H. and Herrup, K. 2017. Re-imagining Alzheimer’s disease — the diminishing importance of amyloid and a glimpse of what lies ahead. Journal of Neurochemistry 143(4):432–444. https://doi.org/10.1111/jnc.14079

Vassall, K. A., Bamm, V. V., and Harauz, G. 2015. MyelStones: The executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochemical Journal 472(1):17–32. https://doi.org/10.1042/BJ20150710

Williamson, J. M. and Lyons, D. A. 2018. Myelin dynamics throughout life: an ever-changing landscape? Frontiers in Cellular Neuroscience 12:424. https://doi.org/10.3389/fncel.2018.00424

Whitaker, J. N. 1977. Myelin encephalitogenic protein fragments in cerebrospinal fluid of persons with multiple sclerosis. Neurology 27(10):911–920. https://doi.org/10.1212/wnl.27.10.911

Whitaker, J. N. 1997. Myelin basic protein in cerebrospinal fluid and other body fluids. Multiple Sclerosis Journal 4(1):16–21. https://doi.org/10.1177/135245859800400105

Xie, F., Zhang, J. C., Fu, H., and Chen, J. 2013. Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS. International Journal of Molecular Medicine 32(5):1021–1028. https://doi.org/10.3892/ijmm.2013.1486

Zand, R., Li, M. X., Jin, X., and Lubman, D. 1998. Determination of the sites of posttranslational modifications in the charge isomers of bovine myelin basic protein by capillary electrophoresismass spectroscopy. Biochemistry 37(8):2441–2449. https://doi.org/10.1021/bi972347t

Zecević, N., Andjelković, A., Matthieu, J. M., and Tosić, M. 1998. Myelin basic protein immunoreactivity in the human embryonic CNS. Developmental Brain Research 105(1):97–108. https://doi.org/10.1016/S0165-3806(97)00176-4

Zeller, N. K., Hunkeler, M. J., Campagnoni, A. T., Sprague, J., and Lazzarini, R. A. 1984. Characterization of mouse myelin basic protein messenger RNAs with a myelin basic protein cDNA clone. Proceedings of the National Academy of Sciences USA 81(1):18–22. https://doi.org/10.1073/pnas.81.1.18

Zuchero, J. B., Fu, M. M., Sloan, S. A., Ibrahim, A., Olson, A., Zaremba, A., Dugas, J. C., Wienbar, S., Caprariello, A. W., Kantor, C., Leonoudakis, D., Lariosa-Willingham, K., Kronenberg, G., Gertz, K., Soderling, S. H., Miller, R. H., and Barres, B. A. 2015. CNS myelin wrapping is driven by actin disassembly. Developmental Cell 34(2):152–167. https://doi.org/10.1016/j.devcel.2015.06.011

Published
2022-06-24
How to Cite
Shenfeld, A., & Galkin, A. (2022). Role of the MBP protein in myelin formation and degradation in the brain. Biological Communications, 67(2), 127–138. https://doi.org/10.21638/spbu03.2022.206
Section
Review communications