New naturally transgenic plants: 2020 update

  • Tatiana Matveeva Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-8569-6665

Abstract

Agrobacterium-mediated gene transfer leads to crown gall or hairy roots disease, due to expression of transferred T-DNA genes. Spontaneous plant regeneration from the transformed tissues can produce natural transformants carrying cellular T-DNA (cT-DNA) sequences of agrobacterial origin. In 2019, based on genomic sequencing data, cT-DNA horizontally transferred from Agrobacterium were found in two dozen species of angiosperms. This made it possible to evaluate the spread of this phenomenon, as well as make some generalizations regarding the diversity of horizontally transferred genes. The presented research is a continuation of work in this field. It resulted in the description of new naturally occurring transgenic species Aeschynomene evenia C. Wright, Eperua falcata Aubl., Eucalyptus cloeziana F.Muell., Boswellia sacra Flueck., Kewa caespitosa (Friedrich) Christenh., Pharnaceum exiguum Adamson, Silene noctiflora L., Nyssa sinensis Oliv., Vaccinium corymbosum L., Populus alba L. × Populus glandulosa Moench. The previously identified patterns regarding the frequency of the occurrence of natural transformants and the general properties of the cT-DNAs were confirmed in this study.

Keywords:

cT-DNA, horizontal gene transfer, naturally-transgenic plants

Downloads

Download data is not yet available.
 

References

Chen, K. and L. Otten. 2017. Natural Agrobacterium transformants: recent results and some theoretical considerations. Frontiers in Plant Science 8:1600. https://doi.org/10.3389/fpls.2017.01600

Elenevsky A. G. 2006. Botany. Systematics of higher, or terrestrial, plants: textbook. Moscow, Academy. (In Russian)

Farrand S. K., Van Berkum P. B., and Oger P. 2003. Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematic and Evolutionary Microbiology 53(5):1681–1687. https://doi.org/10.1099/ijs.0.02445-0

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Jones, D. T., Taylor, W. R., and Thornton, J. M. 1992. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8(3):275–282. https://doi.org/10.1093/bioinformatics/8.3.275

Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

Kyndt, T., Quispe, D., Zhai, H., Jarret, R., Ghislain, M., Liu, Q., Gheysen, G., and Kreuze, J. F. 2015. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proceedings of the National Academy of Sciences USA 112(18):5844–5849. https://doi.org/10.1073/pnas.1419685112

Matveeva, T. V. and Otten, L. 2019. Widespread occurrence of natural genetic transformation of plants by Agrobacterium. Plant Molecular Biology 101(4–5):415–437. https://doi.org/10.1007/s11103-019-00913-y

Matveeva, T. V., Bogomaz, D. I., Pavlova, O. A., Nester, E. W., and Lutova, L. A. 2012. Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature. Molecular Plant-Microbe Interactions 25(12):1542–1551. https://doi.org/10.1094/MPMI-07-12-0169-R

Matveeva, T., Provorov, N., and Valkonen, J. P. T. 2018. Editorial: Cooperative adaptation and evolution in plant-microbe systems. Frontiers in Plant Science 9:1090. https://doi.org/10.3389/fpls.2018.01090

Matveeva, T. V. 2018. Agrobacterium-mediated transformation in the evolution of plants; pp. 421–441 in S. Gelvin (ed.), Agrobacterium biology. Current topics in microbiology and immunology. Springer, Cham. https://doi.org/10.1007/82_2018_80

Nester, E. W. 2014. Agrobacterium: nature's genetic engineer. Frontiers in Plant Science 5:730. https://doi.org/10.3389/fpls.2014.00730

O'Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., Astashyn, A., Badretdin, A., Bao, Y., Blinkova, O., Brover, V., Chetvernin, V., Choi, J., Cox, E., Ermolaeva, O., Farrell, C. M., Goldfarb, T., Gupta, T., Haft, D., Hatcher, E., Hlavina, W., Joardar, V. S., Kodali, V. K., Li, W., Maglott, D., Masterson, P., McGarvey, K. M., Murphy, M. R., O'Neill, K., Pujar, S., Rangwala, S. H., Rausch, D., Riddick, L. D., Schoch, C., Shkeda, A., Storz, S. S., Sun, H., Thibaud-Nissen, F., Tolstoy, I., Tully, R. E., Vatsan, A. R., Wallin, C., Webb, D., Wu, W., Landrum, M. J., Kimchi, A., Tatusova, T., DiCuccio, M., Kitts, P., Murphy, T. D., and Pruitt, K. D. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research 44(D1):D733–745. https://doi.org/10.1093/nar/gkv1189

Quispe-Huamanquispe, D. G., Gheysen, G., Yang, J., Jarret, R., Rossel, G., and Kreuze, J. F. 2019. The horizontal gene transfer of Agrobacterium T-DNAs into the series Batatas (Genus Ipomoea) genome is not confined to hexaploid sweetpotato. Scientific Reports 9(1):12584. https://doi.org/10.1038/s41598-019-48691-3

Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425.

Schwarz, R. and Dayhoff, M. 1979. Matrices for detecting distant relationships; pp. 353–358 in M. Dayhoff (ed.), Atlas of protein sequences. National Biomedical Research Foundation.

Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy. Freeman, San Francisco.

Song, G. Q. and Hancock, J. F. 2011. Vaccinium. In C. Kole (ed.), Wild crop relatives: Genomic and breeding resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16057-8_10

Tajima, F. and Nei, M. 1984. Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution 1:269–285.

White, F. F., Garfinkel, D. J., Huffman, G. A., Gordon, M. P., and Nester, E. W. 1983. Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301(5898):348–350. https://doi.org/10.1038/301348a0

Young, J. M., Kuykendall, L. D., Martínez-Romero, E., Kerr, A., and Sawada, H. 2001. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology 51:89–103. https://doi.org/10.1099/00207713-51-1-89

Young, J. M., Kuykendall, L. D., Martínez-Romero, E., Kerr, A., and Sawada, H. 2003. Classification and nomenclature of Agrobacterium and Rhizobium — a reply to Farrand et al. (2003). International Journal of Systematic and Evolutionary Microbiology 53(5):1689–1695. https://doi.org/10.1099/ijs.0.02762-0

Zhang, Y., Wang, D., Wang, Y., Dong, H., Yuan, Y., Yang, W., Lai, D., Zhang, M., Jiang, L., and Li, Z. 2020. Parasitic plant dodder (Cuscuta spp.): A new natural Agrobacterium-to-plant horizontal gene transfer species. Science China Life Sciences 63(2):312–316. https://doi.org/10.1007/s11427-019-1588-x

Zuckerkandl, E. and Pauling, L. 1965. Evolutionary divergence and convergence in proteins; pp. 97–166 in V. Bryson and H. J. Vogel (eds.), Evolving genes and proteins. Academic Press, New York. https://doi.org/10.1016/B978-1-4832-2734-4.50017-6

Published
2021-03-31
How to Cite
Matveeva, T. (2021). New naturally transgenic plants: 2020 update. Biological Communications, 66(1), 36–46. https://doi.org/10.21638/spbu03.2021.105
Section
Review communications