Features of hemodynamics of pulmonary circulation during the diving reflex

  • Ekaterina Podyacheva Department of General Physiology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-0365-3301
  • Tatyana Zemlyanukhina Department of General Physiology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-2651-8521
  • Lavrentij Shadrin Department of Physical Culture and Sports, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-0199-4417
  • Tatyana Baranova Department of General Physiology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-0524-2933


The adaptive cardiovascular reactions of the human diving reflex were studied. The diving reflex was activated by submerging a face in cold water under laboratory conditions. Forty volunteers (aged 18–24) were examined. ECG, arterial blood pressure (ABP) and central blood flow were recorded by the impedance rheography method in resting state, during diving simulation (DS) and after apnea. During DS there is a statistically significant decrease in the dicrotic index (DCI), which reflects a decrease in the resistive vessel tone and as well as diastolic index (DSI), characterizing lung perfusion. A comparison of the latent periods (LP) of an increase in ABP and a drop in DCI showed that a decrease in pulmonary vascular tone develops faster than ABP begins to increase. The LP for lowering DCI is from 0.6 to 10 s; for an increase in ABP — from 6 to 30 s. A short LP for DCI and the absence of a correlation between a decrease in ABP and DCI suggests that a decrease in pulmonary vascular tone during DS occurs reflexively and independently of a change in ABP.


diving reflex, systemic circulation, pulmonary circulation, impedance rheography, plethysmography


Download data is not yet available.


Andersson, J. and Schagatay, E. 1998. Effects of lung volume and involuntary breathing movements on the human diving response. European Journal of Applied Physiology and Occupational Physiology 77(1–2):19–24. https://doi.org/10.1007/s004210050294

Andersson, J. P., Biasoletto-Tjellstrom, G., and Schagatay, E. K. 2008. Pulmonary gas exchange is reduced by the cardiovascular diving response in resting humans. Respiratory Physiology & Neurobiology 160(3):320–324. https://doi.org/10.1016/j.resp.2007.10.016

Andersson, J. P., Liner, M. H., Fredsted, A., and Schagatay, E. K. 2004. Cardiovascular and respiratory responses to apneas with and without face immersion in exercising humans. Journal of Applied Physiology 96(3):1005–1010. https://doi.org/10.1152/japplphysiol.01057.2002

Andersson, J. P., Liner, M. H., Runow, E., and Schagatay, E. K. 2002. Diving response and arterial oxygen saturation during apnea and exercise in breath-hold divers. Journal of Applied Physiology 93(3):882–886. https://doi.org/10.1152/japplphysiol.00863.2001

Baranova, T. I. 2004. Characteristics of the human cardiovascular system in the human diving response. Russian Journal of Physiology 90:20–31.

Baranova, T. I., Berlov, D. N., Glotov, O. S., Korf, E. A., Minigalin, A. D., Mitrofanova, A. V., Ahmetov, I. I., and Glotov, A. S. 2017. Genetic determination of the vascular reactions in humans in response to the diving reflex. American Journal of Physiology-Heart and Circulatory Physiology 312(3):H622–H631. https://doi.org/10.1152/ajpheart.00080.2016

Butler, P. J. and Jones, D. R. 1997. Physiology of diving of birds and mammals. Physiological Reviews 77(3):837–899. https://doi.org/10.1152/physrev.1997.77.3.837

Campbell, L. B., Gooden, B. A., Lehman, R. G., and Pym, J. 1969. Simultaneous calf and forearm blood flow during immersion in man. Australian Journal of Experimental Biology and Medical Science 47(6):747–754. https://doi.org/10.1038/icb.1969.171

Dawson, C. A. 1984. Role of pulmonary vasomotion in physiology of the lung. Physiological Reviews 64(2):544–616. https://doi.org/10.1152/physrev.1984.64.2.544

Elsner, R. W. 1970. Diving mammals. Science Journal 6(4):69–74.

Elsner, R. W., Franklin, D. L., and Vancitters, R. L. 1964. Cardiac output during diving in an unrestrained sea lion. Nature 202:809–810. https://doi.org/10.1038/202809a0

Elsner, R. W., Garey, W. F., and Scholander, P. F. 1963. Selective ischemia in diving man. American Heart Journal 65:571–572. https://doi.org/10.1016/0002-8703(63)90110-8

Ferrigno, M., Hickey, D. D., Liner, M. H., and Lundgren, C. E. 1987. Simulated breath-hold diving to 20 meters: cardiac performance in humans. Journal of Applied Physiology 62(6):2160–2167. https://doi.org/10.1152/jappl.1987.62.6.2160

Galantsev, V. P. 1977. The evolution of adaptations of diving animals. L: Nauka. (In Russian)

Galantsev, V. P. 1982. Physiological adaptations of diving mammals. Ecological physiology of animals. (In Russian)

Galantsev, V. P. 1986. Adaptations of the cardiovascular system of secondary aquatic amniot. L: Leningrad State University. (In Russian)

Galantsev, V. P., Baranova,T. I., Perepelitsa, V. A., Petukhova, N. V., and Yanvareva, I. N. 1995. Dependence of adaptive cardiovascular reactions to cold hypoxic effects on the psychophysiological status of a human. Russian Journal of Physiology 81(5):89–92.

Glotov, A. S., Ivashchenko, T. E., Obraztsova, G. I., Nasedkina, T. V., and Baranov, V. S. 2007. Renin-angiotensin and kinin-bradykinin genes polymorphism effects on permanent arterial hypertension in children. Molecular Biology 41:18–25. (In Russian)

Gooden, B. A. 1994. Mechanism of the human diving response. Integrative Physiological and Behavioral Science 29(1):6–16. https://doi.org/10.1007/bf02691277

Heusser, K., Dzamonja, G., Tank, J., Palada, I., Valic, Z., Bakovic, D., Obad, A., Ivancev, V., Breskovic, T., Diedrich, A., Joyner, M. J., Luft, F. C., Jordan, J., and Dujic, Z. 2009. Cardiovascular regulation during apnea in elite divers. Hypertension 53(4):719–724. https://doi.org/10.1161/HYPERTENSIONAHA.108.127530

Ilardo, M. and Nielsen, R. 2018. Human adaptation to extreme environmental conditions. Current Opinion in Genetics & Development 53:77–82. https://doi.org/10.1016/j.gde.2018.07.003

Irving, L. 1963. Bradycardia in human divers. Journal of Applied Physiology 18(3):489–491. https://doi.org/10.1152/jappl.1963.18.3.489

Korpas, D., Halek, J., and Dolezal, L. 2009. Parameters describing the pulse wave. Physiological Research 58(4):473–479.

Liner, M. H. and Andersson, J. P. 2008. Pulmonary edema after competitive breath-hold diving. Journal of Applied Physiology 104(4):986–990. https://doi.org/10.1152/japplphysiol.00641.2007

McCulloch, P. F., Lahrman, K. A., DelPrete, B., and DiNovo, K. M. 2018. Innervation of the nose and nasal region of the rat: Implications for initiating the mammalian diving response. Frontiers in Neuroanatomy 12:85. https://doi.org/10.3389/fnana.2018.00085

Morman, D. and Heller, L. 2000. Physiology of the cardiovascular system. Piter, St. Petersburg. (In Russian)

Palko, T. 2007. Impedance rheography for systemic and pulmonary circulation study and clinical application. IFMBE Proceedings 17:608–611. https://doi.org/10.1007/978-3-540-73841-1_157

Ponganis, P. J. 2011. Diving mammals. Comprehensive Physiology 1(1):447–465. https://doi.org/10.1002/cphy.c091003

Ramirez, J. M., Folkow, L. P., and Blix, A. S. 2007. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annual Review of Physiology 69:113–143. https://doi.org/10.1146/annurev.physiol.69.031905.163111

Ronkin, M. A. and Ivanov, S. G. 1997. Rheography in clinical practice. Medicine, Moscow. (In Russian)

Scholander, P. F., Hammel, H. T., Lemessurier, H., Hemmingsen, E., and Garey, W. 1962. Circulatory adjustment in pearl divers. Journal of Applied Physiology 17:184–190. https://doi.org/10.1152/jappl.1962.17.2.184

Thompson, D. and Fedak, M. A. 1993. Cardiac responses of grey seals during diving at sea. Journal of Experimental Biology 174:139–154.

Vaillancourt, M., Chia, P., Sarji, S., Nguyen, J., Hoftman, N., Ruffenach, G., Eghbali, M., Mahajan, A., and Umar, S. 2017. Autonomic nervous system involvement in pulmonary arterial hypertension. Respiratory Research 18(1):201. https://doi.org/10.1186/s12931-017-0679-6

West, J. B. and Mathieu-Costello, O. 1992. Stress failure of pulmonary capillaries: role in lung and heart disease. The Lancet 340(8822):762–767. https://doi.org/10.1016/0140-6736(92)92301-u

West, J. B., Tsukimoto, K., Mathieu-Costello, O., and Prediletto, R. 1991. Stress failure in pulmonary capillaries. Journal of Applied Physiology 70(4):1731–1742. https://doi.org/10.1152/jappl.1991.70.4.1731

How to Cite
Podyacheva, E., Zemlyanukhina, T., Shadrin, L., & Baranova, T. (2020). Features of hemodynamics of pulmonary circulation during the diving reflex. Biological Communications, 65(3), 244–251. https://doi.org/10.21638/spbu03.2020.304
Full communications