The ideas of N.I. Vavilov and current problems of crop genetics

  • Irina Anisimova Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0003-0474-8860
  • Evgeny Radchenko Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Bol'shaya Morskaya ul., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0002-3019-0306

Abstract

Some results of the studies of plant genetic resources held in the VIR Department of Genetics are discussed in light of N. I. Vavilov’s theories of natural plant immunity, homologous series in hereditary variability, and interspecific hybridization. The long-term investigations resulted in identifying bread wheat, cultivated barley, oat, rye and sorghum accessions with new effective genes for resistance to diseases and pests. The large-scale immunological screening has revealed a narrow genetic diversity in wheat and barley for resistance to biotic and abiotic stressors. On the example of sunflowers, the significance of seed storage proteins for solving problems of domestication and introgressive hybridizations is demonstrated.

Keywords:

N. I. Vavilov’s laws, cultivated plants, genetic diversity, resistance to harmful organisms, economically valuable characters, genetic control, domestication, interspecific hybridization, seed proteins, comparative genomic approach

Downloads

Download data is not yet available.
 

References

Abdullaev, R. A., Lebedeva T. V., Alpatieva, N. V., Yakovleva, O. V., Kovaleva, O. N., Radchenko, E. E., Anisimova, I. N., Batasheva, B. A., Karabitsina, Yu. I., and Kuznetsova, E. B. 2019. Genetic diversity of barley accessions from Ethiopia for powdery mildew resistance. Russian Agricultural Sciences 45(3):232–235. https://doi.org/10.3103/S1068367419030029

Abdullaev, R. A., Alpatieva, N. V., Zveinek, I. A., Batasheva, B. A., Anisimova. I. N., and Radchenko, E. E. 2017. Diversity of Dagestan barleys for the duration of the period between shooting and earing stages and alleles in the Ppd-H1 and Ppd-H2 loci. Russian Agricultural Science 43(2):99–103. https://doi.org/10.3103/S1068367417020021

Anisimova, I. N. and Gavrilyuk, I. P. 1989. Heterogenety and polymorphism of 11S globulin in sunflower seeds. Soviet Genetics 25(7):1215–1233. (In Russian)

Anisimova, I. N., Georgieva-Todorova, J., and Vassileva, R. 1993. Variability of the major seed globulin in the genus Helianthus L. Helia 16(18):49–58.

Anisimova, I. N., Fido, R. J., Tatham, A. S., and Shewry, P. R. 1995. Genotypic variation and polymorphism of 2S albumins of sunflower. Euphytica 83:15–23. https://doi.org/10.1007/BF01677856

Anisimova, I. N., Konarev, Al. V., Gavrilova, V.A., Fido, R. F., Thatam, A. S., and Shewry, P. R. 2003. Polymorphism and inheritance of methionine-rich 2S albumins in sunflower. Euphytica 129(1):99–107. https://doi.org/10.1023/A:1021562712945

Anisimova, I. N., Gavrilova, V. A., Rozhkova, V. T., Loskutov, A. V., and Tolmachev, V. V. 2004. Polymorphism and inheritance of seed storage proteins in sunflower. Russian Journal of Genetics 40(9):995–1002. https://doi.org/10.1023/B:RUGE.0000041378.51180.0b

Anisimova, I. N., Tumanova, L. G., Gavrilova, V. A., Dyagileva, A V., Pasha, L. I., Mitin, V. A., and Timofeyeva, G. I. 2009. Genomic instability in sunflower interspecific hybrids. Russian Journal of Genetics 45(8):934–943. https://doi.org/10.1134/S1022795409080079

Anisimova, I. N., Gavrilova, V. A., Rozhkova, V. T., Port, A. I., Timofeeva, G. I., and Duka, M. V. 2011. Genetic diversity of sources of sunflower pollen fertility restorer genes. Russian Agricultural Sciences 37:192. https://doi.org/10.3103/S1068367411030025

Anisimova, I. N., Alpatieva, N. V., Rozhkova, V. T., Kuznetsova, E. B., Pinaev, A. G., and Gavrilova, V. A. 2014. Polymorphism among RFL-PPR homologs in sunflower (Helianthus annuus L.) lines with varying ability for the suppression of the cytoplasmic male sterility phenotype. Russian Journal of Genetics 50(7):712–721. https://doi.org/10.1134/S1022795414070023

Anisimova, I. N., Alpatieva, N. V., Goryunova, S. V., Goryunov, D. V., Konarev, Al. V., Gavrilova, V. A., and Radchenko, E. E. 2018. Structural variability of sunflower gene for methionine-rich albumin SFA8. Proceedings of Applied Botany, Genetics and Breeding 179(4):91–103. https://doi.org/10.30901/2227-8834-2018-4-91-103

Anisimova, I. N., Alpatieva, N. V., Karabitsina, Y. I., and Gavrilenko, T. A. 2019. Nucleotide sequence polymorphism in the RFL-PPR genes of potato. Journal of Genetics 98:87. https://doi.org/10.1007/s12041-019-1130-1

Baute, G. J., Kane, N. C., Grassa, C. J., Lai, Z., and Rieseberg, L. H. 2015. Genome scans reveal candidate domestication and improvement genes in cultivated sunflower, as well as post-domestication introgression with wild relatives. New Phytologist 206:830–838. https://doi.org/10.1111/nph.13255

Bogue, M. A., Vonder Haar, R. A., Nuccio, M., Griffing, L. R., and Thomas, T. L. 1990. Developmentally regulated expression of a sunflower 11S seed protein gene in transgenic tobacco. Molecular and General Genetics 222(1):49–57. https://doi.org/10.1007/BF00283022

Chapman, V. A., Pashley, C. H., Wenzler, J., Hvala, J., Tang, S., Knapp, S. J., and Burke, J. M. 2018. A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). The Plant Cell 20:2931–2945. https://doi.org/10.1105/tpc.108.059808

Christov, M. 2013. Contribution of interspecific and intergeneric hybridization to sunflower breeding. Helia 36(58):1–18. https://doi.org/10.2298/HEL1358001A

Cockerham, G. 1970. Genetical studies on resistance to potato viruses X and Y. Heredity 25(3):309–348. https://doi.org/10.1038/hdy.1970.35

Flor, H. H. 1971. Current status of the gene-for-gene concept. Annual Review of Phytopathology 9:275–296. https://doi.org/10.1146/annurev.py.09.090171.001423

Fry, W. E., Goodwin, S. B., Matuszak, J. M., Spielman, L. J., Milgroom, M. G., and Drenth, A. 1992. Population genetics and intercontinental migrations of Phytopthora infestans. Annual Review of Phytopathology 30:107–129. https://doi.org/10.1146/annurev.py.30.090192.000543

Fujii, S., Bond, Ch. S., and Small, I. D. 2011. Selection patterns on restorer-like genes reveals a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proceedings of the National Academy of Sciences USA 108(4):1723–1728. https://doi.org/10.1073/pnas.1007667108

Gavrilova, V. A. and Anisimova, I. N. 2003. Genetics of cultivated plants. St. Petersburg, VIR. 186 p. (In Russian)

Gavrilova, V. A., Rozhkova, V. T., and Anisimova, I. N. 2014. Sunflower genetic collection at the Vavilov Institute of Plant Industry. Helia 37(60):1–16. https://doi.org/10.1515/helia-2014-0001

Gavrilova, V. A. and Anisimova, I. N. 2017. Genealogy of the sunflower lines created on the basis of Russian varieties. Helia 40(67):133–146. https://doi.org/10.1515/helia-2017-0025

Goncharov, N. 2013. Domestication of plants. Vavilov Journal of Genetics and Breeding 17(4/2):884–899. (In Russian)

Goryunov, D. V., Anisimova, I. N., Gavrilova, V. A., Chernova, A. I., Sotnikova, E. A., Martynova, E. U., Boldyrev, S. V., Ayupova, A. F., Gubaev, R. F., Mazin. P. V., Gurchenko, E. A., et al., Shumskiy, A. A., Petrova, D. A., Garkusha, S. V., Mukhina, Z. M., Benko, N. I., Demurin, Y. N., Khaitovich, P. E., and Goryunova, S. V. 2019. Association mapping of fertility restorer gene for CMS PET1 in sunflower. Agronomy 9(2):49. https://doi.org/10.3390/agronomy9020049

Jordan, D. R., Mace, E. S., Henzell, R. G., Klein, P. E., and Klein, R. R. 2010. Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theoretical and Applied Genetics 120(7):1279–1287. https://doi.org/10.1007/s00122-009-1255-3

Klein, R. R., Klein, P. E., Mullet, J. E., Minx, P., Rooney, W. L., and Schertz K. F. 2005. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the collinear region of rice chromosome 12. Theoretical and Applied Genetics 111(6):994–1012. https://doi.org/10.1007/s00122-005-2011-y

Kolesova, M. A. and Tyryshkin, L. G. 2018. Inheritance of effective juvenile leaf rust resistance in six accessions of Aegilops speltoides Tausch. Proceedings on Applied Botany, Genetics and Breeding 179(4):105–110. https://doi.org/10.30901/2227-8834-2018-4-104-110 (In Russian)

Konarev, A. V. 2006. Utilization of molecular markers in solving problems of plant genetic resources and breeding. Agrarian Russia 6:4–22. (In Russian)

Kortt, A. A., Caldwell, J. B., Lilley, G. G., Higgins, T. J. V. 1991. Amino acid cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.). European Journal of Biochemistry 195(2):329–334. https://doi.org/10.1111/j.1432-1033.1991.tb15710.x

Lebedeva, T. V. and Peusha, H. O. 2006. Genetic control of the wheat Triticum monococcum L. resistance to powdery mildew. Russian Journal of Genetics 42(1):60–66. https://doi.org/10.1134/S102279540601008X

Lurin, C., Andres, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyere, C., Caboche, M., Debast, C., Gualberto, J., Hoffmann, B., Lecharny, A., Le Ret, M., Martin-Magniette, M. L., .Mireau, H., Peeters, N., Renou, J. P., Szurek, B., Taconnat, L., and Small I. 2004. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. The Plant Cell 16(8):2089–2103. https://doi.org/10.1105/tpc.104.022236

Madugula, P., Uttam, A. G., Tonapi, V. A., and Ragimasalawada, M. 2018. Fine mapping of Rf2, a major locus controlling pollen fertility restoration in sorghum A1 cytoplasm, encodes a PPR gene and its validation through expression analysis. Plant Breeding 137(2):148–161. https://doi.org/10.1111/pbr.12569

Mandel, J. R., McAssey, E. V., Nambeesan, S., Garcia-Navarro, and E., Burke, J. M. 2014. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.). PLoS ONE 9(6):e99620. https://doi.org/10.1371/journal.pone.0099620

Mc Clintock, B. 1984. The significance of responses of the genome to challenge. Science 226(4676):792–801. https://doi.org/10.1126/science.15739260

Megías, C., Pedroche, J., Yust, M. D. M., Alaiz, M., Girón-Calle, J., Millán, F., and Vioque, J. 2009. Stability of sunflower protein hydrolysates in simulated gastric and intestinal fluids and Caco-2 cell extracts. LWT — Food Science and Technology 42(9):1496–1500. https://doi.org/10.1016/j.lwt.2009.04.008

Munoz, F. J., Plaisted, R. L., and Thurston, H. D. 1975. Resistance to potato virus Y in Solanum tuberosum spp. andigena. American Potato Journal 52(4):107–115. https://doi.org/10.1007/BF02852043

Radanović, A., Miladinović, D., Cvejić, S., Jocković, M., and Jocić, S. 2018. Sunflower genetics from ancestors to modern hybrids — A Review. Genes 9:528. https://doi.org/10.3390/genes9110528

Radchenko, E. E. 2011. Resistance of Triticum species to cereal aphids. Czech Journal of Genetics and Plant Breeding 47(Special issue):67–70. https://doi.org/10.3390/10.17221/3257-CJGPB

Radchenko, E. E. 2000. Identification of genes for resistance to greenbug in sorghum. Russian Journal of Genetics 36(4):408–417.

Radchenko, E. E. 2006. Inheritance of greenbug resistance in several forms of grain sorghum and sudangrass. Russian Journal of Genetics 42(1):55–59. https://doi.org/10.1134/S1022795406010078

Radchenko, E. E., Kuznetsova, T. L., Chumakov, M. A., and Loskutov, I. G. 2018. Greenbug (Schizaphis graminum) resistance in oat (Avena spp.) landraces from Asia. Genetic Resources and Crop Evolution 65(2):571–576. https://doi.org/10.1007/s10722-017-0554-9

Radchenko, E. E., Kuznetsova, T. L., Zveinek, I. A., and Kovaleva, O. N. 2014. Greenbug resistance in barley accessions from East and South Asia. Russian Agricultural Science 40(2):117–120. https://doi.org/10.3103/S1068367414020177

Radchenko, E. E. and Tyryshkin, L. G. 2004. Components of the greenbug (Schizaphis graminum Rond.) resistance in wheat and barley somaclonal variants. Cereal Research Communications 32(2):255–258.

Radchenko, E. E. and Zubov, A. A. 2007. Genetic diversity of sorghum in greenbug resistance. Russian Agricultural Science 33(4):223–225. https://doi.org/10.3103/S1068367407040039

Rigin, B. V. 2006. Trofim Yakovlevich Zarubailo and genetics in the N.I. Vavilov All-Russian Institute of Plant Industry (to the 100th birthday). VOGIS Herald 10(3):594–601. (In Russian)

Rigin, B. V. and Yakovleva, O. V. 2006. Genetic analysis of toxic aluminium ion tolerance in barley. Russian Journal of Genetics 42(3):301–305. https://doi.org/10.1134/S1022795406030100

Rigin, B. V., Zuev, E. V., Tyunin, V. A., Shreider, E. R., Pyzhenkova, Z. S., and Matvienko, I. I. 2018. Breeding and genetic aspects of creating productive forms of fast-developing spring bread wheat. Proceedings on Applied Botany, Genetics and Breeding 179(3):194–202. https://doi.org/10.30901/2227-8834-2018-3-194-202 (In Russian)

Shchibrya, N. A. 1938. Crossing Jerusalem artichoke (Helianthus tuberosus L.) with sunflower (Helianthus annuus L.) Proceedings of the USSR Academy of Sciences 11(5):189–192. (In Russian)

Shaposhnikov, G. Kh. 1967. Evolution of aphids related with specialization and change of the hosts. Extended Abstract of Doctor of Science Dissertation. Leningrad. 41 p. (In Russian)

Shewry, P. R., Napier, J. A., and Thatam, A. 1995. Seed storage proteins: structures and biosynthesis. The Plant Cell 7(7):945–956. https://doi.org/10.1105/tpc.7.7.945

Solodukhina, O. V. 2002. Genetic characterization of rye accessions with regard to leaf rust resistance. Russian Journal of Genetics 38(4):399–407. https://doi.org/10.1023/A:1015202303392

Solodukhina, O. V. 2003. The genetic basis of breeding winter rye for resistance to rust and powdery mildiew. Extended Abstract of Doctor of Science Dissertation. St. Petersburg. 36 p. (In Russian)

Sun, J., Hao, H. Z., Nie, L., Yi, J., and Zang, Q.-L. 2015. The intron in an albumin gene from sunflower increases expression of SFA8. In: H. Budak, G. Spangenberg (eds.) Molecular Breeding of Forage and Turf, pp. 183–191. https://doi.org/10.1007/978-3-319-08714-6_16

Sykes, T., Yates, S., Nagy, I., Asp T., Small, I., and Studer, B. 2017. In silico identification of candidate genes for fertility restoration in cytoplasmic male sterile perennial ryegrass (Lolium perenne L.). Genome Biology and Evolution 9(2):351–362. https://doi.org/10.1093/gbe/evw047

Tyryshkin, L. G. and Shevchenko, D. N. 1994. Somaclonal variation of barley to diseases resistance. Plant Science 31(7–10):166–168.

Tyryshkin, L. G., Gultyaeva, E. I., Aplpatieva, N. V., and Kramer, I. 2006. Identification of effective leaf rust resistance genes in wheat (Triticum aestivum) using STS markers. Russian Journal of Genetics 42(6):662–666. https://doi.org/10.1134/S1022795406060111

Tyryshkin, L. G. 2007. The genetic diversity of wheat and barley by effective disease resistance and the possibility of its broadening. Extended Abstract of Doctor of Science Dissertation. St. Petersburg. 40 p. (In Russian)

Vonder Haar, R. A., Allen, R. D., Cohen, E. A., Nessler, C. L., and Thomas, T. L. 1988. Organization of the sunflower 11S storage protein gene family. Gene 74(2):433–443. https://doi.org/10.1016/0378-1119(88)90176-X

Vavilov, N. I. 1913. The facts about the resistance of bread cereals to parasitic fungi. Trudy selektsionnoy stantsii pri Moskovskov selskokhoziaistvennom institute 1:1–110. (In Russian)

Vavilov, N. I. 1935. The law of homologous series in hereditary variability. Theoretical foundations of plant breeding. General plant breeding. V. 1, pp. 75–128. (In Russian)

Vavilov, N. I. 1964. Laws of natural immunity of plants to infectious diseases. Keys to finding immune forms. Selected works. Vol. 4. Moscow-Leningrad, pp. 430–488. (In Russian)

Vavilov, N. I. 1987. Theoretical bases of breeding. M.: Nauka, 511 p. (In Russian)

Yakovleva, O. V. 2018. Phytotoxicity of aluminum ions. Proceedings on Applied Botany, Genetics and Breeding 179(3):315–331. https://doi.org/10.30901/2227-8834-2018-3-315-331 (In Russian)

Zoteyeva, N., Chrzanowska, M., Flis, B., and Zimnoch-Guzowska, E. 2012. Resistance to pathogens of the potato accessions from the collection of N. I. Vavilov Institute of Plant Industry (VIR). American Journal of Potato Research 89(4):277–293. https://doi.org/10.1007/s12230-012-9252-5

Zoteyeva, N., Mezaka, I., Vilcâne, D., Carlson-Nilsson, U., Skrabule, I., and Rostoks, N. 2014. Assessment of genes R1 and R3 conferring resistance to late blight and of gene Rysto conferring resistance to Potato Virus Y in two wild species accessions and their hybrid progenies. Proceedings of the Latvian Academy of Sciences, Section B 68(3/4):133–141. https://doi.org/10.2478/prolas-2014-0015

Published
2020-03-27
How to Cite
Anisimova, I., & Radchenko, E. (2020). The ideas of N.I. Vavilov and current problems of crop genetics. Biological Communications, 65(1), 3–14. https://doi.org/10.21638/spbu03.2020.101
Section
Review communications