Levels of dopamine, 5-hydroxytryptamine and their metabolites in the striatum of rats of various strains receiving a high-calorie diet

Authors

  • Sergey Apryatin Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation https://orcid.org/0000-0002-6892-4387
  • Evgenia Efimova Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-9641-515X
  • Zoya Fesenko Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-2074-9081
  • Antonina Shumakova Federal Research Centre of Nutrition and Biotechnology, Ustyinsky proezd, 2/14, Moscow, 109240, Russian Federation https://orcid.org/0000-0003-1373-4436
  • Ivan Gmoshinski Federal Research Centre of Nutrition and Biotechnology, Ustyinsky proezd, 2/14, Moscow, 109240, Russian Federation https://orcid.org/0000-0002-3671-6508

DOI:

https://doi.org/10.21638/spbu03.2021.405

Abstract

The aim of this work was to study the effect of a high fat and carbohydrate diet (HFCD) and quercetin supplementation on the levels of dopamine (DA), serotonin (5-HT) and their metabolites in Wistar, DA transporter knockout (DAT-KO) and obese Zucker fa/fa rats. Animals received a control diet or HFCD for 62 days. Wistar and Zucker fa/fa rats received quercetin. The contents of DA, 5-HT, norepinephrine (NE), dioxyphenyl acetate (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolyl acetate (5-HIIA) in the striatum were determined by high-performance liquid chromatography (HPLC). DAT-KO homozygotes had lowered DA and increased HVA and DOPAC compared to Wistar rats. HFCD did not affect the content of NE and 5-HT. 5-HT was increased in DAT-KO homozygotes compared with Wistar receiving a control diet. 5-HIIA accumulated in larger amounts in DAT-KO compared to Wistar with the exception of those receiving quercetin with a control diet. Quercetin did not affect the levels of DA, 5-HT and their metabolites.

Keywords:

dopamine, 5-hydroxytryptamine, rats, striatum, fat and carbohydrate excess, quercetin

Downloads

Download data is not yet available.
 

References

Apryatin, S. A., Shipelin, V. A., Trusov, N. V., Mzhelskaya, K. V., Evstratova, V. S., Kirbaeva, N. V., Soto, J. S., Fesenko, Z. S., Gainetdinov, R. R., and Gmoshinski, I. V. 2019. Comparative analysis of the influence of a high-fat/high-carbohydrate diet on the level of anxiety and neuromotor and cognitive functions in Wistar and DAT-KO rats. Physiological Reports 7:e13987. https://doi.org/10.14814/phy2.13987

Belov, D. R., Efimova, E. V., Fesenko, Z. S., Antonova, K. A., Kolodyazhny, S. F., Lakstygal, A. M., and Gainetdinov, R. R. 2020. Putative trace-amine associated receptor 5 (TAAR5) agonist α-NETA increases electrocorticogram gamma-rhythm in freely moving rats. Cellular and Molecular Neurobiology 40:203–213. https://doi.org/10.1007/s10571-019-00716-1

Burke, L. K. and Heisler, L. K. 2015. 5-hydroxytryptamine medications for the treatment of obesity. Journal of Neuroendocrinology 27:389–398. https://doi.org/10.1111/jne.12287

Costa, L. G., Garrick, J. M., Roquè, P. J., and Pellacani, C. 2016. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxidative Medicine and Cellular Longevity 2016:2986796. https://doi.org/10.1155/2016/2986796

Edwards, R. L., Lyon, T., Litwin, S. E., Rabovsky, A., Symons, J. D., and Jalili, T. 2007. Quercetin reduces blood pressure in hypertensive subjects. Journal of Nutrition 137:2405–2411. https://doi.org/10.1093/jn/137.11.2405

Geiger, B. M., Haburcak, M., Avena, N. M., Moyer, M. C., Hoebel, B. G., and Pothos, E. N. 2009. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 159:1193–1199. https://doi.org/10.1016/j.neuroscience.2009.02.007

Guo, Y., Mah, E., Davis, C. G., Jalili, T., Ferruzzi, G., Chu, O. K., and Bruno, R. S. 2013. Dietary fat increases quercetin bioavailability in overweight adults. Molecular Nutrition & Food Research 57:896–905. https://doi.org/10.1002/mnfr.201200619

Jennings, A. and Rusakov, D. A. 2016. Do astrocytes respond to dopamine? Opera Medica et Physiologica 2:34–43. https://doi.org/10.20388/OMP2016.001.0017

King, A. and Austin, A. 2017. Animal models of type 1 and type 2 diabetes mellitus; pp. 245–265 in Conn P. M. (ed.), Animal models for the study of human disease (Second Edition). Academic Press. https://doi.org/10.1016/B978-0-12-809468-6.00010-3

Larsen, M. B., Sonders, M. S., Mortensen, O. V., Larson, G. A., Zahniser, N. R., and Amara, S. G. 2011. Dopamine transport by the serotonin transporter: a mechanistically distinct mode of substrate translocation. Journal of Neuroscience. 17:6605–6615. https://doi.org/10.1523/JNEUROSCI.0576-11.2011

Leo, D., Sukhanov, I., Zoratto, F., Illiano, P., Caffino, L., Sanna, F., Messa, G., Emanuele, M., Esposito, A., Dorofeikova, M., Budygin, E. A., Mus, L., Efimova, E. V., Niello, M., Espinoza, S., Sotnikova, T. D., Hoener, M. C., Laviola, G., Fumagalli, F., Adriani, W., and Gainetdinov, R. R. 2018. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats. Journal of Neuroscience 38(8):1959–1972. https://doi.org/10.1523/JNEUROSCI.1931-17.2018

Mzhelskaya, K. V., Shipelin, V. A., Shumakova, A. A., Musaeva, A. D., Soto, J. S., Riger, N. A., Apryatin, S. A., and Gmoshinski, I. V. 2020. Effects of quercetin on the neuromotor function and behavioral responses of Wistar and Zucker rats fed a high-fat and high-carbohydrate diet. Behavioural Brain Research. 378:112270. https://doi.org/10.1016/j.bbr.2019.112270

Panchal, S. K., Poudyal, H., and Brown, L. 2012. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. Journal of Nutrition 142:1026–1032. https://doi.org/10.3945/jn.111.157263

Rada, P., Avena, N. M., and Hoebel, B. G. 2005. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134:737–744. https://doi.org/10.1016/j.neuroscience.2005.04.043

Rada, P., Bocarsly, M. E., Barson, J. R., Hoebel, B. G., and Leibowitz, S. F. 2010. Reduced accumbens dopamine in Sprague-Dawley rats prone to overeating a fat-rich diet. Physiology & Behavior 101:394–400. https://doi.org/10.1016/j.physbeh.2010.07.005

Svec, F., Robinson, P., Michel, L., Bradley, J., Corll, C., and Porter, J. R. 2004. Caloric intake and hypothalamic neurotransmitters in Zucker rats made acutely diabetic with streptozocin. Nutritional Neuroscience 7:317–324. https://doi.org/10.1080/10284150400020508

Volkow, N. D., Wang, G. J., and Baler, R. D. 2011. Reward, dopamine and the control of food intake: implications for obesity. Trends in Cognitive Sciences 15:37–46. https://doi.org/10.1016/j.tics.2010.11.001

Wu, C.-H., Chang, C.-S., Yang, K. Y., Shen, L.-H., and Yao, W.-J. 2017. Comparison of brain serotonin transporter using [123I]-ADAM between obese and non-obese young adults without an eating disorder. PLoS One 12:e0170886. https://doi.org/10.1371/journal.pone.0170886

Yadav, V. K., Oury, F., Tanaka, K., Thoma, T., Wang, Y., Cremers, S., Hen, R., Krust, A., Chambon, P., and Karsenty, G. 2011. Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. Journal of Experimental Medicine 208:41–52. https://doi.org/10.1084/jem.20101940

Downloads

Published

2021-12-30

How to Cite

Apryatin, S., Efimova, E., Fesenko, Z., Shumakova, A., & Gmoshinski, I. (2021). Levels of dopamine, 5-hydroxytryptamine and their metabolites in the striatum of rats of various strains receiving a high-calorie diet. Biological Communications, 66(4), 326–332. https://doi.org/10.21638/spbu03.2021.405

Issue

Section

Brief communications

Categories