Hereditary symbionts and mitochondria: distribution in insect populations and quasi-linkage of genetic markers

Abstract

Maternal transmission ensures the joint transmission and simultaneous presence in populations of individuals with certain variants of the bacterial symbiont and host mitochondrial DNA. Such “quasi-linkage” of cytoplasmic genomes among insects and other arthropods is widespread. The symbiont acts as a “driver” of mitochondria and the obvious biological consequence is the spread of the “linked” mitochondrial haplotype in the population, which itself does not have increased selective value to the organism. Examples of such indirect selective mitochondrial sweep in insects are discussed, as well as biological consequences of this phenomenon and mechanisms of increasing the frequency of symbiont-infected individuals in the population.

Keywords:

symbiogenome, cytoplasmic genomes, insects, hereditary symbiont, mitochondrial haplotype, co-transmission

Downloads

Download data is not yet available.
 

References

Ahmad, N. A., Vythilingam, I., Lim, Y. A. L., Zabari, N. Z. A. M., and Lee, H. L. 2017. Detection of Wolbachia in Aedes albopictus and their effects on chikungunya virus. American Journal Tropical Medicine and Hygiene 96(1):148–156. https://doi.org/10.4269/ajtmh.16-0516

Almeida, F., Moura, A. S., Cardoso, A. F., Winter, C. E., Bijovsky, A. T., and Suesdek, L. 2011. Effects of Wolbachia on fitness of Culex quinquefasciatus (Diptera; Culicidae). Infection Genetic and Evolution 11(8):2138–2143. https://doi.org/10.1016/j.meegid.2011.08.022

Altinli, M., Gunay, F., Alten, B., Weill, M., and Sicard, M. 2018. Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey. Parasites and Vectors 11(1):198. https://doi.org/10.1186/s13071-018-2777-9

Armbruster, P., Damsky, W. E., Giordano, R., Birungi, J., Munstermann, L. E., and Conn, J. E. 2003. Infection of new- and old-world Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: implications for host mitochondrial DNA evolution. Journal of Medical Entomology 40:356–360. https://doi.org/10.1603/0022-2585-40.3.356

Atyame, C. M., Delsuc, F., Pasteur, N., Weill, M., and Duron, O. 2011. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Molecular Biolology and Evolution 28:2761–2772. https://doi.org/10.1093/molbev/msr083

Atyame, C. M., Labbé, P., Dumas, E., Milesi, P., Charlat, S., Fort, Ph., and Weil, M. 2014. Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens. PLoS One 9(1):e87336. https://doi.org/10.1371/journal.pone.0087336

Battaglia, V., Gabrieli, P., Brandini, S., Capodiferro, M. R., Javier, P. A., Chen, X. G., Achilli, A., Semino, O., Gomulski, L. M., Malacrida, A. R., Gasperi, G., Torroni, A., and Olivieri, A. 2016. The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity. Frontiers in Genetics 7:208. https://doi.org/10.3389/fgene.2016.00208

Bykov, R. А., Yudina, M. A., Gruntenko, N. E., Zakharov, I. K., Voloshina, M. A., Melashchenko, E. S., Danilova, M. V., Mazunin, I. O., and Ilinsky, Y. I. 2019. Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster. BMC Evolutionary Biology 19(Suppl 1):48. https://doi.org/10.1186/s12862-019-1372-9

Danabalan, R., Ponsonby, D. J., and Linton, Y.-M. 2012. A critical assessment of available molecular identification tools for determining the status of Culex pipiens S.L. in the United Kingdom. Journal of American Mosquito Control Association 28(Suppl 4):68–74. https://doi.org/10.2987/8756-971X-28.0.68

Dobson, S. L., Marsland, E. J., and Rattanadechakul, W. 2002. Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 160:1087–1094.

Dobson, S. L., Rattanadechakul, W., and Marsland, E. J. 2004. Fitness advantage and cytoplasmic incompatibility in Wolbachia single- and superinfected Aedes albopictus. Heredity 93(2):135–142. https://doi.org/10.1038/sj.hdy.6800458

Dumas, E., Atyame, C. M., Milesi, P., Fonseca, D. M., Shaikevich, E. V., Unal, S., Makoundou, P., Weil, M., and Duron, O. 2013. Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evolutionary Biology 13:183. https://doi.org/10.1186/1471-2148-13-181

Dumas, E., Atyame, C. M., Malcolm, C. A., Le Goff, G., Unal, S., Makoundou, P., Pasteur, N., Weil, M., and Duron, O. 2016. Molecular data reveal a cryptic species within the Culex pipiens mosquito complex. Insect Molecular Biology 25:800–809. https://doi.org/10.1111/imb.12264

Fang, Y., Zhang, J., Wu, R., Xue, B., Qian, Q., and Gao, B. 2018. Genetic polymorphism study on Aedes albopictus of different geographical regions based on DNA barcoding. Biomed Research International 1501430. https://doi.org/10.1155/2018/1501430

Fedorova, M. V. and Shaikevich, E. V. 2007. Morphological and molecular-genetic differences between the adults of mosquitoes Culex torrentium Martini and Culex pipiens L. from Moscow Province. Entomological Review 87:127–135. https://doi.org/10.1134/S0013873807020017

Ghelelovitch, S. 1952. Sur le diterminisme genttique de la sterilitc dans le croisement entre differentes souches de Culex autogenicus Roubaud. C. R. Acad. Sci. Paris 234:2386–2388.

Giordano, B., Gasparotto, A., Liang, P., Nelder, M., Russell, C., and Hunter, F. 2019. Discovery of an Aedes (Stegomyia) albopictus population and first records of Aedes (Stegomyia) aegypti in Canada. Medical and Veterinary Entomology 34(1):10–16. https://doi.org/10.1111/mve.12408

Gomes, B., Sousa, C. A., Novo, M. T., Freitas, F. B., Alves, R., Corte-Real, A. R., Salgueiro, P., Donnelly, M. J., Almeida, A. P. G., and Pinto, J. 2009. Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in Comporta region, Portugal. BMC Evolutionary Biology 9:262. https://doi.org/10.1186/1471-2148-9-262

Gunay, F., Alten, B., Simsek, F., Aldemir, A., and Linton, Y.-M. 2015. Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Tropica 143:112–120. https://doi.org/10.1016/j.actatropica.2014.10.013

Guo, Y., Song, Z., Luo, L., Wang, Q., Zhou, G., Yang, D., Zhong, D., and Zheng, X. 2018. Molecular evidence for new sympatric cryptic species of Aedes albopictus (Diptera: Culicidae) in China: A new threat from Aedes albopictus subgroup? Parasites and Vectors 11:228. https://doi.org/10.1186/s13071-018-2814-8

Hale, L. R. and Hoffmann, A. A. 1990. Mitochondrial DNA polymorphism and cytoplasmic incompatibility in natural populations of Drosophila simulans. Evolution 44:1383–1386. https://doi.org/10.1111/j.1558-5646.1990.tb05241.x

Harbach, R. 2012. Culex pipiens: Species versus species complex — taxonomic history and perspective. Journal of the American Mosquito Control Association 28:10–23. https://doi.org/10.2987/8756-971X-28.4.10

Hu, Y., Xi, Z., Liu, X., Wang, J., Guo, Y., Ren, D., Wu, H., Wang, X., Chen, B., and Liu, Q. 2020. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasites and Vectors 13(1):28. https://doi.org/10.1186/s13071-020-3899-4

Ilinsky, Y. 2013. Coevolution of Drosophila melanogaster mtDNA and Wolbachia genotypes. PLoS ONE 8(1):e54373. https://doi.org/10.1371/journal.pone.0054373

Jiggins, F. M. 2003. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164:5–12.

Johnstone, R. A. and Hurst, G. D. D. 1996. Maternally inherited male-killing microorganisms may confound interpretation of mitochondrial DNA variability. Biological Journal of the Linnean Society 58:453–470.

Laven, H. 1967. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216:383–384. https://doi.org/10.1038/216383a0

Lederberg, J. 1952. Cell genetics and hereditary symbionts. Physiological Review 32:403–430. https://doi.org/10.1152/physrev.1952.32.4.403

Majerus, M. E. N., Schulenburg J. H. G., and Zakharov, I. A. 2000. Multiple causes of male-killing in a single sample of the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae) from Moscow. Heredity 84:605–609. https://doi.org/10.1046/j.1365-2540.2000.00710.x

Minard, G., Van, V., Tran, F. H., Melaun, C., Klimpel, S., Koch, L. K., Kim, K. L. H. K., Thuy, T. H. T. T., Ngoc, H. T., Potier, P., Mavingui, P., and Moro, C. V. 2017. Identification of sympatric cryptic species of Aedes albopictus subgroup in Vietnam: new perspectives in phylosymbiosis of insect vector. Parasit Vectors 10:276. https://doi.org/10.1186/s13071-017-2202-9

Perlman, S. J., Hodson, C. N., Hamilton, P. T., Opit, G. P., and Gowen, B. E. 2015. Maternal transmission, sex ratio distortion, and mitochondria. Proceedings of the National Academy of Sciences USA 112(33):10162–10168. https://doi.org/10.1073/pnas.1421391112

Porretta, D., Mastrantonio, V., Bellini, R., Somboon, P., and Urbanelli, S. 2012. Glacial history of a modern invader: Phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus. PLoS ONE 7(9):e44515. https://doi.org/10.1371/journal.pone.0044515

Preer, J. R. 1971. Extrachromosomal inheritance: hereditary symbionts, mitochondria, chloroplasts. The Annual Review of Genetics 5:361–406. https://doi.org/10.1146/annurev.ge.05.120171.002045

Provorov, N. A. and Tikhonovich, I. A. 2014. Super-species genetic systems. Zhurnal obshcheĭ biologii 75(4):247–260. (In Russian)

Rasgon, J. L., Cornel, A. J., and Scott, T. W. 2006. Evolutionary history of a mosquito endosymbiont revealed through mitochondrial hitchhiking. Proceedings of the Royal Society B: Biological Sciences 273:1603–1611. https://doi.org/10.1098/rspb.2006.3493

Rigaud, T., Bouchon, D., Souty-Grosset, C., and Raimond, R. 1999. Mitochondrial DNA polymorphism, sex ratio distorters and population genetics in the isopod Armadillidium vulgare. Genetics 152:1669–1677.

Ruiling, Z., Tongkai, L., Dezhen, M., and Zhong, Z. 2018. Genetic characters of the globally spread tiger mosquito, Aedes albopictus (Diptera, Culicidae): implications from mitochondrial gene COI. Journal of Vector Ecology 43:89–97. https://doi.org/10.1111/jvec.12287

Schulenburg, J. H., Habig, M., Sloggett, J. J., Webberley, K. M., Bertrand, D., Hurst, G. D., and Majerus, M. E. 2001. Incidence of male-killing Rickettsia spp. (a-proteobacteria) in the ten-spot ladybird beetle Adalia decempunctata L. (Coleoptera: Coccinellidae). Applied and Environmental Microbiology 67:270–277. https://doi.org/10.1128/AEM.67.1.270-277.2001

Schulenburg, J. H. G., Hurst, G. D. D., Tetzlaff, D., Booth, G. E., Zakharov, I. A., and Majerus, M. E. 2002. History of infection with different male-killing bacteria in the two-spot ladybird beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis. Genetics 160:1075–1086.

Shaikevich, E. V., Fedorova, M. V., and Vinogradova, E. B. 2006. DNA diagnostics of representatives of the Culex pipiens complex (Culicidae, Diptera) from Russia. Proceeding of I Conference on Bloodsucking Insects 227–228.

Shaikevich, E. V. 2007. PCR-RFLP of the COI gene reliably differentiates Cx. pipiens, Cx. pipiens form molestus and Cx. torrentium of the Pipiens Complex. European Mosquito Bulletin 23:25–30.

Shaikevich, E. V. 2009. Identification of Culex mosquitoes (Diptera, Culicidae) by the restriction assay of amplification products. Meditsinskaia parazitologiia i parazitarnye bolezni 3:28–32. (In Russian)

Shaikevich, E. V. and Zakharov, I. A. 2010. Polymorphism of mitochondrial COI and nuclear ribosomal ITS2 in Culex pipiens complex and in Culex torrentium (Diptera, Culicidae). Comparative Cytogenetics 4(2):161–174. https://doi.org/10.3897/compcytogen.v4i2.45

Shaikevich, E. V. and Zakharov, I. A. 2014. Coevolution of symbiotic bacteria Wolbachia and host mtDNA in Russian populations of the Culex pipiens mosquito complex. Russian Journal of Genetics 50(11):1234–1237. https://doi.org/10.1134/S1022795414110131

Shaikevich, E. V. and Zakharov, I. A. 2015. Biodiversity in geographically remote natural populations of Adalia ladybirds (Coleoptera: Coccinellidae), pp. 205–226 in C. Stack (ed.) Beetles: biodiversity, ecology and role in the environment. Nova Science Publishers.

Shaikevich, E., Vinogradova, E., Boatour, A., and Almeida, P. 2016. Genetic diversity of Culex pipiens mosquitoes in distinct populations from Europe. Contribution of Cx. quinquefasciatus in Mediterranean populations. Parasites Vectors 9:47. https://doi.org/10.1186/s13071-016-1333-8

Shaikevich, E., Patraman, I., Bogacheva, A., Rakova, V., Zelya, O., and Ganushkina, L. 2018. Invasive mosquito species Aedes albopictus and Aedes aegypti on the Black Sea coast of the Caucasus: genetics (COI, ITS2), infection with Wolbachia and Dirofilaria. Vavilov Journal of Genetics and Breeding 22(5):574–585. https://doi.org/10.18699/VJ18.397

Shaikevich, E., Bogacheva, A. S., Rakova, V., Ganushkina, L., and Ilinsky, Y. 2019. Wolbachia symbionts in mosquitoes: Intra- and intersupergroup recombinations, horizontal transmission and evolution. Molecular Phylogenetics and Evolution 134:24–34. https://doi.org/10.1016/j.ympev.2019.01.020

Shaikevich, E. V., Zakharov, I. A., and Honek, A. 2019. Ecological genetics of Adalia beetles: variability and symbiotic bacteria in European populations of the ten-spot ladybird beetle Adalia decempunctata. Ecological Genetics 17(4):37–45. https://doi.org/10.17816/ecogen17437-45

Sinkins, S. P., Braig, H. R., and O'Neill, S. L. 1995. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proceedings of the Royal Society B: Biological Sciences 261:325–330. https://doi.org/10.1098/rspb.1995.0154

Shoemaker, D. D., Dyer, K. A., Ahrens, M., McAbee, K., and Jaenike, J. 2004. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168:2049–2058. https://doi.org/10.1534/genetics.104.030890

Tikhonovich, I. A. and Provorov, N. A. 2010. Epigenetics of ecological niches. Ecological Genetics 8(4):30–38. https://doi.org/10.17816/ecogen8430-38

Turelli, M., Hoffmann, A. A., and McKechnie, S. W. 1992. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics 132(3):713–723. https://doi.org/10.1093/genetics/132.3.713

Vinogradova, E. B., Shaikevich, E. V., and Ivanitsky, A. V. 2007. The study on the distribution of the Culex pipiens complex mosquitoes in the European part of Russia by molecular methods of their identification. Comparative Cytogenetics 1:129–138.

Werren, J. H., Zhang, W., and Guo, L. R. 1995. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proceedings of the Royal Society B: Biological Sciences 261:55–63. https://doi.org/10.1098/rspb.1995.0117

Yen, J. H. and Barr, A. R. 1971. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens. Nature 232(5313):657–658. https://doi.org/10.1038/232657a0

Zakharov, I. A. and Shaikevich, E. V. 2001. The Stockholm populations of Adalia bipunctata (L) (Coleoptera: Coccinellidae) — a case of extreme female-biased population sex ratio. Hereditas 134(3):263–266. https://doi.org/10.1111/j.1601-5223.2001.00263.x

Zakharov, I. A. and Shaikevich, E. V. 2012. An mtDNA polymorphism in the St. Petersburg population of Adalia bipunctata and its correlation with infection by the symbiotic bacterium Spiroplasma. Russian Journal of Genetics: Applied Research 2:110–113. https://doi.org/10.1134/S207905971202013X

Zé-Zé, L., Borges, V., Osório, H., Machado, J., Gomes, J., and Alves, M. 2020. Mitogenome diversity of Aedes (Stegomyia) albopictus: Detection of multiple introduction events in Portugal and potential within-country dispersal. bioRxiv 2020.02.12.945741. https://doi.org/10.1101/2020.02.12.945741

Zhong, D., Lo, E., Hu, R., Metzger, M. E., Cummings, R., Bonizzoni, M., Fujioka, K. K., Sorvillo, T. E., Kluh, S., Healy, S. P., Fredregill, C., Kramer, V. L., Chen, X., and Yan, G. 2013. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS One 8(7):e68586. https://doi.org/10.1371/journal.pone.0068586

Published
2021-03-31
How to Cite
Zakharov, I., & Shaikevich, E. (2021). Hereditary symbionts and mitochondria: distribution in insect populations and quasi-linkage of genetic markers. Biological Communications, 66(1), 6–16. https://doi.org/10.21638/spbu03.2021.102
Section
Review communications