Cytostatic activity in the hydrophilic fraction of the crude extract from the White Sea sponge Halichondria panicea

  • Vyacheslav Khalaman White Sea Biological Station, Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, 199034, Saint Petersburg, Russian Federation https://orcid.org/0000-0001-5426-0607
  • Natalia Chalisova Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova nab., 6, 199034, Saint Petersburg, Russian Federation https://orcid.org/0000-0002-2371-0043
  • Konstantin Krasnov Institute of Toxicology, Federal Medical-Biological Agency, Bekhtereva Street, 1, 192019, Saint Petersburg, Russian Federation https://orcid.org/0000-0003-1503-2243
  • Marina Alexandrova Institute of Toxicology, Federal Medical-Biological Agency, Bekhtereva Street, 1, 192019, Saint Petersburg, Russian Federation https://orcid.org/0000-0001-9118-7947

Abstract

Halichondria panicea, commonly known as the breadcrumb sponge, is an ecologically aggressive and widespread species in the coastal waters of North Atlantic and North Pacific. Cytostatic activity of the water-soluble extract fraction from the White Sea sponge Halichondria panicea was tested using organotypic cultures of rat liver fragments. The study shows a pronounced negative dose-dependent effect of the extract on the development of tissue explants of the test animals. Our results confirm toxicity of the White Sea Halichondria panicea, which was revealed earlier toward marine epibenthic organisms. The chemical nature of a substance or substances responsible for toxic effect is discussed.

Keywords:

Halichondria panicea, White Sea, organotypic culture, cytostatic activity, crude extract

Downloads

Download data is not yet available.

References

Abbas, S., Kelly, M., Bowling, J., Sims, J., Waters, A., and Hamann, M. 2011. Advancement into the Arctic region for bioactive sponge secondary metabolites. Marine Drugs 9:2423–2437. https://doi.org/10.3390/md9112423

Althoff, K., Schutt, C., Steffen, R., Batel, R., and Muller, W. E. G. 1998. Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: Harbor also for putatively toxic bacteria? Marine Biology 130:529–536. https://doi.org/10.1007/s002270050273

Chalisova, N. I. and Zhekalov, A. N. 2015. The effect of dipeptides consisting of leucine and lysine on cell proliferation in an organotypic culture of myocardium and spleen tissue from young and old rats. Advances in Gerontology 5(3):180–83. https://doi.org/10.1134/S2079057015030042

Cimino, G., De Stefano, S., and Minale, L. 1973. Paniceins, unusual aromatic sesquiterpenoids linked to a quinol or quinon system from the marine sponge Halichondria panicea. Tetrahedron 29:2565–2570. https://doi.org/10.1016/0040-4020(73)80174-7

Cui, H. X., Tang, L., Cheng, F. R., and Yuan, K. 2017. Antitumor effects of ethanol extracts from Hyptis rhomboidea in H22 tumor-bearing mice. Pharmacognosy Magazine 13(52):571‒575. https://doi.org/10.4103/pm.pm_314_16

Dyrynda, P. E. J. 1983. Modular sessile invertebrates contain larvatoxic allelochemicals. Developmental and Comparative Immunology 7:621–624. https://doi.org/10.1016/0145-305X(83)90078-2

Erpenbeck, D., Knowlton, A. L., Talbot, S. L., Highsmith, R. C., and van Soest, R. W. M. 2004. A molecular comparison of Alaskan and North East Atlantic Halichondria panicea (Pallas 1766) (Porifera: Demospongiae) populations. Bollettino dei Musei e Degli Istituti Biologici dell'Università di Genova 68:319‒325.

Freshney, R. I. 1994. Culture of animal cells: a manual of basic technique. 3rd edition. New York: Wiley-Liss.

Gerasimova, E. I. and Ereskovsky, A. V. 2007. Reproduction of two species of Halichondria (Demospongiae: Halichondriidae) in the White Sea. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G, (eds.) Porifera research – biodiversity: innovation and sustainability. Série Livros 28. Rio de Janeiro: Museu Nacional; 327‒333.

Green, K. M., Russell, B. D., Clark, R. J., Jones, M. K., Garson, M. J., Skilleter, G. A., and Degnan, B. M. 2002. A sponge allelochemical induces ascidian settlement but inhibits metamorphosis. Marine Biology 140:355–363. https://doi.org/10.1007/s002270100698

Indraningrat, A. A. G., Smidt, H., and Sipkema, D. 2016. Bioprospecting sponge-associated microbes for antimicrobial compounds. Marine Drugs 14(5):87. https://doi.org/10.3390/md14050087

Khalaman, V. V., Belyaeva, D. V., and Flyachinskaya, L. P. 2008. Effect of excretory–secretory products of some fouling organisms on settling and metamorphosis of the larvae of Styela rustica (Ascidiae). Russian Journal of Marine Biology 34(3):170‒173. https://doi.org/10.1134/S106307400803005X

Khalaman, V. V., Flyachinskaya, L. P., and Lezin P. A. 2009. Impact of excretory-secretory products of some fouling organisms on settling of mussel’s larvae (Mytilus edulis L. Bivalvia, Mollusca). Invertebrate Zoology 61(1):65–72. https://doi.org/10.15298/invertzool.06.1.06

Khalaman, V. V. and Komendantov, A. Yu. 2011. Structure of fouling communities formed by Halichondria panicea (Porifera: Demospongiae) in the White Sea. Russian Journal of Ecology 42(6):493–501. https://doi.org/10.1134/S1067413611050080

Khalaman, V. V., Korchagina, N. M., and Komendantov, A. Yu. 2014. The impact of waterborne cues from conspecifics and other species on the larvae of Halichondria panacea Pallas, 1766 (Porifera: Demospongiae). Russian Journal of Marine Biology 40(1):36‒42. https://doi.org/10.1134/S1063074014010064

Knowlton, A. S. and Highsmith, R. C. 2005. Nudibranch-sponge feeding dynamics: Benefits of symbiont-containing sponge to Archidoris montereyensis (Cooper, 1862) and recovery of nudibranch feeding scars by Halichondria panicea (Pallas, 1766). Journal of Experimental Marine Biology and Ecology 327:36‒46. https://doi.org/10.1016/j.jembe.2005.06.001

Kunz, A. L., Labes, A., Wiese, J., Bruhn, T., Bringmann, G., and Imhoff, J. F. 2014. Nature’s lab for derivatization: New and revised structures of a variety of streptophenazines produced by a sponge-derived Streptomyces strain. Marine Drugs 12:1699–1714. https://doi.org/10.3390%2Fmd12041699

Page, M., Northcote, P., Battershill, C., and Kelly, M. 2005. Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. Journal of Chemical Ecology 31(5):1161–1174. https://doi.org/10.1007/s10886-005-4254-0

Purushottama, G. B., Venkateshvaran, K., Pani Prasad, K., and Nalini, P. 2009. Bioactivities of extracts from the marine sponge Halichondria panicea. Journal of Venomous Animals and Toxins Including Tropical Diseases 15(3):444–459. https://doi.org/10.1590/S1678-91992009000300007

Schneemann, I., Kajahn, I., Ohlendorf, B., Zinecker, H., Erhard, A., Nagel, K., Wiese, J., and Imhoff, J. F. 2010. Mayamycin, a cytotoxic polyketide from a Streptomyces strain isolated from the marine sponge Halichondria panicea. Journal of Natural Products 73:1309–1312. https://doi.org/10.1021/np100135b

Thompson, J. E., Walker, R. P., and Faulkner, D. J. 1985. Screening and bioassays for biologically-active substances from 40 marine sponge species from San Diego, California, USA. Marine Biology 88:11–21. https://doi.org/10.1007/BF00393038

Ximenes, R. M., Melo, A. M., Magalhães, L. P. M., de Souza, I. A., and de Albuquerque, J. F. C. 2013. Antitumor activity of leaves from Hyptis mutabilis (A. Rich.) Briq. (Lamiaceae) in mice bearing tumor. Dataset Papers in Pharmacology. Volume 2013, Article ID 169357, 3 pages. https://doi.org/10.7167/2013/169357

Published
2019-05-24
How to Cite
Khalaman, V., Chalisova, N., Krasnov, K., & Alexandrova, M. (2019). Cytostatic activity in the hydrophilic fraction of the crude extract from the White Sea sponge <em>Halichondria panicea</em&gt;. Biological Communications, 64(1), 41–45. https://doi.org/10.21638/spbu03.2019.105
Section
Full communication