Legume tasters: symbiotic rhizobia host preference and smart inoculant formulations

Authors

  • Lisa Cangioli Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy https://orcid.org/0000-0002-7714-1704
  • Alice Checcucci Department of Agricultural and Food Science, University of Bologna, Viale Giuseppe Fanin, 40-50, Bologna, 40127, Italy https://orcid.org/0000-0002-0019-0997
  • Alessio Mengoni Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy https://orcid.org/0000-0002-1265-8251
  • Camilla Fagorzi Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy https://orcid.org/0000-0002-9996-8868

DOI:

https://doi.org/10.21638/spbu03.2021.106

Abstract

Mutualistic interactions have great importance in ecology, with genetic information that takes shape through interactions within the symbiotic partners and between the partners and the environment. It is known that variation of the host-associated microbiome contributes to buffer adaptation challenges of the host’s physiology when facing varying environmental conditions. In agriculture, pivotal examples are symbiotic nitrogen-fixing rhizobia, known to contribute greatly to host (legume plants) adaptation and host productivity. A holistic view of increasing crop yield and resistance to biotic and abiotic stresses is that of microbiome engineering, the exploitation of a host-associated microbiome through its rationally designed manipulation with synthetic microbial communities. However, several studies highlighted that the expression of the desired phenotype in the host resides in species-specific, even genotype-specific interactions between the symbiotic partners. Consequently, there is a need to dissect such an intimate level of interaction, aiming to identify the main genetic components in both partners playing a role in symbiotic differences/host preferences. In the present paper, while briefly reviewing the knowledge and the challenges in plant–microbe interaction and rhizobial studies, we aim to promote research on genotype x genotype interaction between rhizobia and host plants for a rational design of synthetic symbiotic nitrogen-fixing microbial communities to be used for sustainably improving leguminous plants yield.

Keywords:

microbiome engineering, genome x genome, legume-rhizobia mutualism, symbiosis, precision agriculture

Downloads

Download data is not yet available.
 

References

Adesemoye, A. O., Torbert, H. A., and Kloepper, J. W. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology 58(4):921–929. https://doi.org/10.1007/s00248-009-9531-y

Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L., and Vivanco, J. M. 2012. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil 360(1–2):1–13. https://doi.org/10.1007/s11104-012-1361-x

Barnes, D., Heichel, G., Vance, C., and Ellis, W. 1984. A multiple-trait breeding program for improving the symbiosis for N2 fixation between Medicago sativa L. and Rhizobium meliloti. Plant and Soil 82(3):303–314. https://doi.org/10.1007/BF02184269

Bellabarba, A., Fagorzi, C., diCenzo, G. C., Pini, F., Viti, C., and Checcucci, A. 2019. Deciphering the symbiotic plant microbiome: translating the most recent discoveries on rhizobia for the improvement of agricultural practices in metal-contaminated and high saline lands. Agronomy 9(9):529. https://doi.org/10.3390/agronomy9090529

Bharathi, J., Balachander, D., Kumar, K., and Narayanan, R. 2017. Evaluation of new microbial consortium through biofertigation for precision farming of bhendi (COBH 1). International Journal of Medical Sciences and Pharmaceutical Research 1(1):15–24.

Bliss, F. 1990. Utilization of genetic resources for crop improvement: The common bean. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S. (Eds.), Plant population genetics, breeding, and genetic resources, pp. 317–333, Sinauer, Sunderland, MA.

Bloemberg, G. V. and Lugtenberg, B. J. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology 4(4):343–350. https://doi.org/10.1016/S1369-5266(00)00183-7

Bose, J. and Schulte, R. D. 2014. Testing GxG interactions between coinfecting microbial parasite genotypes within hosts. Frontiers in Genetics 5:124. https://doi.org/10.3389/fgene.2014.00124

Bozsoki, Z., Gysel, K., Hansen, S. B., Lironi, D., Krönauer, C., Feng, F., de Jong, N., Vinther, M., Kamble, M., Thygesen, M. B., Engholm, E., Kofoed, C., Fort, S., Sullivan, J. T., Ronson, C. W., Jensen, K. J., Blaise, M., Oldroyd, G., Stougaard, J., … Radutoiu, S. 2020. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science 369(6504):663–670. https://doi.org/10.1126/science.abb3377

Brinker, P., Fontaine, M. C., Beukeboom, L. W., and Falcao Salles, J. 2019. Host, symbionts, and the microbiome: The missing tripartite interaction. Trends in Microbiology 27(6):480–488. https://doi.org/10.1016/j.tim.2019.02.002

Bronstein, J. L. 2015. Mutualism. Oxford University Press, USA. https://doi.org/10.1093/acprof:oso/9780199675654.001.0001

Burghardt, L. T. 2020. Evolving together, evolving apart: Measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants. New Phytologist 228(1):28–34. https://doi.org/10.1111/nph.16045

Burghardt, L. T., Epstein, B., Guhlin, J., Nelson, M. S., Taylor, M. R., Young, N. D., Sadowsky, M. J., and Tiffin, P. 2018. Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments. Proceedings of the National Academy of Sciences USA 115(10):2425–2430. https://doi.org/10.1073/pnas.1714246115

Burghardt, L. T., Trujillo, D. I., Epstein, B., Tiffin, P., and Young, N. D. 2020. A select and resequence approach reveals strain-specific effects of Medicago nodule-specific PLAT-domain genes. Plant Physiology 182(1):463–471. https://doi.org/10.1104/pp.19.00831

Carelli, M., Gnocchi, S., Fancelli, S., Mengoni, A., Paffetti, D., Scotti, C., and Bazzicalupo, M. 2000. Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils. Applied and Environmental Microbiology 66(11):4785–4789. https://doi.org/10.1128/AEM.66.11.4785-4789.2000

Checcucci, A., Azzarello, E., Bazzicalupo, M., Galardini, M., Lagomarsino, A., Mancuso, S., Marti, L., Marzano, M. C., Mocali, S., Squartini, A., Zanardo, M., and Mengoni, A. 2016. Mixed nodule infection in Sinorhizobium meliloti–Medicago sativa symbiosis suggest the presence of cheating behavior. Frontiers in Plant Science 7:835. https://doi.org/10.3389/fpls.2016.00835

Checcucci, A., DiCenzo, G. C., Bazzicalupo, M., and Mengoni, A. 2017. Trade, diplomacy, and warfare: The quest for elite rhizobia inoculant strains. Frontiers in Microbiology 8:2207. https://doi.org/10.3389/fmicb.2017.02207

de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O., and Williams, A. 2020. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368(6488):270–274. https://doi.org/10.1126/science.aaz5192

diCenzo, G. C., Tesi, M., Pfau, T., Mengoni, A., and Fondi, M. 2020. Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nature Communications 11(1):2574. https://doi.org/10.1038/s41467-020-16484-2

diCenzo, G. C., Zamani, M., Checcucci, A., Fondi, M., Griffitts, J. S., Finan, T. M., and Mengoni, A. 2019. Multidisciplinary approaches for studying rhizobium–legume symbioses. Canadian Journal of Microbiology 65(1):1–33. https://doi.org/10.1139/cjm-2018-0377

Dubey, R. K., Tripathi, V., Prabha, R., Chaurasia, R., Singh, D. P., Rao, C. S., El-Keblawy, A., and Abhilash, P. C. 2020. Unravelling the soil microbiome: Perspectives for environmental sustainability. Springer. https://doi.org/10.1007/978-3-030-15516-2

Escudero-Martinez, C. and Bulgarelli, D. 2019. Tracing the evolutionary routes of plant–microbiota interactions. Current Opinion in Microbiology 49:34–40. https://doi.org/10.1016/j.mib.2019.09.013

Fageria, N. and Baligar, V. 2005. Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy 88:97–185. https://doi.org/10.1016/S0065-2113(05)88004-6

Fagorzi, C., Bacci, G., Huang, R., Cangioli, L., Checcucci, A., Fini, M., Perrin, E., Natali, C., diCenzo, G. C., and Mengoni, A. 2021. Non-additive transcriptomic signatures of genotype x genotype interactions during the initiation of plant-rhizobium symbiosis. mSystems 6(1):e00974-20. https://doi.org/10.1128/mSystems.00974-20

Geurts, R. and Bisseling, T. 2002. Rhizobium nod factor perception and signalling. The Plant Cell 14(suppl 1):S239. https://doi.org/10.1105/tpc.002451

Gibson, K. E., Kobayashi, H., and Walker, G. C. 2008. Molecular determinants of a symbiotic chronic infection. Annual Review of Genetics 42(1):413–441. https://doi.org/10.1146/annurev.genet.42.110807.091427

Griesmann, M., Chang, Y., Liu, X., Song, Y., Haberer, G., Crook, M. B., Billault-Penneteau, B., Lauressergues, D., Keller, J., Imanishi, L., Roswanjaya, Y. P., Kohlen, W., Pujic, P., Battenberg, K., Alloisio, N., Liang, Y., Hilhorst, H., Salgado, M. G., Hocher, V., … Cheng, S. 2018. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science 361(6398):eaat1743. https://doi.org/10.1126/science.aat1743

Hacquard, S., Garrido-Oter, R., González, A., Spaepen, S., Ackermann, G., Lebeis, S., McHardy, A. C., Dangl, J. L., Knight, R., Ley, R., and Schulze-Lefert, P. 2015. Microbiota and host nutrition across Plant and Animal Kingdoms. Cell Host and Microbe 17(5):603–616. https://doi.org/10.1016/j.chom.2015.04.009

Heath, K. D. 2008. The coevolutionary genetics of plant-microbe interactions. New Phytologist 180(2):268–270. https://doi.org/10.1111/j.1469-8137.2008.02633.x

Igolkina, A. A., Bazykin, G. A., Chizhevskaya, E. P., Provorov, N. A., and Andronov, E. E. 2019. Matching population diversity of rhizobial nod A and legume NFR5 genes in plant–microbe symbiosis. Ecology and Evolution 9(18):10377–10386. https://doi.org/10.1002/ece3.5556

Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E., and Walker, G. C. 2007. How rhizobial symbionts invade plants: The Sinorhizobium–Medicago model. Nature Reviews Microbiology 5(8):619–633. https://doi.org/10.1038/nrmicro1705

Joseph, A., Chandra, J., and Siddharthan, S. 2020. Genome analysis for precision agriculture using artificial intelligence: A survey. In Data Science and Security, pp. 221–226. Springer. https://doi.org/10.1007/978-981-15-5309-7_23

Kang, W., Jiang, Z., Chen, Y., Wu, F., Liu, C., Wang, H., Shi, S., and Zhang, X.-X. 2020. Plant transcriptome analysis reveals specific molecular interactions between alfalfa and its rhizobial symbionts below the species level. BMC Plant Biology 20(1):293. https://doi.org/10.1186/s12870-020-02503-3

Ke, J., Wang, B., and Yoshikuni, Y. 2020. Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends in Biotechnology. https://doi.org/10.1016/j.tibtech.2020.07.008

Kereszt, A., Mergaert, P., and Kondorosi, E. 2011. Bacteroid development in legume nodules: Evolution of mutual benefit or of sacrificial victims? Molecular Plant-Microbe Interactions 24(11):1300–1309. https://doi.org/10.1094/MPMI-06-11-0152

Kiers, E. T. and Denison, R. F. 2008. Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annual Review of Ecology, Evolution and Systematics 39(1):215–236. https://doi.org/10.1146/annurev.ecolsys.39.110707.173423

Koskella, B. and Bergelson, J. 2020. The study of host–microbiome (co)evolution across levels of selection. Philosophical Transactions of the Royal Society B: Biological Sciences 375(1808):20190604. https://doi.org/10.1098/rstb.2019.0604

Lanier, K. A., Petrov, A. S., and Williams, L. D. 2017. The central symbiosis of molecular biology: Molecules in mutualism. Journal of Molecular Evolution 85(1–2):8–13. https://doi.org/10.1007/s00239-017-9804-x

Levy, A., Conway, J. M., Dangl, J. L., and Woyke, T. 2018. Elucidating bacterial gene functions in the plant microbiome. Cell Host and Microbe 24(4):475–485. https://doi.org/10.1016/j.chom.2018.09.005

Liu, S., Ratet, P., and Magne, K. 2020. Nodule diversity, evolution, organogenesis and identity. Advances in Botanical Research 94:119–148. https://doi.org/10.1016/bs.abr.2019.09.009

Lucy, M., Reed, E., and R. Glick, B. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86:1–25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e

Malfanova, N. 2013. Endophytic bacteria with plant growth promoting and biocontrol abilities. Doctoral Thesis, Leiden University.

Martínez-Romero, E., Aguirre-Noyola, J. L., Taco-Taype, N., Martínez-Romero, J., and Zuñiga-Dávila, D. 2020. Plant microbiota modified by plant domestication. Systematic and Applied Microbiology 43(5):126106. https://doi.org/10.1016/j.syapm.2020.126106

Moran, N. A. and Sloan, D. B. 2015. The hologenome concept: helpful or hollow? PLOS Biology 13(12):e1002311. https://doi.org/10.1371/journal.pbio.1002311

Paffetti, D., Daguin, F., Fancelli, S., Gnocchi, S., Lippi, F., Scotti, C., and Bazzicalupo, M. 1998. Influence of plant genotype on the selection of nodulating Sinorhizobium meliloti strains by Medicago sativa. Antonie van Leeuwenhoek 73:3–8. https://doi.org/10.1023/A:1000591719287

Pawlowski, K. and Newton, W. E. 2008. Nitrogen-fixing actinorhizal symbioses. Springer. https://doi.org/10.1007/978-1-4020-3547-0

Pislariu, C. I., Sinharoy, S., Torres-Jerez, I., Nakashima, J., Blancaflor, E. B., and Udvardi, M. K. 2019. The nodule-specific PLAT domain protein NPD1 is required for nitrogen-fixing symbiosis. Plant Physiology 180(3):1480–1497. https://doi.org/10.1104/pp.18.01613

Provorov, N. A. and Tikhonovich, I. A. 2003. Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genetic Resources and Crop Evolution 50(1):89–99. https://doi.org/10.1023/A:1022957429160

Pueppke, S. G. and Broughton, W. J. 1999. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Molecular Plant-Microbe Interactions 12(4):293–318. https://doi.org/10.1094/MPMI.1999.12.4.293

Qiu, Z., Egidi, E., Liu, H., Kaur, S., and Singh, B. K. 2019. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnology Advances 37(6):107371. https://doi.org/10.1016/j.biotechadv.2019.03.010

Remigi, P., Zhu, J., Young, J. P. W., and Masson-Boivin, C. 2016. Symbiosis within symbiosis: Evolving nitrogen-fixing legume symbionts. Trends in Microbiology 24(1):63–75. https://doi.org/10.1016/j.tim.2015.10.007

Rosenberg, E. and Zilber-Rosenberg, I. 2016. Microbes drive evolution of animals and plants: The hologenome concept. MBio 7(2):e01395-15. https://doi.org/10.1128/mBio.01395-15

Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., Frugoli, J., Dickstein, R., and Udvardi, M. K. 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. The Plant Cell 32(1):15–41. https://doi.org/10.1105/tpc.19.00279

Sachs, J. L., Quides, K. W., and Wendlandt, C. E. 2018. Legumes versus rhizobia: A model for ongoing conflict in symbiosis. New Phytologist 219(4):1199–1206. https://doi.org/10.1111/nph.15222

Schlaeppi, K. and Bulgarelli, D. 2015. The plant microbiome at work. Molecular Plant-Microbe Interactions 28(3):212–217. https://doi.org/10.1094/MPMI-10-14-0334-FI

Shakoor, N., Northrup, D., Murray, S., and Mockler, T. C. 2019. Big data driven agriculture: Big data analytics in plant breeding, genomics, and the use of remote sensing technologies to advance crop productivity. The Plant Phenome Journal 2(1):1–8. https://doi.org/10.2135/tppj2018.12.0009

Singh, B. K., Bardgett, R. D., Smith, P., and Reay, D. S. 2010. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews Microbiology 8(11):779–790. https://doi.org/10.1038/nrmicro2439

Soumare, A., Diedhiou, A. G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., and Kouisni, L. 2020. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants 9(8):1011. https://doi.org/10.3390/plants9081011

Sudheer, S., Bai, R. G., Usmani, Z., and Sharma, M. 2020. Insights on engineered microbes in sustainable agriculture: Biotechnological developments and future prospects. Current Genomics 21(5):321–333. https://doi.org/10.2174/1389202921999200603165934

Sulima, A. S., Zhukov, V. A., Afonin, A. A., Zhernakov, A. I., Tikhonovich, I. A., and Lutova, L. A. 2017. Selection signatures in the first exon of paralogous receptor kinase genes from the Sym2 region of the Pisum sativum L. genome. Frontiers in Plant Science 8:1957. https://doi.org/10.3389/fpls.2017.01957

Thilakarathna, M. S. and Raizada, M. N. 2018. Challenges in using precision agriculture to optimize symbiotic nitrogen fixation in legumes: Progress, limitations, and future improvements needed in diagnostic testing. Agronomy 8(5):78. https://doi.org/10.3390/agronomy8050078

Tirichine, L., de Billy, F., and Huguet, T. 2000. Mtsym6, a gene conditioning Sinorhizobium strain-specific nitrogen fixation in Medicago truncatula. Plant Physiology 123(3):845–852. https://doi.org/10.1104/pp.123.3.845

Turner, T. R., James, E. K., and Poole, P. S. 2013. The plant microbiome. Genome Biology 14(6):209. https://doi.org/10.1186/gb-2013-14-6-209

Wade, M. J. 2007. The co-evolutionary genetics of ecological communities. Nature Reviews Genetics 8(3):185–195. https://doi.org/10.1038/nrg2031

Wang, Q., Liu, J., Li, H., Yang, S., Körmöczi, P., Kereszt, A., and Zhu, H. 2018. Nodule-specific cysteine-rich peptides negatively regulate nitrogen-fixing symbiosis in a strain-specific manner in Medicago truncatula. Molecular Plant-Microbe Interactions 31(2):240–248. https://doi.org/10.1094/MPMI-08-17-0207-R

Werner, G. D. A., Strassmann, J. E., Ivens, A. B. F., Engelmoer, D. J. P., Verbruggen, E., Queller, D. C., Noe, R., Johnson, N. C., Hammerstein, P., and Kiers, E. T. 2014. Evolution of microbial markets. Proceedings of the National Academy of Sciences USA 111(4):1237–1244. https://doi.org/10.1073/pnas.1315980111

Westhoek, A., Field, E., Rehling, F., Mulley, G., Webb, I., Poole, P. S., and Turnbull, L. A. 2017. Policing the legume-Rhizobium symbiosis: A critical test of partner choice. Scientific Reports 7(1):1419. https://doi.org/10.1038/s41598-017-01634-2

Wilson, D. S. and Sober, E. 1989. Reviving the superorganism. Journal of Theoretical Biology 136(3):337–356. https://doi.org/10.1016/S0022-5193(89)80169-9

Yamaya-Ito, H., Shimoda, Y., Hakoyama, T., Sato, S., Kaneko, T., Hossain, M. S., Shibata, S., Kawaguchi, M., Hayashi, M., Kouchi, H., and Umehara, Y. 2018. Loss-of-function of ASPARTIC PEPTIDASE NODULE - INDUCED 1 (APN 1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains. The Plant Journal 93(1):5–16. https://doi.org/10.1111/tpj.13759

Yang, X. and Fang, S. 2015. Practices, perceptions, and implications of fertilizer use in East-Central China. Ambio 44(7):647–652. https://doi.org/10.1007/s13280-015-0639-7

Zheng, M., Zhou, Z., Luo, Y., Zhao, P., and Mo, J. 2019. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Global Change Biology 25(9):3018–3030. https://doi.org/10.1111/gcb.14705

Zilber-Rosenberg, I. and Rosenberg, E. 2008. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiology Reviews 32(5):723–735. https://doi.org/10.1111/j.1574-6976.2008.00123.x

Downloads

Published

2021-03-31

How to Cite

Cangioli, L., Checcucci, A., Mengoni, A., & Fagorzi, C. (2021). Legume tasters: symbiotic rhizobia host preference and smart inoculant formulations. Biological Communications, 66(1), 47–54. https://doi.org/10.21638/spbu03.2021.106

Issue

Section

Review communications

Categories