Reproductive parasitism in insects. The interaction of host and bacteria

Authors

  • Irina Goryacheva Laboratory of Insect Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina, 3, Moscow, 117971, Russian Federation; Department of General Biology and Bioecology, Moscow Region State University, ul. Very Voloschinoy, 24, Mytishchi, Moscow Region, 141014, Russian Federation https://orcid.org/0000-0003-1913-5987
  • Boris Andrianov Laboratory of Insect Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina, 3, Moscow, 117971, Russian Federation; Department of General Biology and Bioecology, Moscow Region State University, ul. Very Voloschinoy, 24, Mytishchi, Moscow Region, 141014, Russian Federation https://orcid.org/0000-0002-0064-4696

DOI:

https://doi.org/10.21638/spbu03.2021.103

Abstract

Reproductive parasitism is a specific form of symbiosis in which a microorganism alters the reproduction of the host by interfering with the mechanisms of sex development. The review considers four changes in reproduction — male killing, parthenogenesis, feminization, and cytoplasmic incompatibility — determined by cytoplasmic bacteria. The cytogenetic and molecular genetic mechanisms of interaction between partners in the symbiotic system are discussed, including the comparative analysis of molecular-genetic factors responsible for reproductive parasitism. The features of the interaction between an insect and bacteria in symbiosis with various systems for determining the sex of the host, male and female heterogamy and haplodiploidy, are considered. Studies of cytoplasmic incompatibility are of great practical importance, since they open up prospects for non-invasive engineering on natural insect populations for biocontrol.

Keywords:

reproductive parasitism, male killing, parthenogenesis, feminization, cytoplasmic incompatibility, bacteria, insect

Downloads

Download data is not yet available.
 

References

Adachi-Hagimori, T., Miura, K., and Stouthamer, R. 2008. A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. Proceedings of the Royal Society B: Biological Sciences 275:2667–2673. https://doi.org/10.1098/rspb.2008.0792

Beckmann, J. F., Bonneau, M., Chen, H., Hochstrasser, M., Poinsot, D., Mercot, H., Weill, M., Sicard, M., and Charlat, S. 2019. The toxin-antidote model of cytoplasmic incompatibility: Genetics and evolutionary implications. Trends in Genetics 35:175–185. https://doi.org/10.1016/j.tig.2018.12.004

Beckmann, J. F. and Fallon, A. M. 2013. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: Implications for cytoplasmic incompatibility. Insect Biochemistry and Molecular Biology 43:867–878. https://doi.org/10.1016/j.ibmb.2013.07.002

Beckmann, J., F., Ronau, J. A., and Hochstrasser, M., A. 2017. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nature Microbiology 2:17007. https://doi.org/10.1038/nmicrobiol.2017.7

Beckmann, J. F., Sharma, G. D., Mendez, L., Chen, H., and Hochstrasser, M. 2019. The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors. eLife 8:e50026. https://doi.org/10.7554/eLife.50026

Bentley, J. K., Veneti, Z., Heraty, J. and Hurst, G. D. D. 2007. The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa. BMC Biology 5:9 https://doi.org/10.1186/1741-7007-5-9

Bing, X. L., Zhao, D. S., Sun, J. T., Zhang, K. J., and Hong, X. Y. 2020. Genomic analysis of Wolbachia from Laodelphax striatellus (Delphacidae, Hemiptera) reveals insights into its “Jekyll and Hyde” mode of infection pattern. Genome Biology and Evolution 12:3818–3831. https://doi.org/10.1093/gbe/evaa006

Bonneau, M., Atyame, C., Beji, M., Justy, F., Cohen-Gonsaud, M., Sicard, M., and Weill, M. 2018. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nature Communications 9:319. https://doi.org/10.1038/s41467-017-02749-w

Bonneau, M., Caputo, B., Ligier, A., Caparros, R., Unal, S., Perriat-Sanguinet, M., Arnoldi, D., Sicard, M., and Weill, M. 2019. Variation in Wolbachia cidB gene, but not cidA, is associated with cytoplasmic incompatibility mod phenotype diversity in Culex pipiens. Molecular Ecology 28:4725–4736. https://doi.org/10.1111/mec.15252

Breeuwer, J. A. and Werren, J. H. 1990. Microorganisms associated with chromosome destruction and reproductive isolation between insect species. Nature 346:558–560. https://doi.org/10.1038/346558a0

Callaini, G., Dallai, R., and Riparbelli, M. G. 1997. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. Journal of Cell Science 110(2):271–280.

Chen, H., Ronau, J. A., Beckmann, J. F., and Hochstrasser, M. A. 2019. Wolbachia nuclease and its binding partner provide a distinct mechanism for cytoplasmic incompatibility. Proceedings of the National Academy of Sciences USA 116:22314–22321. https://doi.org/10.1073/pnas.1914571116

Dyson, E. A. and Hurst, G. D. D. 2004. Persistence of an extreme sex ratio bias in a natural population. Proceedings of the National Academy of Sciences USA 101(17):6520–6523. https://doi.org/10.1073/pnas.0304068101

Ferree, P. M., Avery, A., Azpurua, J., Wilkes T., and Werren J. H. 2008. A bacterium targets maternally inherited centrosomes to kill males in Nasonia. Current Biology 18(18):1409–1414. https://doi.org/10.1016/j.cub.2008.07.093

Fukui, T., Kawamoto, M., Shoji, K., Kiuchi, T., Sugano, S., Shimada, T., Suzuki, Y., and Katsuma, S. 2015. The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene. PLOS Pathogens 11(7):e1005048. https://doi.org/10.1371/journal.ppat.1005048

Fukui, T., Kiuchi, T., Shoji, K., Kawamoto, M., Shimada, T., and Katsuma, S. 2018. In vivo masculinizing function of the Ostrinia furnacalis Masculinizer gene. Biochemical and Biophysical Research Communications 503(3):1768–1772. https://doi.org/10.1016/j.bbrc.2018.07.111

Gebiola, M., Giorgini, M., Kelly, S. E., Doremus, M. R., Ferree, P. M., Hunter, M. S. 2017. Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia. Proceedings of the Royal Society B: Biological Sciences 284:20171433. https://doi.org/10.1098/rspb.2017.1433

Gilfillan, G. D., Dahlsveen, I. K., and Becker, P. B. 2004. Lifting a chromosome: dosage compensation in Drosophila melanogaster. FEBS Letters 567:8–14. https://doi.org/10.1016/j.febslet.2004.03.110

Giorgini, M., Bernardo, U., Monti, M. M., Nappo, A. G., and Gebiola, M. 2010. Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Applied and Environmental Microbiology 76(8):2589–2599. https://doi.org/10.1128/AEM.03154-09

Giorgini, M., Hunter, M. S., Mancini, D., and Pedata, P. A. 2007. Cytological evidence for two different mechanisms of the thelytokous parthenogenesis in Encarsia parasitoids harbouring Wolbachia or Cardinium bacteria. X European Workshop on Insect Parasitoids. https://doi.org/10.13140/RG.2.1.4712.4243

Giorgini, M., Monti, M., Caprio, E., Stouthamer, R., and Hunter, M. S. 2009. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity 10:365–371. https://doi.org/10.1038/hdy.2008.135

Gottlieb, Y., Zchori-Fein, E., Werren, J. H., and Karr, T. L. 2002. Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera: Pteromalidae). Journal of Invertebrate Pathology 81:166–174. https://doi.org/10.1016/S0022-2011(02)00149-0

Harumoto, T., Anbutsu, H., and Fukatsu, T. 2014. Male-killing Spiroplasma induces sex-specific cell death via host apoptotic pathway. PLOS Pathogens 10(2):e1003956. https://doi.org/10.1371/journal.ppat.1003956

Harumoto, T., Anbutsu, H., Lemaitre, B., Fukatsu, T. 2016. Male-killing symbiont damages host’s dosagecompensated sex chromosome to induce embryonic apoptosis. Nature Communications 7:12781. https://doi.org/10.1038/ncomms12781

Harumoto, T. and Lemaitre, B. 2018. Male-killing toxin in a bacterial symbiont of Drosophila. Nature 557:252–255. https://doi.org/10.1038/s41586-018-0086-2

Harumoto, T., Fukatsu, T., and Lemaitre, B. 2018. Common and unique strategies of male killing evolved in two distinct Drosophila symbionts. Proceedings of the Royal Society B: Biological Sciences 285(1875):20172167. https://doi.org/10.1098/rspb.2017.2167

Hayashi, M., Nomura, M., and Kageyama, D. 2018. Rapid comeback of males: evolution of male-killer suppression in a green lacewing population. Proceedings of the Royal Society B: Biological Sciences 285:20180369. https://doi.org/10.1098/rspb.2018.0369

Heimpel, G. E. and de Boer, J. G. 2008. Sex determination in the Hymenoptera. Annual Review of Entomology 53:209–230. https://doi.org/10.1146/annurev.ento.53.103106.093441

Hiroki, M., Tagami, Y., Miura, K., and Kato, Y. 2004. Multiple infection with Wolbachia inducing different reproductive manipulations in the butterfly Eurema hecabe. Proceedings of the Royal Society B: Biological Sciences 271:1751–1755. https://doi.org/10.1098/rspb.2004.2769

Hornett, E. A., Moran, B., Reynolds, L. A., Charlat, S., Tazzyman, S., Wedell, N., Jiggins, C. D., and Hurst, G. D. D. 2014. The evolution of sex ratio distorter suppression affects a 25 cM genomic region in the butterfly Hypolimnas bolina. PLOS Genetics 10(12):e1004822. https://doi.org/10.1371/journal.pgen.1004822

Hunter, M. S., Perlman, S. J., and Kelly, S. E. 2003. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proceedings of the Royal Society B: Biological Sciences 270:2185–2190. https://doi.org/10.1098/rspb.2003.2475

Hurst, G. D. D., Jiggins, F. M., von der Schulenburg, J. H. G., Bertrand, D., West, S. A., Goriacheva, I. I., Zakharov, I. A., Werren, J. H., Stouthamer, R., and Majerus, M. E. N. 1999. Male-killing Wolbachia in two species of insect. Proceedings of the Royal Society B: Biological Sciences 266:735–740. https://doi.org/10.1098/rspb.1999.0698

Jiggins, F., Hurst, G., and Majerus, M. 1998. Sex ratio distortion in Acraea encedon (Lepidoptera: Nymphalidae) is caused by a male-killing bacterium. Heredity 81:87–91. https://doi.org/10.1046/j.1365-2540.1998.00357.x

Jiggins, F. M., Hurst, G. D., and Majerus, M. E. 2000. Sex-ratio-distorting Wolbachia causes sex-role reversal in its butterfly host. Proceedings of the Royal Society B: Biological Sciences 267(1438):69–73. https://doi.org/10.1098/rspb.2000.0968

Kageyama, D., Ohno, S., Hoshizaki, S., and Ishikawa, Y. 2003. Sexual mosaics induced by tetracycline treatment in the Wolbachia-infected adzuki bean borer, Ostrinias capulalis. Genome 46:983–989. https://doi.org/10.1139/g03-082

Kageyama, D., Ohno, M., Sasaki, T., Yoshido, A., Konagaya, T., Jouraku, A., Kuwazaki, S., Kanamori, H., Katayose, Y., Narita, S., Miyata, M., Riegler, M., and Sahara, K. 2017. Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species. Evolution Letters 1(5):232–244. https://doi.org/10.1002/evl3.28

Kageyama, D. and Traut, W. 2004. Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinias capulalis. Proceedings of the Royal Society B: Biological Sciences 271:251–258. https://doi.org/10.1098/rspb.2003.2604

Katsuma, S., Kiuchi, T., Kawamoto, M., Fujimoto T, Sahara K. 2018. Unique sex determination system in the silkworm, Bombyx mori: current status and beyond. Proceedings of the Japan Academy, Series B 94(5):205–216. https://doi.org/10.2183/pjab.94.014

Kiuchi, T., Koga, H., Kawamoto, M., Shoji, K., Sakai, H., Arai, Y., Ishihara, G., Kawaoka, S., Sugano, S., Shimada, T., Suzuki, Y., Suzuki, M. G., and Katsuma, S. 2014. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509:633–636. https://doi.org/10.1038/nature13315

LePage, D. P., Metcalf, J. A., Bordenstein, S. R., On, J., Perlmutter, J. I., Shropshire, J. D., Layton, E. M., Funkhouser-Jones, L. J., Beckmann, J. F., and Bordenstein, S. R. 2017. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543:243–247. https://doi.org/10.1038/nature21391

Lindsey, A. 2020. Sensing, signaling, and secretion: A review and analysis of systems for regulating host interaction in Wolbachia. Genes 11(7):813. https://doi.org/10.3390/genes11070813

Lindsey, A. R., Werren, J. H., Richards, S., and Stouthamer, R. 2016. Comparative genomics of a parthenogenesis-inducing Wolbachia symbiont. G3 Genes|Genomes|Genetics 6(7):2113–2123. https://doi.org/10.1534/g3.116.028449

Lus, Ya. Ya. 1947. Some trends in reproduction of the Adalia bipunctata L. populations: maleless lines in populations. Doklady Akademii Nauk SSSR 57(9):951–954. (In Russian)

Ma, W. J., Pannebakker, B. A., van de Zande, L., Schwander, T, Wertheim, B., and Beukeboom, L. W. 2015. Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp. BMC Evolutionary Biology 15:84. https://doi.org/10.1186/s12862-015-0370-9

Ma, W. J. and Schwander, T. 2017. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. Journal of Evolutionary Biology 30(5):868–888. https://doi.org/10.1111/jeb.13069

Magro, A., Lecompte, E., Hemptinne, J. L., Soares, A. O., Dutrillaux, A. M., Murienne, J, Fürsch, H, and Dutrillaux, B. 2020. First case of parthenogenesis in ladybirds (Coleoptera: Coccinellidae) suggests new mechanisms for the evolution of asexual reproduction. Journal of Zoological Systematics and Evolutionary Research 58:194–208. https://doi.org/10.1111/jzs.12339

Majerus, T. M. O. and Majerus, M. E. N. 2010. Intergenomic arms races: detection of a nuclear rescue gene of male-killing in a ladybird. PLOS Pathogens 6(7):e1000987. https://doi.org/10.1371/journal.ppat.1000987

Malogolowkin, C. 1958. Maternally inherited "sex-ratio" conditions in Drosophila willistoni and Drosophila paulistorum. Genetics 43(2):274–286. https://doi.org/10.1093/genetics/43.2.274

Martin, J., Chong, T., and Ferree, P. M. 2013. Male killing Spiroplasma preferentially disrupts neural development in the Drosophila melanogaster embryo. PLoS One 8(11):e79368. https://doi.org/10.1371/journal.pone.0079368

Matsuka, M., Hashi, H., and Okada, I. 1975. Abnormal sex-ratio found in the ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Applied Entomology and Zoology 10(2):84–89. https://doi.org/10.1303/aez.10.84

Narita, S., Kageyama, D., Nomura, M., and Fukatsu, T. 2007. Unexpected mechanism of symbiont-induced reversal of insect sex: feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development. Applied and Environmental Microbiology 3:4332–4341. https://doi.org/10.1128/AEM.00145-07

Narita, S., Kageyama, D., Hiroki, M., Sanpei, T., Hashimoto, S., Kamitoh, T., and Kato, Y. 2011. Wolbachia-induced feminization newly found in Eurema hecabe, a sibling species of Eurema mandarina (Lepidoptera: Pieridae). Ecological Entomology 36:309–317. https://doi.org/10.1111/j.1365-2311.2011.01274.x

Narita, S., Nomura, M., and Kageyama, D. 2007. Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microbiology Ecology 61:235–245. https://doi.org/10.1111/j.1574-6941.2007.00333.x

Negri, I., Franchini, A., Gonella, E., Daffonchio, D., Mazzoglio, P. J., Mandrioli, M., and Alma, A. 2009. Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting. Proceedings of the Royal Society B: Biological Sciences 276:2485–2491. https://doi.org/10.1098/rspb.2009.0324

Negri, I., Pellecchia, M., and Mazzoglio, P. J. 2006. Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/X0 sex-determination system. Proceedings of the Royal Society B: Biological Sciences 273:2409–2416. https://doi.org/10.1098/rspb.2006.3592

Pannebakker, B. A., Pijnacker, L. P., Zwaan, B. J., and Beukeboom, L. W. 2004. Cytology of Wolbachia-induced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae). Genome 303:299–303. https://doi.org/10.1139/g03-137

Penz, T., Schmitz-Esser, S., Kelly, S. E., Cass, B. N., Müller, A., Woyke, T., Malfatti, S. A., Hunter, M. S., and Horn, M. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLOS Genetics 8(10):e1003012. https://doi.org/10.1371/journal.pgen.1003012

Perlmutter, J. I., Bordenstein, S. R., Unckless, R. L., LePage, D. P., Metcalf, J. A., Hill, T., Martinez, J., Jiggins F. M., and Bordenstein, S. R. 2019. The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLOS Pathogens 15(9):e1007936. https://doi.org/10.1371/journal.ppat.1007936

Reed, K. M. and Werren, J. H. 1995. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events. Molecular Reproduction and Development 40:408–418. https://doi.org/10.1002/mrd.1080400404

Rössler, Y. and Debach, P. 1972. The biosystematics relations between a thelytokous and an arrhenotokous form of Aphytis mytilaspidis (LeBaron) [Hymenoptera: Aphelinidae]. Entomophaga 17:425–435. https://doi.org/10.1007/BF02371647

Rössler, Y. and Debach, P. 1973. Genetic variability in athelytokous form of Aphytis mytilaspidis (LeBaron) (Hymenoptera: Aphelinidae). Hilgardia 42:149–176. https://doi.org/10.3733/hilg.v42n05p149

Sakamoto, H., Kageyama, D., Hoshizaki, S., and Ishikawa, Y. 2007. Sex-specific death in the Asian corn borer moth (Ostrinia furnacalis) infected with Wolbachia occurs across larval development. Genome 50:645–652. https://doi.org/10.1139/g07-041

Sánchez, L. 2008. Sex-determining mechanisms in insect. International Journal of Developmental Biology 52:837–856. https://doi.org/10.1387/ijdb.072396ls

Serbus, L. R., Casper-Lindley, C., Landmann, F., and Sullivan, W. 2008. The genetics and cell biology of Wolbachia—host interactions. Annual Review of Genetics 42:683–707. https://doi.org/10.1146/annurev.genet.41.110306.130354

Shropshire, J. D. and Bordenstein, S. R. 2019. Two-By-One model of cytoplasmic incompatibility: Synthetic recapitulation by transgenic expression of cifA and cifB in Drosophila. PLOS Genetics 15:e1008221. https://doi.org/10.1371/journal.pgen.1008221

Shropshire, J. D, On, J., Layton, E. M., Zhou H., and Bordenstein, S. R. 2018. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA 115:4987–4991. https://doi.org/10.1073/pnas.1800650115

Stouthamer, R., Breeuwer, J. A. J., and Hurst, G. D. D. 1999. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annual Review of Microbiology 53:71–102. https://doi.org/10.1146/annurev.micro.53.1.71

Stouthamer, R. and Kazmer, D. 1994. Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73:317–327. https://doi.org/10.1038/hdy.1994.139

Sugimoto, T. N., Fujii, T., Kayukawa, T., Sakamoto, H., and Ishikawa, Y. 2010. Expression of a double sex homologue is altered in sexual mosaics of Ostrinia scapulalis moths infected with Wolbachia. Insect Biochemistry and Molecular Biology 40:847–854. https://doi.org/10.1016/j.ibmb.2010.08.004

Sugimoto, T. N. and Ishikawa, Y. 2012. A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host. Biology Letters 8:412–415. https://doi.org/10.1098/rsbl.2011.1114

Tulgetske, G. M. 2010. Investigations into the mechanisms of Wolbachia-induced parthenogenesis and sex determination in the parasitoid wasp, Trichogramma, PhD thesis, Riverside, CA, Merritt. https://escholarship.org/uc/item/52w0b481

Tram, U., Fredrick, K., Werren, J. H., and Sullivan, W. 2006. Paternal chromosome segregation during the first mitotic division determines Wolbachia-induced cytoplasmic incompatibility phenotype. Journal of Cell Science 119:3655–3663. https://doi.org/10.1242/jcs.03095

Tsuchiyama-Omura, S., Sakaguchi, B., Koga, K., and Poulson, D. F. 1988. Morphological features of embryogenesis in Drosophila melanogaster infected with a male-killing Spiroplasma. Zoological Science 5:375–383.

Vavre, F., Dedeine, F., Quillon, M., Fouillet, P., Fleury, F., and Boulétreau, M. 2001. Within-species diversity of Wolbachia-induced cytoplasmic incompatibility in haplodiploid insects. Evolution 55:1710–1714. https://doi.org/10.1111/j.0014-3820

Werren, J. H., Hurst, G. D. D., Zhang, W., Breeuwer, J. A., Stouthamer, R., and Majerus, M. E. 1994. Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). Journal of Bacteriology 176:388–394. https://doi.org/10.1128/jb.176.2.388-394.1994

Werren, J. H., Skinner, S. W., and Huger, A. M. 1986. Male-killing bacteria in a parasitic wasp. Science 231:990–992. https://doi.org/10.1126/science.3945814

Williamson, D. L. and Poulson, D. F. 1979. Plant and insect mycoplasmas; pp. 175–208 in Whitcomb, R. F. and Tully, J. G. (Eds.), The Mycoplasmas. New York. https://doi.org/10.1016/B978-0-12-078403-5.50012-8

Yen, J. H. and Barr, A. R. 1971. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658. https://doi.org/10.1038/232657a0

Yen, J. H. and Barr, A. R. 1973. The etiological agent of cytoplasmic incompatibility in Culex pipiens. Journal of Invertebrate Pathology 22(2):242–250. https://doi.org/10.1016/0022-2011(73)90141-9

Zabalou, S., Apostolaki, A., Pattas, S., Veneti, Z., Paraskevopoulos, Ch., Livadaras, I., Markakis, G., Brissac, T., Merçot, H., and Bourtzis, K. 2008. Multiple rescue factors within a Wolbachia strain. Genetics 178:2145–2160. https://doi.org/10.1534/genetics.107.086488

Zchori-Fein, E., Perlman, S. J., Kelly, S. E., Katzir, N., and Hunter, M. S. 2004. Characterization of a 'Bacteroidetes' symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of 'Candidatus Cardinium hertigii'. International Journal of Systematic and Evolutionary Microbiology 54(3):961–968. https://doi.org/10.1099/ijs.0.02957-0

Downloads

Published

2021-03-31

How to Cite

Goryacheva, I., & Andrianov, B. (2021). Reproductive parasitism in insects. The interaction of host and bacteria. Biological Communications, 66(1), 17–27. https://doi.org/10.21638/spbu03.2021.103

Issue

Section

Review communications

Categories