Genome response of hippocampal cells to stress in male rats with different excitability of the nervous system

  • Veronika Shcherbinina Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Laboratory of Higher Nervous Activity Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova, 6, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-4813-736X
  • Alexander Vaido Laboratory of Higher Nervous Activity Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova, 6, Saint Petersburg, 199034, Russian Federation
  • Diana Khlebaeva Laboratory of Higher Nervous Activity Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova, 6, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-5157-486X
  • Natalia Dyuzhikova Laboratory of Higher Nervous Activity Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova, 6, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-3617-5948
  • Eugene Daev Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Laboratory of Higher Nervous Activity Genetics, Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova, 6, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-2036-6790

Abstract

Changes of genome stability in hippocampal cells of male rats with hereditary high and low thresholds of nervus tibialis response to electric stimuli (HT and LT strains, respectively) were studied in unstressed and stressed animals. HT and LT originated from Wistar strain, males of which were also used as a control. The comet assay was used after prolonged emotional painful stressor action. There were no interstrain differences in the spontaneous percentage of DNA in comet tails (tDNA). However, the prolonged emotional pain stressor induced genome instability differently in animals of different strains. The highest level of DNA damage in hippocampal cells was shown in highly sensitive animals of LT strain. Males of Wistar strain had intermediate levels of tDNA, while HT animals had the lowest stress reactivity.

Keywords:

DNA damage, comet assay, stress, hippocampus, nervous sensitivity, selection, rats, genome instability

Downloads

Download data is not yet available.
 

References

Afanasieva, K. and Sivolob, A. 2018. Physical principles and new applications of comet assay. Biophysical Chemistry 238:1–7. https://doi.org/10.1016/j.bpc.2018.04.003

Aguilera, A. and Garcia-Muse T. 2012. R loops: from transcription byproducts to threats to genome stability. Molecular Cell 46:115–124. https://doi.org/10.1016/j.molcel.2012.04.009

Azqueta, A. and Collins, A. R. 2013. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Archives Toxicology 87(6):949–968. https://doi.org/10.1007/s00204-013-1070-0

Barzilai, A. 2007. The contribution of the DNA damage response to neuronal viability. Antioxidants & Redox Signaling 9(2):211–218. https://doi.org/10.1089/ars.2007.9.211

Consiglio, A. R., Ramos, A. L. L. P., Henriques, J. A. P., and Picada, J. N. 2010. DNA brain damage after stress in rats. Progress in Neuro-Psychopharmacology & Biological Psychiatry 34:652–656. https://doi.org/10.1016/j.pnpbp.2010.03.004

Daev, E. V., Petrova, M. V., Onopa, L. S., Shubina, V. A., and Glinin, T. S. 2017. DNA damage in bone marrow cells of mouse males in vivo after exposure to the pheromone: comet assay. Russian Journal of Genetics 53(10):1105–1112. https://doi.org/10.1134/S1022795417100027

Diehl, L. A., Alvares, L. O., Noschang, C., Engelke D., Andreazza A. C., Goncalves C. A. S., Quillfeldt J. A., and Dalmaz C. 2012. Long-lasting effects of maternal separation on an animal model of post-traumatic stress disorder: effects on memory and hippocampal oxidative stress. Neurochemical Research 37:700–707. https://doi.org/10.1007/s11064-011-0660-6

Dyuzhikova, N. A., Bykovskaya, N. V., Vaido, A. I., Shiryaeva N. V., Lopatina N. G., and Schvartsman P. Ya. 1996. Rate of chromosomal aberrations induced by shortterm stress in rats selected for excitability of the nervous system. Genetika 32(6):851–853. (In Russian)

Dyuzhikova, N. A., Skomorokhova, E. B., and Vaido, A. I. 2015. Epigenetic mechanisms in post-stress states. Uspekhi fiziologicheskikh nauk 45(1):47–74. (In Russian)

Forsberg, K., Aalling, N., Wörtwein, G., Loft S., Moller P., Hau J., Hageman I., Jorgensen M. B., and Jorgensen A. 2015. Dynamic regulation of cerebral DNA repair genes by psychological stress. Mutation Research 778:37–43. https://doi.org/10.1016/j.mrgentox.2014.12.003

Gudasheva, T. A., Povarnina, P. Yu., and Seredenin, S. B. 2017. Dipeptide mimetic of the brain-derived neurotrophic factor prevents impairments of neurogenesis in stressed mice. Bulletin of Experimental Biology and Medicine 162(10):454–457. https://doi.org/10.1007/s10517-017-3638-9

Hare, B. D., Thornton, T. M., Rincon, M., Golijanin B., King B., Jaworski D. M., and Fallsa W. A. 2018. Two weeks of variable stress increases Gamma-H2AX levels in the mouse bed nucleus of the stria terminalis. Neuroscience 373:137–144. https://doi.org/10.1016/j.neuroscience.2018.01.024

Hecht, K., Trepetov, K., Choinovski, K., and Peschel, M. 1972. Die raum-zetliche organization der reiz-reactios-beziehungen bedingtreflectorisher prozesse. 213 s. Fisher, Yena.

Horne, S. D., Chowdhury, S. K., and Heng, H. H. Q. 2014. Stress, genomic adaptation, and the evolutionary tradeoff. Frontiers in Genetics 5:92. https://doi.org/10.3389/fgene.2014.00092

Iourov, I. Y., Vorsanova, S. G., and Yurov, Y. B. 2012. Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Current Genomics 13(6):477– 488. https://doi.org/10.2174/138920212802510439

McKinnon, P. J. 2013. Maintaining genome stability in the nervous system. Nature Neuroscience 16:1523–1529. https://doi.org/10.1038/nn.3537

McKinnon, P. J. 2017. Genome integrity and disease prevention in the nervous system. Genes & Development 31:1180–1194. https://doi.org/10.1101/gad.301325.117

Olive, P. L. and Banáth, J. P. 2006. The comet assay: a method to measure DNA damage in individual cells. Nature Protocol 1:23–29. https://doi.org/10.1038/nprot.2006.5

Ordyan, N. E., Vaido, A. I., Rakitskaya, V. V., Shiryaeva, N. V., Proimina, F. I., Lopatina, N. G., and Shaliapina, V. G. 1998. Functioning of hypophysial adrenocortical system in rats selected by the threshold of sensitivity to electrical current. Bulletin of Experimental Biology and Medicine 125(4):443–445. (In Russian)

Pavlova, M. B., Vaido, A. I., Khlebaeva, D. A.-А., Daev, E. V., and Dyuzhikova, N. A. 2020. Genome destabilization under stress in cells of the prefrontal cortex, hippocampus and bone marrow of rats with contrast excitability of the nervous system. Ecological Genetics 18(4):457–465. https://doi.org/10.17816/ecogen43853

Sivachenko, I. B., Pavlova, M. B., Vaido, A. I., Shiryaeva, N. V., Panteleev, S. S., Dyuzhikova, N. A., and Lyubashina, O. A. 2021. Spike activity and genome instability in neurons of the amygdaloid complex in rats of selected strains with contrasting nervous system arousability in normal conditions and stress. Journal Neuroscience and Behavioral Physiology 51(5):620–628. https://doi.org/10.1007/s11055-021-01115-0

Suberbielle, E., Sanchez, P., and Kravitz, A. 2013. Physiologic brain activity causes DNA double strand breaks in neurons, with exacerbation by amyloid-β. Nature Neuroscience 16(5):613–621. https://doi.org/10.1038/nn.3356

Suman, S., Kumar, S., N’Gouemo, P., and Datta, K. 2016. Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure. Alcohol 54:45–50. https://doi.org/10.1016/j.alcohol.2016.06.003

Tiganov, A. S., Yurov, Y. B., Vorsanova, S. G., and Iourov, I. Y. 2012. Genomic instability in the brain: etiology, pathogenesis and new biological markers of psychiatric disorders. Annals of the Russian Academy of Medical Sciences 67(9):45–53. https://doi.org/10.15690/vramn.v67i9.406 (In Russian)

Torres, G, Leheste, J. R, and Ramos R. L. 2015. Immunocytochemical localization of DNA double-strand breaks in human and rat brains. Neuroscience 290:196–203. https://doi.org/10.1016/j.neuroscience.2015.01.027

Vaido, A. I., Shiryaeva, N. V., Pavlova, M. B., Levina, A. S., Khlebaeva, D. A.-A., Lyubashina, O. A., and Dyuzhikova, N. A. 2018. Selected rat strains HT, LT as a model for the study of dysadaptation states dependent on the level of excitability of the nervous system. Laboratornye zhivotnye dlia nauchnykh issledovanii 3:12–23. https://doi.org/10.29296/2618723X-2018-03-02 (In Russian)

VanLeeuwen, L. A. and Hoozemans, J. J. 2015. Physiological and pathophysiological functions of cell cycle proteins in postmitotic neurons: Implications for Alzheimer’s disease. Acta Neuropathologica 129:511–525. https://doi.org/10.1007/s00401-015-1382-7

Wei, P.-C., Chang, A. N., Kao, J., Du, Z., Meyers, R. M., Alt, F. W., and Schwer, B. 2016. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164(4):644–655. http://doi.org/10.1016/j.cell.2015.12.039

Wigner, P., Synowiec, E., Jozwiak, P., Czarny, P., Bijak, M., Bialek, K., Szemraj, J., Gruca, P., Papp, M., and Sliwinski, T. 2021. The effect of chronic mild stress and escitalopram on the expression and methylation levels of genes involved in the oxidative and nitrosative stresses as well as tryptophan catabolites pathway in the blood and brain structures. International Journal of Molecular Sciences 22(10):1–19. https://doi.org/10.3390/ijms22010010

Wilhelm, T., Said, M., and Naim, V. 2020. DNA replication stress and chromosomal instability: dangerous liaisons. Genes 11(6):642. https://doi.org/10.3390/genes11060642

Yurov, Y. B., Vorsanova, S. G., and Iourov, I. Y. 2010. Ontogenetic variation of the human genome. Current Genomics 11(6):420–425. https://doi.org/10.2174/138920210793175958

Published
2022-05-04
How to Cite
Shcherbinina, V., Vaido, A., Khlebaeva, D., Dyuzhikova, N., & Daev, E. (2022). Genome response of hippocampal cells to stress in male rats with different excitability of the nervous system. Biological Communications, 67(1), 12–18. https://doi.org/10.21638/spbu03.2022.102
Section
Full communications