Changes in heart rate during electrical stimulation of the atrium in rainbow trout (Oncorhynchus mykiss) at low temperature

  • Natalya Kibler Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center of the Ural Branch of the Russian Academy of Sciences, ul. Pervomayskaya, 50, Syktyvkar, 167982, Russian Federation; Syktyvkar Humanitarian Pedagogical Colledge, Oktyabrskiy pr., 24, Syktyvkar, 167001, Russian Federation https://orcid.org/0000-0002-9775-7717
  • Vladimir Nuzhny Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center of the Ural Branch of the Russian Academy of Sciences, ul. Pervomayskaya, 50, Syktyvkar, 167982, Russian Federation https://orcid.org/0000-0002-5573-5499
  • Dmitry Shmakov Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center of the Ural Branch of the Russian Academy of Sciences, ul. Pervomayskaya, 50, Syktyvkar, 167982, Russian Federation https://orcid.org/0000-0001-7799-9236

Abstract

In this work, we investigated the effect of high heart rate (HR) in vivo on the electrical properties and pumping functions of the heart ventricle of the rainbow trout (Oncorhynchus mykiss) at low ambient temperatures. HR was altered by atrial pacing. The electrocardiogram (ECG) parameters and hemodynamic parameters of the heart ventricle of rainbow trout adapted to a temperature of 5–7 °C were studied from the normal sinus rhythm (21.6 ± 4.9 bpm) to the maximum possible HR. Results show that a HR of about 60 bpm is the upper limit of the normal functional activity of the ventricle of the heart. An increase in heart rate up to 60 bpm leads to an increase in the PQ interval and QRS complex, a decrease in the QT interval on the ECG, and a violation of the rhythmic activity of the heart (i.e., the occurrence of extrasystole), as well as to a considerable change in the hemodynamic parameters of the ventricle of the heart and a decrease in its contractile properties. After a period of ventricular extrasystole for several minutes (10–15 min), the activity of the sinus node resumes but with a lower HR compared with the initial HR. The duration of the QRS complex recovers to the initial one, and the PQ and QT intervals increase. Maximum systolic pressure and end-diastolic pressure also return to their original values after extrasystolic contraction. After the experimental extrasystole, the phenomenon of the absence of an increase in HR is observed. The arising extrasystole probably has a functional nature and is one of the mechanisms of electromechanical homeostatic control in the heart.

Keywords:

heart rate, electrocardiogram, hemodynamics, heart ventricle, temperature, rainbow trout

Downloads

Download data is not yet available.
 

References

Anttila, K., Couturier, C. S., Overli, O., Johnsen, A., Marthinsen, G., Nilsson, G. E., and Farrell, A. P. 2014. Atlantic salmon show capability for cardiac acclimation to warm temperatures. Nature Communications 5:4252. https://doi.org/10.1038/ncomms5252

Badr, A., El-Sayed, M. F., and Vornanen, M. 2016. Effects of seasonal acclimatization on temperature dependence of cardiac excitability in the roach, Rutilus rutilus. Journal of Experimental Biology 219:1495–1504. https://doi.org/10.1242/jeb.13834

Casselman, М. Т., Anttila, К., and Farrell, А. Р. 2012. Using maximum heart rate as а rapid screening tool to determine optimum temperature for aerobic scope in Pacific salmon Oncorhynchus spp. Journal of Fish biology 80:358–377. https://doi.org/10.1111/j.1095-8649.2011.03182.x

Farrell, A. P., Eliason, E., Sandblom, E., and Clark, T. D. 2009. Fish cardiorespiratory physiology in an era of climate change. Canadian Journal of Zoology 87(10):835–851. https://doi.org/10.1139/Z09-092

Farrell, A. P., Gamperl, A. K., Hicks, J. M. T., Shiels, H. A., and Jain, K. E. 1996. Maximum cardiac performance of rainbow trout (Oncorhynchus mykiss) at temperatures approaching their upper lethal limit. Journal of Experimental Biology 199:663–672. https://doi.org/10.1242/jeb.199.3.663

Fogoros, R. N. 2009. Antiarrhythmic drugs. BINOM Publ., Moscow. 200 pp. (In Russian)

Haverinen, J., Abramochkin, D. V., Kamkin, A., and Vornanen, M. 2017. Maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology 312:R165–R171. https://doi.org/10.1152/ajpregu.00403.2016

Haverinen, J. and Vornanen, M. 2004. Temperature acclimation modifies Na+ current in fish cardiac myocytes. Journal of Experimental Biology 207:2823–2833. https://doi.org/10.1242/jeb.01103

Jayasundara, N. and Somero, G. N. 2013. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis. Journal of Experimental Biology 216(11):2111–2121. https://doi.org/10.1242/jeb.083873

Keen, A. N., Klaiman, J. M., Shiels, H. A., and Gillis, T. E. 2017. Temperature-induced cardiac remodelling in fish. Journal of Experimental Biology 220(2):147–160. https://doi.org/10.1242/jeb.128496

Kibler, N. A., Nuzhny, V. P., Kharin, S. N., and Shmakov, D. N. 2020a. Pumping function if the heart ventricle in rainbow trout Oncorhynchus mykiss under atrial electric stimulation at low temperature. Russian Journal of Physiology 106(2):294–300. https://doi.org/10.31857/S0869813920030061 (In Russian)

Kibler, N. A., Nuzhny, V. P., Kharin, S. N., and Shmakov, D. N. 2020b. Does atrial electrical stimulation influence the sequence of ventricular depolarization in the heart of a rainbow trout Oncorhynchus mykiss? Journal of Evolutionary Biochemistry and Physiology 56:41–46. https://doi.org/10.1134/S0022093020010056 (In Russian)

Matthews, K. R. and Berg, N. H. 1997. Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. Journal of Fish Bio­logy 50:50–67. https://doi.org/10.1111/j.1095-8649.1997.tb01339.x

Naiditsch, A. M. 2006. Left ventricular structural heterogeneity and myocardial remodelling. Bulletin of Siberian Medicine 5(1):38–45. https://doi.org/10.20538/1682-0363-2006-1-38-45 (In Russian)

Nechesova, T. A., Korobko, I. U., and Kuznetsova, N. I. 2008. Left ventricular remodeling: pathogenesis and assessment methods. Medical News 11:7–13. (In Russian)

Nuzhny, V. P., Kibler, N. A., and Shmakov, D. N. 2018. Irregular ventricular tachycardia as a mechanism of stabilization of mechanoelectrical processes in canine heart under conditions of antiorthostatic hypokinesia. Bulletin of Experimental Biology and Medicine 166(8):207–212. https://doi.org/10.1007/s10517-018-4315-3 (In Russian)

Shmakov, D. N. and Roschevsky, M. P. 1997. Myocardial activation. IF KSC UB RAS Publishing, Syktyvkar. 167 pp. (In Russian)

Solovyova, O., Katsnelson, L. B., Konovalov, P., Lookin, O., Moskvin, A. S., Protsenko, Y. L., Vikulova, N., Kohl, P., and Markhasin, V. S. 2006. Activation sequence as a key factor in spatio-temporal optimization of myocardial function. Philosophical Transactions of the Royal Society A 364(1843):1367–1383. https://doi.org/10.1098/rsta.2006.1777

Vornanen, M., Ryokkynen, A., and Nurmi, A. 2002. Temperature-dependent expression of sarcolemmal K+ currents in rainbow trout atrial and ventricular myocytes. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology 82:1191–1199. https://doi.org/10.1152/ajpregu.00349.2001

Vornanen, M., Haverinen, J., and Egginton, S. 2014. Acute heat tolerance of cardiac excitation in the brown trout (Salmo trutta fario). Journal of Experimental Biology 217(2):299–309. https://doi.org/10.1242/jeb.091272

Published
2022-06-24
How to Cite
Kibler, N., Nuzhny, V., & Shmakov, D. (2022). Changes in heart rate during electrical stimulation of the atrium in rainbow trout (<em>Oncorhynchus mykiss</em&gt;) at low temperature. Biological Communications, 67(2), 113–119. https://doi.org/10.21638/spbu03.2022.204
Section
Full communications