Effects of early sensory deprivation on spatial learning in adult rats

  • Natalia Kurzina Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-9205-713X
  • Irina Aristova Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation
  • Anna Volnova Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-0724-887X


Following vibrissae removal in early ontogenesis from P1 (post-natal day 1) to P30, three-month old rats were trained to run for food in an 8-arm radial maze. Training started at the age of three months. Adult rats demonstrated ability to perform the behavioral task; however, their performance was not as good as in the control group. Our findings revealed the differences in the rats exploratory strategy and key behavioral tactics of entering the maze arms at a certain angle. The results show that active vibrissae sensing plays an important role in shaping rat behavioral tactics during spatial learning in the 8-arm radial maze.


ontogenesis, behavior, vibrissae, sensory deprivation, spatial learning


Download data is not yet available.


Allen C. B., Celikel T., and Feldman D. E. 2003. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo. Nature Neuroscience 6(3):291–299. https://doi.org/10.1038/nn1012

Arkley K., Grant R. A., Mitchinson B., and Prescott T. J. 2014. Strategy change in vibrissal active sensing during rat locomotion. Current Biology 24(13):1507–1512. https://doi.org/10.1016/j.cub.2014.05.036

Batuev A. S., Kurzina N. P., and Paranina I. N. 2007. Dorsolateral thalamic nucleus destruction influence on alcoholic rat behavior in a radial maze. Biological Communications 3(2):76–85.

Brecht M., Krauss A., Muhammad S., Sinai-Esfahani L., Bellanca S., and Margrie T. W. 2004. Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. Journal of Comparative Neurology 479(4):360–373. https://doi.org/10.1002/cne.20306

Erzurumlu R. S. 2010. Critical period for the whisker-barrel system. Experimental Neurology 222(1):10–12. https://doi.org/10.1016/j.expneurol.2009.12.025

Feldmeyer D., Brecht M., Helmchen F., Petersen C. C., Poulet J. F., Staiger J. F., Luhmann H. J., and Schwarz C. 2013. Barrel cortex function. Progress in Neurobiology 103:3–27. https://doi.org/10.1016/j.pneurobio.2012.11.002

Ganguly K., and Kleinfeld D. 2004. Goal-directed whisking increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat. Proceedings of the National Academy of Sciences, USA 101(33):12348–12353. https://doi.org/10.1073/pnas.0308470101

Grant R. A., Mitchinson B., and Prescott T. J. 2012. The development of whisker control in rats in relation to locomotion. Developmental Psychobiology 54(2):151–168. https://doi.org/10.1002/dev.20591

Grigoryan G., Hodges I. H., and Gray J. 2005. Effects of vibrissae removal on search accuracy in the water maze. Neuroscience and Behavioral Physiology 35(2):133–137. https://doi.org/10.1007/s11055-005-0052-y

Hobbs J. A., Towal R. B., and Hartmann M. J. 2015. Spatiotemporal patterns of contact across the rat vibrissal array during exploratory behavior. Frontiers in Behavioral Neuroscience 9:356. https://doi.org/10.3389/fnbeh.2015.00356

Huet L. A, Schroeder C. L, and Hartmann M. J. 2015. Tactile signals transmitted by the vibrissa during active whisking behavior. Journal of Neurophysiology 113(10):3511–3518. https://doi.org/10.1152/jn.00011.2015

Knutsen P. M., Pietr M., and Ahissar E. 2006. Haptic object localization in the vibrissal system: behavior and performance. Journal of Neuroscience 26(33):8451–8464. https://doi.org/10.1523/JNEUROSCI.1516-06.2006

Korneeva E. V., Aleksandrov L. I., Golubeva T. B., and Raevskii V. V. 2010. Effects of visual deprivation on the development of auditory sensitivity during formation of the freezing reaction in pied flycatcher nestlings. Neuroscience and Behavioural Physiology 40(5):479–482. https://doi.org/10.1007/s11055-010-9284-6

Korneeva E. V. and Shuleĭkina K. V. 1999. The morphogenesis of Wulst neurons in the pied flycatcher under conditions of limited afferent inflow. Zhurnal Vysshey Nervnoy Deyatel’nosti I. P. Pavlova 49(3):495–504.

Kurzina N. P., Batuev A. S., and Paranina I. N. 1999. The influence of alcohol consumption on rat behavior in 8-arm radial maze. Zhurnal Vysshey Nervnoy Deyatel’nosti I. P. Pavlova 49(6):1027–1237.

Kurzina N., Aristova I., and Volnova A. 2018. Lateralization of motor reactions and formation of behavioural tactics during learning in the eight-arm radial maze in adolescent and adult rats. Laterality 23(1):101–112. https://doi.org/10.1080/1357650X.2017.1316284

Mehta S. B., Whitmer D., Figueroa R., Williams B. A., and Kleinfeld D. 2007. Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biology 5(2):309–322. https://doi.org/10.1371/journal.pbio.0050015

Mitrukhina O., Suchkov D., Khazipov R., and Minlebaev M. 2015. Imprecise whisker map in the neonatal rat barrel cortex. Cerebral Cortex 25(10):3458–3467. https://doi.org/10.1093/cercor/bhu169

Papaioannou S., Brigham L., and Krieger P. 2013. Sensory deprivation during early development causes an increased exploratory behavior in a whisker-dependent decision task. Brain and Behavior 3(3):24–34. https://doi.org/10.1002/brb3.102

Pereira A., Ribeiro S., Wiest M., Moore L. C., Pantoja J., Lin S. C., and Nicolelis M. A. 2007. Processing of tactile information by the hippocampus. Proceedings of the National Academy of Sciences, USA 104(46):18286–18291. https://doi.org/10.1073/pnas.0708611104

Petersen C. C. 2007. The functional organization of the barrel cortex. Neuron 56(2):339–355. https://doi.org/10.1016/j.neuron.2007.09.017

Petersen C. C., Brecht M., Hahn T. T., and Sakmann B. 2004. Synaptic changes in layer 2/3 underlying map plasticity of developing barrel cortex. Science 304(5671):739–742. https://doi.org/10.1126/science.1096750

Raevskiĭ V. V., Aleksandrov L. I., Vorob’eva A. D., Golubeva T. B., Korneeva E. V., Kudriashov I. E., Kudriashova I. V., Pigareva M. L., Sitnikova E. I., and Stashkevich I. S. 1997. Sensory information - an important factor in ontogeny. Zhurnal Vysshey Nervnoy Deyatel’nosti I. P. Pavlova 47(2):299–307.

Sadaka Y., Lev D. L., Weinfeld L., and White E. L. 2000. Effects of sensory deprivation on the development of asymmetrical synapses in mouse barrels. Somatosensory and Motor Research 17(3):245–254.

Shishelova A. Y., Aliev R. R., and Raevskii V. V. 2016. Effect of early sensory experience on the exploratory activity in adult animals. Doklady Biological Sciences 468(1):101–103. https://doi.org/10.1134/S0012496616030029

Shishelova A. Y. and Raevskii V. V. 2010. Effects of vibrissectomy during early postnatal ontogenesis in rat pups on behavioral development. Neuroscience and Behavioral Physiology 40(6):671–677. https://doi.org/10.1007/s11055-010-9310-8

Shishelova A. Y. 2006. Effect of whisker removal on defensive behavior in rats during early ontogenesis. Neuroscience and Behavioral Physiology 36(8):883–888. https://doi.org/10.1007/s11055-006-0102-0

Sitnikova E. Y. 2001. Vibrissectomy during early ontogenesis in rats disturbs the functional properties of cortical projection neurons. Neuroscience and Behavioral Physiology 31(2):153–156.

Sitnikova E. Y. 2010. The Effect of Early Sensory Experience on the Development of Functional Properties of Neurons in the Area of Vibrissal Projection in Rats’ Neocortex. Zhurnal Vysshey Nervnoy Deyatel’nosti I. P. Pavlova 60(6):719–729.

Symons L. A. and Tees R. C. 1990. An examination of the intramodal and intermodal behavioral consequences of long-term vibrissae removal in rats. Developmental Psychobiology 23(8): 849–867. https://doi.org/10.1002/dev.420230807
How to Cite
Kurzina, N., Aristova, I., & Volnova, A. (2018). Effects of early sensory deprivation on spatial learning in adult rats. Biological Communications, 62(4), 256–260. https://doi.org/10.21638/11701/spbu03.2017.404
Full communications