Optogenetics: Applications in neurobiology

  • Maria Mikhailova Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation http://orcid.org/0000-0002-8710-6806
  • Alex Deal Department of Neurobiology and Anatomy Wake Forest School of Medicine, USA, Medical Center Boulevard Winston-Salem, NC 27157–1010 http://orcid.org/0000-0003-0487-5720
  • Evgeny Budygin Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Department of Neurobiology and Anatomy Wake Forest School of Medicine, USA, Medical Center Boulevard Winston-Salem, NC 27157–1010 http://orcid.org/0000-0002-5675-0279
  • Raul Gainetdinov Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation http://orcid.org/0000-0003-2951-6038

Abstract

Commonly used neuromodulation techniques such as electrical stimulation or pharmacologic intervention have some technical limitations that preclude dissecting particular cell- or pathway-specific functions in the brain, which is composed of billions of neurons. An advancement of molecular genetics techniques has provided a novel method in neuroscience called optogenetics. Optogenetics uses a combination of genetic and optical methods that provide a means to, with great temporal precision, experimentally control the activation or suppression of specific neuronal sub-populations in heterogeneous brain regions where multiple neuronal subtypes exist; this approach can be performed even on freely moving animals. Thus, this tool can uniquely assist in establishing causality between the disorder and the underlying pathology. Ongoing exploration of pathological mechanisms in various animal models of neuropsychiatric disorders with precise tools such as optogenetics can provide significant advances in the development of more focused approaches to treatment of these disorders. Here, we selectively highlight the major advancements gained by the use of optogenetic tools to uncover at circuit levels mechanisms relevant to neuropsychiatric disorders.

Keywords:

optogenetics, opsin, neuropsychiatric disorders, addiction, schizophrenia, stress, depression, Parkinson’s disease, Alzheimer’s disease

Downloads

Download data is not yet available.

References

Adamantidis, A. R., Tsai, H-C., Boutrel, B., Zhang, F., Stuber, G. D., Budygin, E. A., Touriño, C., Bonci, A., Deisseroth, K., and de Lecea, L. 2011. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. Journal of Neuroscience 31:10829–10835. https://doi.org/10.1523/JNEUROSCI.2246-11.2011

Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K., and de Lecea, L. 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450: 420–424. https://doi.org/10.1038/nature06310

Anthony, T. E., Dee, N., Bernard, A., Lerchner, W., Heintz, N., and Anderson, D. J. 2014. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156(3):522–536. https://doi.org/10.1016/j.cell.2013.12.040

Aragona, B. J., Cleaveland, N. A., Stuber, G. D., Day, J. J, Carelli, R. M., and Wightman, R. M. 2008. Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. Journal of Neuroscience 28:8821–8831. https://doi.org/10.1523/JNEUROSCI.2225-08.2008

Aravanis, A. M., Wang, L.-P., Zhang, F., Meltzer, L. A., Mogri, M. Z., Schneider, M. B., and Deisseroth, K. 2007. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of Neural Engineering 4:S143–S156. https://doi.org/10.1088/1741-2560/4/3/S02

Atasoy, D., Aponte, Y., Su, H. H., and Sternson, S. M. 2008. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. Journal of Neuroscience 28:7025–7030. https://doi.org/10.1523/JNEUROSCI.1954-08.2008

Bass, C. E., Grinevich, V. P., Gioia D., Day-Brown, J. D., Bonin, K. D., Stuber, G. D., Weiner, J. L., and Budygin, E. A. 2013. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration. Frontiers in Behavioral Neuroscience 7:173. https://doi.org/10.3389/fnbeh.2013.00173

Benabid, A. L. 2003. Deep brain stimulation for Parkinson’s disease. Current Opinion in Neurobiology 13:696–706. https://doi.org/10.1016/j.conb.2003.11.001

Benes, F. M. 2010. Amygdalocortical circuitry in schizophrenia: from circuits to molecules. Neuropsychopharmacology 35:239–257. https://doi.org/10.1038/npp.2009.116

Berke, J. D., and Hyman, S. E. 2000. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532. https://doi.org/10.1016/S0896-6273(00)81056-9

Berndt, A., Schoenenberger, P., Mattis, J., Tye, K. M., Deisseroth, K., Hegemann, P., and Oertner, T. G. 2011. Highefficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the National Academy of Sciences of the United States of America 108:7595–7600. https://doi.org/10.1073/pnas.1017210108

Bernstein, J. G., Han, X., Henninger, M. A., Ko, E. Y., Qian, X., Franzesi, G. T., McConnell, J. P., Stern, P., Desimone, R., and Boyden, E. S. 2008. Prosthetic systems for therapeutic optical activation and silencing of geneticallytargeted neurons. Proceedings — Society of Photo-Optical Instrumentation Engineers 6854:68540H. https://doi.org/10.1117/12.768798

Bero, A. W., Meng, J., Cho, S., Shen, A. H., Canter, R. G., Ericsson, M., and Tsai, L. H. 2014. Early remodeling of the neocortex upon episodic memory encoding. Proceedings of the National Academy of Sciences of the United States of America 111:11852–11857. https://doi.org/10.1073/pnas.1408378111

Bock, R., Shin, J. H., Kaplan, A. R., Dobi, A., Markey, E., Kramer, P. F., Gremel, C. M., Christensen, C. H., Adrover, M. F., and Alvarez, V. A. 2013. Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nature Neuroscience 16:632–638. https://doi.org/10.1038/nn.3369

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience 8:1263–1268. https://doi.org/10.1038/nn1525

Cao, Z. F., Burdakov, D., and Sarnyai, Z. 2011. Optogenetics: potentials for addiction research. Addiction Biology 16:519–531. https://doi.org/10.1111/j.1369-1600.2011.00386.x

Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., and Moore, C. I. 2009. Driving fast-spiking cells induces γ rhythm and controls sensory responses. Nature 459:663–667. https://doi.org/10.1038/nature08002

Chaudhury, D., Walsh, J. J., Friedman, A. K., Juarez, B., Ku, S. M., Koo, J. W., Ferguson, D., Tsai, H., Pomeranz, L., Christoffel, D. J., et al. 2013. Rapid regulation of depressionrelated behaviours by control of midbrain dopamine neurons. Nature 493:532–536. https://doi.org/10.1038/nature11713

Chen, B. T., Yau, H. J., Hatch, C., Kusumoto-Yoshida, I., Cho, S. L., Hopf, F. W., and Bonci, A. 2013. Rescuing cocaineinduced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496:359–362. https://doi.org/10.1038/nature12024

Chow, B. Y., Han, X., Dobry, A. S., Qian, X., Chuong, A. S., Li, M., Henninger, M. A., Belfort, G. M., Lin, Y., Monahan, P. E., and Boyden, E. S. 2010. High-performance genetically tar- getable optical neural silencing by light-driven proton pumps. Nature 463:98–102. https://doi.org/10.1038/nature08652

Cirrito, J. R., Kang, J. E., Lee, J., Stewart, F. R., Verges, D. K., Silverio, L. M., Bu, G., Mennerick, S., and Holtzman, D. M. 2008. Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58:42–51. https://doi.org/10.1016/j.neuron.2008.02.003

Cirrito, J. R., Yamada, K. A., Finn, M. B., Sloviter, R. S., Bales, K. R., May, P. C., Schoepp, D. D., Paul, S. M., Mennerick, S. and Holtzman, D. M. 2005. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922. https://doi.org/10.1016/j.neuron.2005.10.028

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., and Uchida, N. 2012. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:85–88. https://doi.org/10.1038/nature10754

Covington, H. E., III, Lobo, M. K., Maze, I., Vialou, V., Hyman, J. M., Zaman, S., LaPlant, Q., Mouzon, E., Ghose, S., Tamminga, C. A., Neve, R. L., Deisseroth, K., and Nestler, E. J. 2010. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. Journal of Neuroscience 30:16082–16090. https://doi.org/10.1523/JNEUROSCI.1731-10.2010

Deisseroth, K. 2015. Optogenetics: 10 years of microbial opsins in neuroscience. Nature Neuroscience 18(9):1213–1225. https://doi.org/10.1038/nn.4091

Deisseroth, K., Feng, G., Majewska, A. K., Miesenbock, G., Ting, A., and Schnitzer, M. J. 2006. Next-generation optical technologies for illuminating genetically targeted brain circuits. Journal of Neuroscience 26(41):10380–10386. https://doi.org/10.1523/JNEUROSCI.3863-06.2006

Deuschl, G., Schade-Brittinger, C., Krack, P., et al. 2006. A randomized trial of deep-brain stimulation for Parkinson’s disease. New England Journal of Medicine 355:896–908. https://doi.org/10.1056/NEJMoa060281

Diester, I., Kaufman, M. T, Mogri, M., Pashaie, R., Goo, W., Yizhar, O., Ramakrishnan, C., Deisseroth, K., and Shenoy, K. V. 2011. An optogenetic toolbox designed for primates. Nature Neuroscience 14:387–397. https://doi.org/10.1038/nn.2749

Endicott, J., and Spitzer, R. L. 1978. A diagnostic interview: the schedule for affective disorders and schizophrenia. Archives of General Psychiatry 35:837–844. https://doi.org/10.1001/archpsyc.1978.01770310043002

Felix-Ortiz, A. C., Burgos-Robles, A., Bhagat, N. D., Leppla, C. A., and Tye, K. M. 2016. Bidirectional modulation of anxietyrelated and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 321:197–209. https://doi.org/10.1016/j.neuroscience.2015.07.041

Fenno, L., Yizhar, O., and Deisseroth, K. 2011. The development and application of optogenetics. Annual Review of Neuroscience 34:389–412. https://doi.org/10.1146/annurev-neuro-061010-113817

Fitzsimons, H. L., Bland, R. J., and During, M. J. 2002. Promoters and regulatory elements that improve adenoassociated virus transgene expression in the brain. Methods 28:227–236. https://doi.org/10.1016/S1046-2023(02)00227-X

Freeman, A. S., Meltzer, L. T., and Bunney, B. S. 1985. Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sciences 36:1983–1994. https://doi.org/10.1016/0024-3205(85)90448-5

Freund, T. F. 2003. Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends in Neurosciences 26:489–495. https://doi.org/10.1016/S0166-2236(03)00227-3

Fuchs, E. C., Zivkovic, A. R., Cunningham, M. O., et al. 2007. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53:591–604. https://doi.org/10.1016/j.neuron.2007.01.031

Garcia-Garcia, A. L., Canetta, S., Stujenske, J. M., Burghardt, N. S., Ansorge, M. S., Dranovsky, A., and Leonardo, E. D. 2017. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor-dependent manner. Molecular Psychiatry [Epub ahead of print] https://doi.org/10.1038/mp.2017.165

Gelb, D. J., Oliver, E., and Gilman, S. 1999. Diagnostic criteria for parkinson disease. Archives of Neurology 56(1):33–39. https://doi.org/10.1001/archneur.56.1.33

Gonzales, R. A., Job, M. O., and Doyon, W. M. 2004. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacology and Therapeutics 103:121–146. https://doi.org/10.1016/j.pharmthera.2004.06.002

Goshen, I., Brodsky, M., Prakash, R., Wallace, J., Gradinaru, V., Ramakrishnan, C., and Deisseroth, K. 2011. Dynamics of retrieval strategies for remote memories. Cell 147:678–689. https://doi.org/10.1016/j.cell.2011.09.033

Grace, A. A. 1991. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24. https://doi.org/10.1016/0306-4522(91)90196-U

Grace, A. A. 2000. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 95:119–128. https://doi.org/10.1046/j.1360-0443.95.8s2.1.x

Grace, A. A., and Bunney, B. S. 1983 Intracellular and extracellular electrophysiology of nigral dopaminergic neurons–1. Identification and characterization. Neuroscience 10:301–315. https://doi.org/10.1016/0306-4522(83)90135-5

Grace, A. A., and Bunney, B. S. 1984. The control of firing pattern in nigral dopamine neurons: burst firing. The Journal of Neuroscience 4:2877–2890. https://doi.org/10.1523/JNEUROSCI.04-11-02877.1984

Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., Goshen, I., Thompson K. R., Deisseroth, K. 2010. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165. https://doi.org/10.1016/j.cell.2010.02.037

Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., and Deisseroth, K. 2009. Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359. https://doi.org/10.1126/science.1167093

Grieger, J. C., and Samulski, R. J. 2005. Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. Journal of Virology 79:9933–9944. https://doi.org/10.1128/jvi.79.15.9933-9944.2005

Grossman, N., Poher, V., Grubb, M. S. et al. 2010. Multisite optical excitation using ChR2 and micro-LED array. Journal of Neural Engineering 7:016004. https://doi.org/10.1088/1741-2560/7/1/016004

Han, X., Chow, B. Y., Zhou, H., Klapoetke, N. C., Chuong, A., Rajimehr, R., Yang, A., Baratta M. V., Winkle, J., Desimone, R., and Boyden, E. S. 2011. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Frontiers in Systems Neuroscience 5:18. https://doi.org/10.3389/fnsys.2011.00018

Hughes, A. J., Daniel, S. E., Kilford, L., and Lees, A. J. 1992. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery, and Psychiatry 55:181–184. https://doi.org/10.1136/jnnp.55.3.181

Hyland, B. I., Reynolds, J. N., Hay, J., Perk, C. G., and Miller, R. 2002. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475–492. https://doi.org/10.1016/S0306-4522(02)00267-1

Ilango, A., Kesner, A. J., Broker, C. J., Wang, D. V., and Ikemoto, S. 2014. Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcementschedule analyses. Frontiers in Behavioral Neuroscience 8:155. https://doi.org/10.3389/fnbeh.2014.00155

Isaacson, J. S., and Scanziani, M. 2011. How inhibition shapes cortical activity. Neuron 72:231–243. https://doi.org/10.1016/j.neuron.2011.09.027

Iwai, Y., Honda, S., Ozeki, H., Hashimoto, M., and Hirase, H. 2011. A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neuroscience Research 70:124–127. https://doi.org/10.1016/j.neures.2011.01.007

Justice, J. B., Jr. 1993. Quantitative microdialysis of neurotransmitters. Journal of Neuroscience Methods 48:263–276. https://doi.org/10.1016/0165-0270(93)90097-B

Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., and Malinow, R. 2003. APP processing and synaptic function. Neuron 37:925–937. https://doi.org/10.1016/S0896-6273(03)00124-7

Kay, S. R., Fiszbein, A., and Opler, L. A. 1987. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13:261–276. https://doi.org/10.1093/schbul/13.2.261

Kehrer, C., Maziashvili, N., Dugladze, T., and Gloveli, T. 2008. Altered excitatory-inhibitory balance in the NMDA- hypofunction model of schizophrenia. Frontiers in Molecular Neuroscience 1:6. https://doi.org/10.3389/neuro.02.006.2008

Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., Rush, A. J., Walters, E. E., and Wang, P. S. 2003. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). Journal of the American Medical Association 289:3095–3105. https://doi.org/10.1001/jama.289.23.3095

Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., Cho, Y. K., et al. 2014. Independent optical excitation of distinct neural populations. Nature Methods 11:338–346. https://doi.org/10.1038/nmeth.2836

Kriks, S., Shim, J. W., Piao, J., et al. 2011. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551. https://doi.org/10.1038/nature10648

Kuhlman, S. J., and Huang, Z. J. 2008. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS ONE 3(4):e2005. https://doi.org/10.1371/journal.pone.0002005

Kumar, R., Lozano, A. M., Kim, Y. J., Hutchison, W. D., Sime, E., Halket, E., Lang, A. E. 1998. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 51:850–855. https://doi.org/10.1212/WNL.51.3.850

Lewis, D. A., Hashimoto, T., and Volk, D. W. 2005. Cortical inhibitory neurons and schizophrenia. Nature Reviews Neuroscience 6:312–324. https://doi.org/10.1038/nrn1648

Li, C., Pleil, K. E., Stamatakis, A. M., Busan, S., Vong, L., Lowell, B. B., Stuber, G. D., Kash, T. L. 2012. Presynaptic inhibition of GABA release in the BNST by kappa opioid receptor signaling. Biological Psychiatry 71(8):725–732. https://doi.org/10.1016/j.biopsych.2011.11.015

Li, Q., Ke, Y., Chan, D. C., Qian, Z. M., Yung, K. K., Ko, H., Arbuthnott, G. W., and Yung, W. H. 2012. Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex. Neuron 76:1030–1041. https://doi.org/10.1016/j.neuron.2012.09.032

Lieb, R. 2005. Anxiety disorders: clinical presentation and epidemiology; pp. 405–432 in: J. E. Barrett (ed.), Handbook of Experimental Pharmacology. Berlin: Springer-Verlag GmbH. https://doi.org/10.1007/3-540-28082-0_14

Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D., and Tsien, R. Y. 2013. ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience 16:1499–1508. https://doi.org/10.1038/nn.3502

Liske, H, Qian, X., Anikeeva, P., Deisseroth, K., and Delp, S. 2013. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2. Scientific Reports 3:3110. https://doi.org/10.1038/srep03110

Lobo, M. K. 2012. Lighting up the brain’s reward circuitry. Annals of the New York Academy of Sciences 1260:24–33. https://doi.org/10.1111/j.1749-6632.2011.06368.x

Lobo, M. K., Covington, H. E., III, Chaudhury, D., Friedman, A. K., Sun, H., Damez-Werno, D., Dietz, D. M., Zaman, S., Koo, J. W., Kennedy, P. J., Mouzon, E., Mogri, M., Neve, R. L., Deisseroth, K., Han, M. H., and Nestler, E. J. 2010. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–390. https://doi.org/10.1126/science.1188472

Luthi, A., and Luscher, C. 2014. Pathological circuit function underlying addiction and anxiety disorders. Nature Neuroscience 17(12):1635–1643. https://doi.org/10.1038/nn.3849

Marín, O. 2012. Interneuron dysfunction in psychiatric disorders. Nature Reviews Neuroscience 13:107–120. https://doi.org/10.1038/nrn3155

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and Wu, C. 2004. Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience 5:793–807. https://doi.org/10.1038/nrn1519

Markram, K., and Markram, H. 2010. The intense world theory — a unifying theory of the neurobiology of autism. Frontiers in Human Neuroscience 4:224. https://doi.org/10.3389/fnhum.2010.00224

Mattis, J., Tye, K. M., Ferenczi, E. A. et al. 2011. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods 9:159–172. https://doi.org/10.1038/nmeth.1808

Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., Schwalb, J. M., and Kennedy, S. H. 2005. Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660. https://doi.org/10.1016/j.neuron.2005.02.014

McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., and Bruchas, M. R. 2015. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron 87(3):605–620. https://doi.org/10.1016/j.neuron.2015.07.002

McCall, J. G., Siuda, E. R., Bhatti, D. L., Lawson, L. A., McElligott, Z. A., Stuber, G. D., and Bruchas, M. R. 2017. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife 6:e18247. https://doi.org/10.7554/eLife.18247

Mikhailova, M. A., Bass, C. E., Grinevich, V. P., Chappell, A. M., Deal, A. L., Bonin, K. D., Weiner, J. L., Gainetdinov, R. R., and Budygin, E. A. 2016. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors. Neuroscience 333:54–64. https://doi.org/10.1016/j.neuroscience.2016.07.006

Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A. M., Bamberg, E., Hegemannet, P. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398. https://doi.org/10.1126/science.1072068

Nagel, G., Brauner, M., Liewald, J. F., Adeishvili, N., Bamberg, E., and Gottschalk, A. 2005. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Current Biology 15(24):2279–2284. https://doi.org/10.1016/j.cub.2005.11.032

Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., and Bamberg, E. 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America 100:13940–13945. https://doi.org/10.1073/pnas.1936192100

Palop, J. J., and Mucke, L., 2010. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nature Neuroscience 13:812–818. https://doi.org/10.1038/nn.2583

Parsons, L. H., and Justice, J. B., Jr. 1992. Extracellular сoncentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. Journal of Neurochemistry 58:212–218. https://doi.org/10.1111/j.1471-4159.1992.tb09298.x

Partridge, J. G., Forcelli, P. A., Luo, R., Cashdan, J. M., Schulkin, J., Valentino, R. J., and Vicini, S. 2016. Stress increases GABAergic neurotransmission in CRF neurons of the central amygdala and bed nucleus stria terminalis. Neuropharmacology 107:239–250. https://doi.org/10.1016/j.neuropharm.2016.03.029

Rajasethupathy, P., Sankaran, S., Marshel, J. H., Kim, C. K., Ferenczi, E., Lee, S. Y., Berndt, A., Ramakrishnan, C., Jaffe, A., Lo, M., Liston, C., and Deisseroth, K. 2015. Projections from neocortex mediate top-down control of memory retrieval. Nature 526:653–659. https://doi.org/10.1038/nature15389

Rubenstein, J. L. 2010. Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Current Opinion in Neurology 23:118–123. https://doi.org/10.1097/WCO.0b013e328336eb13

Rubenstein, J. L., and Merzenich, M. M. 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain and Behavior 2:255–267. https://doi.org/10.1034/j.1601-183X.2003.00037.x

Russo, S. J., and Nestler, E. J. 2013. The brain reward circuitry in mood disorders. Nature Reviews. Neuroscience 14:609–625. https://doi.org/10.1038/nrn3381

Schneider, M. B., Gradinaru, V., Zhang, F., and Deisseroth, K. 2008. Controlling neuronal activity. American Journal of Psychiatry 165:562. https://doi.org/10.1176/appi.ajp.2008.08030444

Schultz, W. 1998. Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80:1–27. https://doi.org/10.1152/jn.1998.80.1.1

Seif, T., Chang, S. J., Simms, J. A., Gibb, S. L., Dadgar, J., Chen, B. T., Harvey, B. K., Ron, D., Messing, R. O., Bonci, A., and Hopf, F. W. 2013. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversionresistant alcohol intake. Nature Neuroscience 16:1094–1100. https://doi.org/10.1038/nn.3445

Selkoe, D., Mandelkow, E., and Holtzman D. 2012. Deciphering Alzheimer disease. Cold Spring Harbor Perspectives in Medicine 2:a011460. https://doi.org/10.1101/cshperspect.a011460

Seo, D-o., Funderburk, S. C., Bhatti, D. L., Motard, L. E., Newbold, D., Girven, K. S., et al. 2016. A GABAergic projection from the centromedial nuclei of the amygdala to ventromedial prefrontal cortex modulates reward behavior. The Journal of Neuroscience 36(42):10831–10842. https://doi.org/10.1523/JNEUROSCI.1164-16.2016

Siuda, E. R., Al-Hasani, R., McCall, J. G., Bhatti, D. L., and Bruchas, M. R. 2016. Chemogenetic and optogenetic activation of Gαs signaling in the basolateral amygdala induces acute and social anxiety-like states. Neuropsychopharmacology 41(8):2011–2023. https://doi.org/10.1038/npp.2015.371

Sparta, D. R., Jennings, J. H., Ung, R. L., and Stuber, G. D. 2013. Optogenetic strategies to investigate neural circuitry engaged by stress. Behavioural Brain Research 255:19–25. https://doi.org/10.1016/j.bbr.2013.05.007

Sohal, V. S. 2012. Insights into cortical oscillations arising from optogenetic studies. Biological Psychiatry 71:1039–1045. https://doi.org/10.1016/j.biopsych.2012.01.024

Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. 2009. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702. https://doi.org/10.1038/nature07991

Stefanik, M. T., Moussawi, K., Kupchik, Y. M., Smith, K. C., Miller, R. L., Huff, M. L., Deisseroth, K., Kalivas, P. W., and LaLumiere, R. T. 2013. Optogenetic inhibition of cocaine seeking in rats. Addiction Biology 18:50–53. https://doi.org/10.1111/j.1369-1600.2012.00479.x

Steinbeck, J. A., Choi, S. J., Mrejeru, A., et al. 2015. Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson’s disease model. Nature Biotechnology 33(2):204–209. https://doi.org/10.1038/nbt.3124

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., and Janak, P. H. 2013. A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience 16:966–973. https://doi.org/10.1038/nn.3413

Stuber, G. D., Britt, J. P., and Bonci, A. 2012. Optogenetic modulation of neural circuits that underlie reward seeking. Biological Psychiatry 71:1061–1067. https://doi.org/10.1016/j.biopsych.2011.11.010

Stuber, G. D., Sparta, D. R., Stamatakis, A. M., van Leeuwen, W. A., Hardjoprajitno, J. E., Cho, S., Tye, K. M., Kempadoo, K. A., Zhang, F., Deisseroth, K., et al. 2011. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475:377–380. https://doi.org/10.1038/nature10194

Tamas, G., Buhl, E. H., Lorincz, A., and Somogyi, P. 2000. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neuroscience 3:366–371. https://doi.org/10.1038/73936

Towne, C., and Thompson, K. R. 2016. Overview on research and clinical applications of optogenetics. Current Protocols in Pharmacology 75:11.19.1–11.19.21. https://doi.org/10.1002/cpph.13

Tsai, H. C., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., de Lecea, L., and Deisseroth, K. 2009. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324:1080–1084. https://doi.org/10.1126/science.1168878

Tye, K. M., and Deisseroth, K. 2012. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Reviews. Neuroscience 13:251–266. https://doi.org/10.1038/nrn3171

Tye, K. M., Mirzabekov, J. J., Warden, M. R., Ferenczi, E. A., Tsai, H., Finkelstein, J., Kim, S., Adhikari, A., Thompson, K. R., Andalman, A. S., et al. 2012. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–541. https://doi.org/10.1038/nature11740

Uhlhaas, P. J., and Singer, W. 2010. Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience 11:100–113. https://doi.org/10.1038/nrn2774

Vattikuti, S., and Chow, C. C. 2010. A computational model for cerebral cortical dysfunction in autism spectrum disorders. Biological Psychiatry 67:672–678. https://doi.org/10.1016/j.biopsych.2009.09.008

Vialou, V., Bagot, R. C., Cahill, M. E., Ferguson, D., Robison, A. J., Dietz, D. M., Fallon, B., Mazei-Robison, M., Ku, S. M., Harrigan, E., Winstanley, C. A., Joshi, T., Feng, J., Berton, O., and Nestler, E. J. 2014. Prefrontal cortical circuit for depression- and anxiety-related behaviors mediated by cholecystokinin: role of ΔfosB. Journal of Neuroscience 34(11):3878–3887. https://doi.org/10.1523/JNEUROSCI.1787-13.2014

Warden, M. R., Selimbeyoglu, A., Mirzabekov, J. J., Lo, M., Thompson, K. R., Kim, S. Y., Adhikari, A., Tye, K. M., Frank, L. M., and Deisseroth, K. 2012. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature 492(7429):428–432. https://doi.org/10.1038/nature11617

Weiss, F., and Porrino, L. J. 2002. Behavioral neurobiology of alcohol addiction: recent advances and challenges. Journal of Neuroscience 22:3332–3337. https://doi.org/10.1523/JNEUROSCI.22-09-03332.2002

Whittington, M. A., Traub, R. D., and Jefferys, J. G. 1995. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615. https://doi.org/10.1038/373612a0

Wightman, R. M., and Robinson, D. L. 2002. Transient changes in mesolimbic dopamine and their association with ‘reward’. Journal of Neurochemistry 82:721–735. https://doi.org/10.1046/j.1471-4159.2002.01005.x

Wightman, R. M., and Zimmerman, J. B. 1990. Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. Brain Research. Brain Research Reviews 15:135–144. https://doi.org/10.1016/0165-0173(90)90015-G

Witten, I. B., Lin, S. C., Brodsky, M., Prakash, R., Diester, I., Anikeeva, P., Gradinaru, V., Ramakrishnan, C., and Deisseroth, K. 2010. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330:1677–1681. https://doi.org/10.1126/science.1193771

Witten, I. B., Steinberg, E. E., Lee, S. Y., Davidson, T. J., Zalocusky, K. A., Brodsky, M., Yizhar, O., Cho, S. L., Gong, S., Ramakrishnan, C., Stuber, G. D., Tye, K. M., Janak, P. H., and Deisseroth, K. 2011. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72:721–733. https://doi.org/10.1016/j.neuron.2011.10.028

Xu, X., Ikrar, T., Sun, Y., Santos, R., Holmes, T. C., Francesconi, W., and Berton, F. 2016. High-resolution and cell-typespecific photostimulation mapping shows weak excitatory vs. strong inhibitory inputs in the bed nucleus of the stria terminalis. Journal of Neurophysioogy 115(6):3204–3216. https://doi.org/10.1152/jn.01148.2015

Yamamoto, K., Tanei, Z., Hashimoto, T., Wakabayashi, T., Okuno, H., Naka, Y., Yizhar, O., Fenno, L. E., Fukayama, M., Bito, H., Cirrito, J. R., Holtzman, D. M., Deisseroth, K., and Iwatsubo, T. 2015. Chronic optogenetic activation augments aβ pathology in a mouse model of Alzheimer disease. Cell Reports 11:859–865. https://doi.org/10.1016/j.celrep.2015.04.017

Yizhar, O. 2012. Optogenetic insights into social behavior function. Biological Psychiatry 71:1075–1080. https://doi.org/10.1016/j.biopsych.2011.12.029

Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M., and Deisseroth, K. 2011a. Optogenetics in neural systems. Neuron 71:9–34. https://doi.org/10.1016/j.neuron.2011.06.004

Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’Shea, D. J., Sohal, V. S., Goshen, I., Finkelstein, J., Paz, J. T., et al. 2011b. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178. https://doi.org/10.1038/nature10360

Ylinen, A., Soltész, I., Bragin, A., Penttonen, M., Sik, A., and Buzsáki, G. 1995. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5:78–90. https://doi.org/10.1002/hipo.450050110

Zhang, F., Vierock, J., Yizhar, O., Fenno, L. E., Tsunoda, S., Kianianmomeni, A., Prigge, M., Berndt, A., Cushman, J., Polle, J., Magnuson, J., Hegemann, P., and Deisseroth, K. 2011. The microbial opsin family of optogenetic tools. Cell 147:1446–1457. https://doi.org/10.1016/j.cell.2011.12.004

Zhang, F., Prigge, M., Beyrière, F., Tsunoda, S. P., Mattis, J., Yizhar, O., Hegemann, P., and Deisseroth, K. 2008. Redshifted optogenetic excitation: A tool for fast neural control derived from Volvox carteri. Nature Neuroscience 11:631–633. https://doi.org/10.1038/nn.2120

Zhang, F., Wang, L. P., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A., and Deisseroth, K. 2007. Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639. https://doi.org/10.1038/nature05744
Published
2018-05-04
How to Cite
Mikhailova, M., Deal, A., Budygin, E., & Gainetdinov, R. (2018). Optogenetics: Applications in neurobiology. Biological Communications, 62(4), 261–271. https://doi.org/10.21638/11701/spbu03.2017.405
Section
Review communication