The genes determining synthesis of pigments in cotton

Authors

  • Aleksandra Mikhailova Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya Str., 42–44, Saint Petersburg, 190000, Russian Federation https://orcid.org/0000-0003-4565-1539
  • Ksenia Strygina Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya Str., 42–44, Saint Petersburg, 190000, Russian Federation; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Pr. Akademika Lavrentyeva, 10, Novosibirsk, 630090, Russian Federation https://orcid.org/0000-0001-6938-1348
  • Elena Khlestkina Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya Str., 42–44, Saint Petersburg, 190000, Russian Federation; Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Pr. Akademika Lavrentyeva, 10, Novosibirsk, 630090, Russian Federation https://orcid.org/0000-0002-8470-8254

DOI:

https://doi.org/10.21638/spbu03.2019.205

Abstract

Naturally coloured cotton is environmentally friendly, since bleaching and chemical dyeing are not needed during textile production. Studying molecular-genetic mechanisms underpinning pigment production may facilitate breeding cotton with coloured fibre. In the current review we summarize the known data on structural and regulatory genes involved in biosynthesis of flavonoid pigments proanthocyanidins (PAs) in brown and caffeic acid (CA) in green fibre. The first chapter considers the first studies on fibre cotton inheritance, from the beginning of the last century. Then, we briefly review the biochemical and physico-chemical methods proving the presence of PAs in brown fibre and derivatives of CA in green cotton fibre. The biochemical analysis of coloured cotton fibre was followed by genetic studies of structural genes coding for enzymes participating in PA and CA biosynthesis, transport and oxidation processes. We summarize the data on the genes coding for transcription factors from the MBW (MYB-bHLH-WD40) regulatory complex, which controls flavonoid biosynthesis in coloured cotton fibre. The regulatory gene most interesting as a target for markers-assisted breeding and genome editing is GhTT2-3A.

Keywords:

brown fibre, caffeic acid, flavonoids, green fibre, Gossypium, MBW regulatory complex, proanthocyanidins

Downloads

Download data is not yet available.
 

References

Abdurakhmonov, I. Y., Ayubov, M. S., Ubaydullaeva, K. A., Buriev, Z. T., Shermatov, S. E., Ruziboev, H. S., Shapulatov, U. M., Saha, S., Ulloa, M., Yu, J. Z., Percy, R. G., Devor, E. J., Sharma, G. C., Sripathi, V. R., Kumpatla, S. P., van der Krol, A., Kater, H. D., Khamidov, K., Salikhov, S. I., Jenkins, J. N., Abdukarimov, A., and Pepper, A. E. 2016. RNA interference for functional genomics and improvement of cotton (Gossypium sp.). Frontiers in Plant Science 7(202):1–17. https://doi.org/10.3389/fpls.2016.00202

Albert, N. W., Davies, K. M., Lewis, D. H., Zhang, H., Montefiori, M., Brendolise, C., Boase, M. R., Ngo, N., Jameson, P. E., and Schwinn, K. E. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell 26(3):962–980. https://doi.org/10.1105/tpc.113.122069

Alonso-Amelot, M. E., Oliveros, A., and Calcagno-Pisarelli, M. P. 2004. Phenolics and condensed tannins in relation to altitude in neotropical Pteridium spp. Biochemical Systematics and Ecology 32(11):969–981. https://doi.org/10.1016/j.bse.2004.03.005

Appelhagen, I., Nordholt, N., Seidel, T., Spelt, K., Koes, R., Quattrochio, F., Francesca, S., and Weisshaar, B. 2015. TRANSPARENT TESTA 13 is a tonoplast P 3A -ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds. The Plant Journal 82(5):840–849. https://doi.org/10.1111/tpj.12854

Balls, W. L. 1908. Mendelian studies of Egyptian cotton. The Journal of Agricultural Science 2(04):346. https://doi.org/10.1017/S0021859600000654

Baudry, A., Caboche, M., and Lepiniec, L. 2006. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and BHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. The Plant Journal 46(5):768–779. https://doi.org/10.1111/j.1365-313X.2006.02733.x

Baudry, A., Heim, M. A., Dubreucq, B., Caboche, M., Weisshaar, B., and Lepiniec, L. 2004. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal 39(3):366–380. https://doi.org/10.1111/j.1365-313X.2004.02138.x

Baxter, I. R., Young, J. C., Armstrong, G., Foster, N., Bogenschutz, N., Cordova, T., Peer, W. A., Hazen, S. P., Murphy, A. S., and Harper, J. F. 2005. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proceedings of the National Academy of Sciences oh the USA 102(7):2649–2654. https://doi.org/10.1073/pnas.0406377102

Boerjan, W., Ralph, J., and Baucher, M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54(1):519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938

Bogs, J., Downey, M. O., Harvey, J. S., Ashton, A. R., Tanner, G. J., and Robinson, S. P. 2005. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology 139(2):652–663. https://doi.org/10.1104/pp.105.064238

Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M., and Lepiniec, L. 2003. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. The Plant Cell Online 15(11):2514–2531. https://doi.org/10.1105/tpc.014043

Dinesh, K. A., Phundan, S., Mukta, Ch., Shaikh, A. J. 2003. Cottonseed oil quality, utilization and processing. Cicr Technical Bulletin 25:1–16.

Dutt, Y., Wang, X. D., Zhu, Y. G., and Li, Y. Y. 2004. Breeding for high yield and fibre quality in coloured cotton. Plant Breeding 123(2):145–151. https://doi.org/10.1046/j.1439-0523.2003.00938.x

Endrizzi, J. E. and Taylor, T. 1968. Cytogenetic studies of N Lc1 Yg2 R2 marker genes and chromosome deficiences in cotton. Genetical Research 12(03):295–304. https://doi.org/10.1017/S0016672300011885

Ershik, O. A. and Buzuk, G. N. 2009. Identification of the degradation products of proanthocyanidines in root rhizomes of the marsh cinquefoil. Pharmaceutical Chemistry Journal 43(7):406–407. https://doi.org/10.1007/s11094-009-0315-y

Fan, L., Shi, W.-J., Hu, W.-R., Hao, X.-Y., Wang, D.-M., Yuan, H., and Yan, H.-Y. 2009. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. Journal of Integrative Plant Biology 51(7):626–637. https://doi.org/10.1111/j.1744-7909.2009.00840.x

Feng, H., Guo, L., Wang, G., Sun, J., Pan, P., He, S., Zhu, H., Sun, J., and Du, X. 2015. The negative correlation between fiber color and quality traits revealed by QTL analysis. PLoS ONE 10(6):e0129490. https://doi.org/10.1371/journal.pone.0129490

Feng, H., Li, Y., Wang, S., Zhang, L., Liu, Y., Xue, F., Sun, Y., Wang, Y., and Sun, J. 2014. Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). Journal of Experimental Botany 65(20):5759–5769. https://doi.org/10.1093/jxb/eru286

Feng, H., Tian, X., Liu, Y., Li, Y., Zhang, X., Jones, B. J., Sun, Y., and Sun, J. 2013. Analysis of flavonoids and the flavonoid structural genes in brown fiber of upland cotton. PLoS ONE 8(3):e58820. https://doi.org/10.1371/journal.pone.0058820

Feng, H., Yang, Y., Sun, S., Li, Y., Zhang, L., Tian, J., Zhu, Q., Feng, Z., Zhu, H., and Sun, J. 2017. Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers. Journal of Experimental Botany 68(16):4559–4569. https://doi.org/10.1093/jxb/erx281

French A. D. and Kim H. J. 2018. Cotton fiber structure. Cotton fiber: physics, chemistry and biology, edited by D. D. Fang. Springer, Berlin, pp. 13–39. https://doi.org/10.1007/978-3-030-00871-0_2

Galway, M. E., Masucci, J. D., Lloyd, A. M., Walbot, V., Davis, R. W., and Schiefelbein, J. W. 1994. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Developmental Biology 166:740–754. https://doi.org/10.1006/dbio.1994.1352

Gao, J.-S., Wu, N., Shen, Z.-L., Lv, K., Qian, S.-H., Guo, N., Sun, X., Cai, Y.-P., and Lin, Y. 2016. Molecular cloning, expression analysis and subcellular localization of a Transparent Testa 12 ortholog in brown cotton (Gossypium hirsutum L.). Gene 576(2):763–769. https://doi.org/10.1016/j.gene.2015.11.002

Gong, W., Du, X., Jia, Y., and Pan, Z. 2018. Color cotton and its utilization in China. Cotton fiber: physics, chemistry and biology, edited by D. D. Fang. Springer, Berlin, pp. 117–132. https://doi.org/10.1007/978-3-030-00871-0_6

Gong, W., He, S., Tian, J., Sun, J., Pan, Z., Jia, Y., Sun, G., and Du, X. 2014. Comparison of the transcriptome between two cotton lines of different fiber color and quality. PLoS ONE 9(11):e112966. https://doi.org/10.1371/journal.pone.0112966

Gonzalez, A., Brown, M., Hatlestad, G., Akhavan, N., Smith, T., Hembd, A., Moore, J., Montes, J., Mosley, T., Resendez, J., Nguyen, H., Wilson, L., Campbell, A., Sudarshan, D., and Lloyd, A. 2016. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Developmental Biology 419(1):54–63. https://doi.org/10.1016/j.ydbio.2016.03.031

Graça, J. 2015. Suberin: the biopolyester at the frontier of plants. Frontiers in Chemistry 3(62):1–11. https://doi.org/10.3389/fchem.2015.00062

Gu, H. 2005. Research on the improvement of the moisture absorbency of naturally self-coloured cotton. Journal of the Textile Institute 96(4):247–250. https://doi.org/10.1533/joti.2005.0007

Hamberger, B. and Hahlbrock, K. 2004. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proceedings of the National Academy of Sciences of the USA 101(7):2209–2214. https://doi.org/10.1073/pnas.0307307101

Hande, A. S., Katageri, I. S., Jadhav, M. P., Adiger, S., Gamanagatti, S., Padmalatha, K. V., Dhandapani, G., Kanakachari, M., Kumar, P. A., and Reddy, V. S. 2017. Transcript profiling of genes expressed during fibre development in diploid cotton (Gossypium arboreum L.). BMC Genomics 18(675):1–15. https://doi.org/10.1186/s12864-017-4066-y

Harland, S. C. 1932. The genetics of cotton. Journal of Genetics 25(3):261–270. https://doi.org/10.1007/BF02984590

He, F., Pan, Q.-H., Shi, Y., and Duan, C.-Q. 2008. Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules 13(10):2674–2703. https://doi.org/10.3390/molecules13102674

Heldt, H.-W. and Heldt, F. 2005. Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components. Plant Biochemistry (Third Edition), Academic Press, pp. 435–454. https://doi.org/10.1016/B978-012088391-2/50019-5

Hinchliffe, D., Condon, B., Delhom, C. D., Chang, S., Montalvo, J., Madison, C., Reynolds, M., VonHoven, T., and Cintrón, M. S. 2015. Physical and combustion properties of nonwoven fabrics produced from conventional and naturally colored cottons. Textile Research Journal 85(16):1666–1680. https://doi.org/10.1177/0040517515573410

Hinchliffe, D. J., Condon, B. D., Thyssen, G., Naoumkina, M., Madison, C. A., Reynolds, M., Delhom, C. D., Fang, D.D., Li, P., and McCarty, J. 2016. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres. Journal of Experimental Botany 67(18):5461–5471. https://doi.org/10.1093/jxb/erw312

Hua, S. J., Yuan, S. N., Shamsi, I. H., Zhao, X. Q., Zhang, X.Q., Liu, Y. X., et al. 2009. A comparison of three isolines of cotton differing in fiber color for yield, quality, and photosynthesis. Crop Science 49:983–989. https://doi.org/10.2135/cropsci2008.06.0371

Humphreys, J. M., Hemm, M. R., and Chapple, C. 1999. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proceedings of the National Academy of Sciences of the USA 96(18):10045–10050. https://doi.org/10.1073/pnas.96.18.10045

Humphries, J. A., Walker, A. R., Timmis, J. N., and Orford, S. J. 2005. Two WD-Repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Molecular Biology 57(1):67–81. https://doi.org/10.1007/s11103-004-6768-1

Hutchinson, J. B. and Silow, R. A. 1939. Gene symbols for use in cotton genetics. Journal of Heredity 30(10):461–464. https://doi.org/10.1093/jhered/30.10.461

Jun, J. H., Liu, C., Xiao, X., and Dixon, R. A. 2015. The transcriptional repressor MYB2 regulates both spatial and temporal patterns of proanthocyandin and anthocyanin pigmentation in Medicago truncatula. The Plant Cell 27(10):2860–2879. https://doi.org/10.1105/tpc.15.00476

Koes, R., Verweij, W., and Quattrocchio, F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10(5):236–42. https://doi.org10.1016/j.tplants.2005.03.002

Kolattukudy, P. E. 1980. Biopolyester membranes of plants: cutin and suberin. Science 208(4447):990–1000. https://doi.org/10.1126/science.208.4447.990

Kottur, G. L. 1923. Studies on inheritance in cotton I. History of a cross between Gossypium herbaceum and G. neglectum. Memories Dept. Agri. Indian Bot. 12:71–133.

Li, M., Pu, Y., and Ragauskas, A. J. 2016. Current understanding of the correlation of lignin structure with biomass recalcitrance. Frontiers in Chemistry 4(45):1–8. https://doi.org/10.3389/fchem.2016.00045

Li, P., Chen, B., Zhang, G., Chen, L., Dong, Q., Wen, J., Mysore, K. S., and Zhao, J. 2016. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula BHLH transcription factor MtTT8. New Phytologist 210(3):905–921. https://doi.org/10.1111/nph.13816

Li, P., Dong, Q., Ge, S., He, X., Verdier, J., Li, D., and Zhao, J. 2016. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume. Plant Biotechnology Journal 14(7):1604–1618. https://doi.org/10.1111/pbi.12524

Li, S. 2014. Transcriptional control of flavonoid biosynthesis. Plant Signaling & Behavior 9(1):e27522. https://doi.org/10.4161/psb.27522

Li, Y.-J., Zhang, X.-Y., Wang, F.-X., Yang, C.-L., Liu, F., Xia, G.-X., and Sun, J. 2013. A comparative proteomic analysis provides insights into pigment biosynthesis in brown color fiber. Journal of Proteomics 78:374–88. https://doi.org/10.1016/j.jprot.2012.10.005

Li, Y., Kim, J. I., Pysh, L., and Chapple, C. 2015. Four isoforms of Arabidopsis thaliana 4-Coumarate: CoA ligase (4CL) have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiology 169(4): 2409–2421. https://doi.org/10.1104/pp.15.00838

Ling, F., Hu, W.-R., Yang, Y., and Li, B. 2012. Plant special cell – cotton fiber 1. Botany, Dr. John Mworia (Ed.), pp. 211–226.

Liu, B., Zhu, Y., and Zhang, T. 2015. The R3-MYB gene GhCPC negatively regulates cotton fiber elongation. PLoS ONE 10(2):e0116272. https://doi.org/10.1371/journal.pone.0116272

Liu, C., Jun, J. H., and Dixon, R. A. 2014. MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiology 165(4):1424–39. https://doi.org/10.1104/pp.114.241877

Liu, H., Luo, C., Song, W., Shen, H., Li, G., He, Z., Chen, W., Cao, Y., Huang, F., Tang, S., Hong, P., Zhao, E., Zhu, J., He, D., Wang, S., Huo, G., Liu, H. 2018. Flavonoid biosynthesis controls fiber color in naturally colored cotton. PeerJ 6:e4537. https://doi.org/10.7717/peerj.4537

Liu, J., Osbourn, A., and Ma, P. 2015. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant 8(5):689–708. https://doi.org/10.1016/j.molp.2015.03.012

Liu, Q., Luo, L., and Zheng, L. 2018. Lignins: biosynthesis and biological functions in plants. International Journal of Molecular Sciences 19(2):335. https://doi.org/10.3390/ijms19020335

Lloyd, A., Brockman, A., Aguirre, L., Campbell, A., Bean, A., Cantero, A., and Gonzalez, A. 2017. Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant and Cell Physiology 58(9):1431–1441. https://doi.org/10.1093/pcp/pcx075

Lu, N., Roldan, M., and Dixon, R. A. 2017. Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum. Planta 246(2):323–335. https://doi.org/10.1007/s00425-017-2682-z

Ma, M., Hussain, M., Memon, H., and Zhou, W. 2016a. Structure of pigment compositions and radical scavenging activity of naturally green-colored cotton fiber. Cellulose 23(1):955–963. https://doi.org/10.1007/s10570-015-0830-9

Ma, M., Luo, S., Hu, Z., Tang, Z., and Zhou, W. 2016b. Antioxidant properties of naturally brown-colored cotton fibers. Textile Research Journal 86(3):256–263. https://doi.org/10.1177/0040517515588270

Macmillan, C. P., Birke, H., Bedon, F., and Pettolino, F. A. 2013. Plant biochemistry and physiology lignin deposition in cotton cells – where is the lignin? Journal of Plant Biochemistry & Physiology 1(2):2–5. https://doi.org/10.4172/2329-9029.1000e106

Malik, W., Khan, A. A., Cheema, H. M. N., Aslam, U., Iqbal, M. Z., Qayyum, A., Yasmeen, A., and Bibi, N. 2015. Transcriptome analysis of pigment related genes in colored cotton. International Journal of Agriculture and Biology 17(1):205–210.

Marinova, K., Pourcel, L., Weder, B., Schwarz, M., Barron, D., Routaboul, J.-M., Debeaujon, I., and Klein, M. 2007. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. The Plant Cell 19(6):2023–2038. https://doi.org/10.1105/tpc.106.046029

Masek, A., Chrzescijanska, E., and Latos, M. 2016. Determination of antioxidant activity of caffeic acid and p-coumaric acid by using electrochemical and spectrophotometric assays. International Journal of Electrochemical Science 11(12):10644–10658. https://doi.org/10.20964/2016.12.73

Matzke, K. and Riederer, M. 1991. A comparative study into the chemical constitution of cutins and suberins from Picea abies (L.) Karst., Quercus robur L., and Fagus sylvatica L. Planta 185(2):233–245. https://doi.org/10.1007/BF00194066

Mehboob-ur-Rahman, Shaheen, T., Tabbasam, N., Iqbal, M. A., Ashraf, M., Zafar, Y., and Paterson, A. H. 2012. Cotton genetic resources. A review. Agronomy for Sustainable Development 32(2):419–432. https://doi.org/10.1007/s13593-011-0051-z

Moire, L., Schmutz, A., Buchala, A., Yan, B., Stark, R. E., and Ryser, U. 1999. Glycerol is a suberin monomer. New experimental evidence for an old hypothesis. Plant Physiology 119(3):1137–1146. https://doi.org/10.1104/pp.119.3.1137

Nawrath, C. 2002. The biopolymers cutin and suberin. The Arabidopsis Book 1:e0021. https://doi.org/10.1199/tab.0021

Nechepurenko, I. V., Komarova, N. I., Gerasimova, Yu. V., Koval′, V. V., Polovinka, M. P., Korchagina, D. V., and Salakhutdinov, N. F. 2009. Structure of oligomeric proanthocyanidines from Hedysarum thienum roots studied by thiolysis and MALDI-TOF MS. Chemistry of Natural Compounds 45(1):32–39. https://doi.org/10.1007/s10600-009-9216-2

Nesi, N., Jond, C., Debeaujon, I., Caboche, M., and Lepiniec, L. 2001. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell 13(9):2099–2114. https://doi.org/10.1105/TPC.010098

Nimon, W. and Beghin, J. 1999. Are eco-labels valuable? Evidence from the apparel industry. American Journal of Agricultural Economics 81(4):801–811. https://doi.org/10.2307/1244325

Oppenheimer, D. G., Herman, P. L., Sivakumaran, S., Esch, J., and Marks, M. D. 1991. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67:483–493. https://doi.org/10.1016/0092-8674(91)90523-2

Panche, A. N., Diwan, A. D., and Chandra, S. R. 2016. Flavonoids: an overview. Journal of Nutritional Science 5(e47):1–15. https://doi.org/10.1017/jns.2016.41

Peng, Q.-Z., Zhu, Y., Liu, Z., Du, C., Li, K.-G., and Xie, D.-Y. 2012. An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants. Planta 236(3):901–918. https://doi.org/10.1007/s00425-012-1670-6

Pourcel, L., Routaboul, J.-M., Kerhoas, L., Caboche, M., Lepiniec, L., and Debeaujon, I. 2005. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. The Plant Cell 17(11):2966–2980. https://doi.org/10.1105/tpc.105.035154

Prasad, D. 2000. Two A-type proanthocyanidins from Prunus armeniaca roots. Fitoterapia 71(3):245–253. https://doi.org/10.1016/S0367-326X(99)00165-3

Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., Fan, M., Peng, W., Ren, C., and Xie, D. 2011. The jasmonate-ZIM-domain proteins interact with the WD-Repeat/BHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell 23(5):1795–1814. https://doi.org/10.1105/tpc.111.083261

Qin, Y., Wei, H., Sun, H., Hao, P., Wang, H., Su, J., and Yu, S. 2017. Proteomic analysis of differences in fiber development between wild and cultivated Gossypium hirsutum L. Journal of Proteome Research 16(8):2811–2824. https://doi.org/10.1021/acs.jproteome.7b00122

Ramawat, K. G. and Mérillon, J. M. 2013. Phenolic acids. Natural products. Edited by K. G. Ramawat and J.-M. Mérillon. Berlin, Heidelberg: Springer Berlin Heidelberg. 63:1952–1968. https://doi.org/10.1007/978-3-642-22144-6_64

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. 1999. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radical Biology and Medicine 26(9–10):1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Richmond, T. R. 1943. Inheritance of green and brown lint in upland cotton. Agronomy Journal 35(11):967–975. https://doi.org/10.2134/agronj1943.00021962003500110006x

Riley, R. G. and Kolattukudy, P. E. 1975. Evidence for covalently attached p-coumaric acid and ferulic acid in cutins and suberins. Plant Physiology 56(5):650–654. https://doi.org/10.1104/pp.56.5.650

Ryser, U. and Holloway, P. J. 1985. Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seed coats and fibres of Gossypium species. Planta 163(2):151–163. https://doi.org/10.1007/BF00393501

Ryser, U., Meier, H., and Holloway, P. J. 1983. Identification and localization of suberin in the cell walls of green cotton fibres (Gossypium hirsutum L., var. green lint). Protoplasma 117(3):196–205. https://doi.org/10.1007/BF01281823

Salunkhe, D. K., Jadhav, S. J., Kadam, S. S., and Chavan, J. K. 1983. Chemical, biochemical, and biological significance of polyphenols in cereals and legumes. C R C Critical Reviews in Food Science and Nutrition 17(3):277–305. https://doi.org/10.1080/10408398209527350

Schijlen, E. G. W. M., Ric de Vos, C. H., van Tunen, A. J., and Bovy, A. G. 2004. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65(19):2631–2648. https://doi.org/10.1016/j.phytochem.2004.07.028

Schmutz, A., Jenny, T., Amrhein, N., and Ryser, U. 1993. Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres. Planta 189(3):453–460. https://doi.org/10.1007/BF00194445

Schmutz, A., Jenny, T., and Ryser, U. 1994. A caffeoyl-fatty acid-glycerol ester from wax associated with green cotton fibre suberin. Phytochemistry 36(6):1343–1346. https://doi.org/10.1016/S0031-9422(00)89721-6

Shahidi, F. and Yeo, J. 2018. Bioactivities of phenolics by focusing on suppression of chronic diseases: a review. International Journal of Molecular Sciences 19(6):1573. https://doi.org/10.3390/ijms19061573

Shangguan, X., Yang, C., Zhang, X., and Wang, L. 2016. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). Physiologia Plantarum 158(2):200–212. https://doi.org/10.1111/ppl.12450

Silow, R. A. 1944. The inheritance of lint colour in asiatic cottons. Journal of Genetics 46(1):78–115. https://doi.org/10.1007/BF02986695

Stankovič, E. U., Čuden A. P., and Richards, A. F. 2002. Study of the green cotton fibres. Acta Chimica Slovenica 49(4):815–833.

Takahashi, A., Ichihara, Y., Isagi, Y., and Shimada, T. 2010. Effects of acorn tannin content on infection by the fungus Ciboria batschiana. Forest Pathology 40(2):96–99. https://doi.org/10.1111/j.1439-0329.2009.00612.x

Tan, J., Tu, L., Deng, F., Hu, H., Nie, Y., and Zhang, X. 2013. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiology 162(1):86–95. https://doi.org/10.1104/pp.112.212142

Tan, J., Wang, M., Tu, L., Nie, Y., Lin, Y., and Zhang, X. 2013. The flavonoid pathway regulates the petal colors of cotton flower. PLoS ONE 8(8):e72364. https://doi.org/10.1371/journal.pone.0072364

Thomas, B. F. and ElSohly, M. A. 2016. Biosynthesis and pharmacology of phytocannabinoids and related chemical constituents. The Analytical Chemistry of Cannabis, Elsevier, pp. 27–41. https://doi.org/10.1016/B978-0-12-804646-3.00002-3

Torresdepinedo, A., Penalver, P., and Repezvictoria, I. 2007. Synthesis of new phenolic fatty acid esters and their evaluation as lipophilic antioxidants in an oil matrix. Food Chemistry 105(2):657–65. https://doi.org/10.1016/j.foodchem.2007.04.029

Vanholme, R., Demedts, B., Morreel, K., Ralph, J., and Boerjan, W. 2010. Lignin biosynthesis and structure. Plant Physiology 153(3):895–905. https://doi.org/10.1104/pp.110.155119

Walker, A. R., Davison, P. A., Bolognesi-Winfield, A. C., James, C. M., Srinivasan, N., Blundell, T. L., Esch, J. J., Marks, M. D., and Gray, J. C. 1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell 11(7):1337–1349. https://doi.org/10.2307/3870753

Wang, L., Zhu, Y., Wang, P., Fan, Q., Wu, Y., Peng, Q.-Z., Xia, G.-X., and Wu, J.-H. 2016. Functional characterization of a dihydroflavanol 4-reductase from the fiber of upland cotton (Gossypium hirsutum). Molecules 21(2):32. https://doi.org/10.3390/molecules21020032

Wang, X., Howell, C. P., Chen, F., Yin, J., and Jiang, Y. 2009. Chapter 6 Gossypol-A polyphenolic compound from cotton plant. Advances in Food and Nutrition Research 58:215–263. https://doi.org/10.1016/S1043-4526(09)58006-0

Ware, J. O. 1932. Inheritance of lint colors in upland cotton. Agronomy Journal 24(7):550. https://doi.org/10.2134/agronj1932.00021962002400070008x

Xiao, Y.-H., Yan, Q., Ding, H., Luo, M., Hou, L., Zhang, M., Yao, D., Liu, H.-S., Li, X., Zhao, J., and Pei, Y. 2014. Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PLoS ONE 9(1):e86344. https://doi.org/10.1371/journal.pone.0086344

Xiao, Y.-H., Zhang, Z.-S., Yin, M.-H., Luo, M., Li, X.-B., Hou, L., and Pei, Y. 2007. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochemical and Biophysical Research Communications 358(1):73–78. https://doi.org/10.1016/j.bbrc.2007.04.084

Xu, L., Shen, Z. L., Chen, W., Si, G. Y., Meng, Y., Guo, N., Sun, X., Cai, Y. P., Lin, Y., and Gao, J. S. 2018. Phylogenetic analysis of upland cotton MATE gene family reveals a conserved subfamily involved in transport of proanthocyanidins. Molecular Biology Reports 46:161–175. https://doi.org/10.1007/s11033-018-4457-4

Yan, Q., Wang, Y., Li, Q., Zhang, Z., Ding, H., Zhang, Y., Liu, H., Luo, M., Liu, D., Song, W., Liu, H., Yao, D., Ouyang, X., Li, Y., Li, X., Pei, Y., and Xiao, Y. 2018. Up-regulation of GhTT2-3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality. Plant Biotechnology Journal 16(10):1735–1747. https://doi.org/10.1111/pbi.12910

Yatsu, L. Y., Espelie, K. E., and Kolattukudy, P. E. 1983. Ultrastructural and chemical evidence that the cell wall of green cotton fiber is suberized. Plant Physiology 73(2):521–524. https://doi.org/10.1104/pp.73.2.521

Zhang, X. Z., Zhou, Y. S., and Lan, J. X. 2002. Current status of research and genetic analysis of some traits of naturally colored cotton. Chin Agric Sci Bull 18:92–93.

Zhao, J. and Dixon, R. A. 2009. MATE transporters facilitate vacuolar uptake of epicatechin 3’-o-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. The Plant Cell 21(8):2323–2340. https://doi.org/10.1105/tpc.109.067819

Downloads

Published

2019-08-27

How to Cite

Mikhailova, A., Strygina, K., & Khlestkina, E. (2019). The genes determining synthesis of pigments in cotton. Biological Communications, 64(2), 133–145. https://doi.org/10.21638/spbu03.2019.205

Issue

Section

Review communications