Cytostatic activity in the hydrophilic fraction of the crude extract from the White Sea sponge Halichondria panicea


Halichondria panicea, commonly known as the breadcrumb sponge, is an ecologically aggressive and widespread species in the coastal waters of North Atlantic and North Pacific. Cytostatic activity of the water-soluble extract fraction from the White Sea sponge Halichondria panicea was tested using organotypic cultures of rat liver fragments. The study shows a pronounced negative dose-dependent effect of the extract on the development of tissue explants of the test animals. Our results confirm toxicity of the White Sea Halichondria panicea, which was revealed earlier toward marine epibenthic organisms. The chemical nature of a substance or substances responsible for toxic effect is discussed.


Halichondria panicea, White Sea, organotypic culture, cytostatic activity, crude extract


Download data is not yet available.


Abbas, S., Kelly, M., Bowling, J., Sims, J., Waters, A., and Hamann, M. 2011. Advancement into the Arctic region for bioactive sponge secondary metabolites. Marine Drugs 9:2423–2437.

Althoff, K., Schutt, C., Steffen, R., Batel, R., and Muller, W. E. G. 1998. Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: Harbor also for putatively toxic bacteria? Marine Biology 130:529–536.

Chalisova, N. I. and Zhekalov, A. N. 2015. The effect of dipeptides consisting of leucine and lysine on cell proliferation in an organotypic culture of myocardium and spleen tissue from young and old rats. Advances in Gerontology 5(3):180–83.

Cimino, G., De Stefano, S., and Minale, L. 1973. Paniceins, unusual aromatic sesquiterpenoids linked to a quinol or quinon system from the marine sponge Halichondria panicea. Tetrahedron 29:2565–2570.

Cui, H. X., Tang, L., Cheng, F. R., and Yuan, K. 2017. Antitumor effects of ethanol extracts from Hyptis rhomboidea in H22 tumor-bearing mice. Pharmacognosy Magazine 13(52):571‒575.

Dyrynda, P. E. J. 1983. Modular sessile invertebrates contain larvatoxic allelochemicals. Developmental and Comparative Immunology 7:621–624.

Erpenbeck, D., Knowlton, A. L., Talbot, S. L., Highsmith, R. C., and van Soest, R. W. M. 2004. A molecular comparison of Alaskan and North East Atlantic Halichondria panicea (Pallas 1766) (Porifera: Demospongiae) populations. Bollettino dei Musei e Degli Istituti Biologici dell'Università di Genova 68:319‒325.

Freshney, R. I. 1994. Culture of animal cells: a manual of basic technique. 3rd edition. New York: Wiley-Liss.

Gerasimova, E. I. and Ereskovsky, A. V. 2007. Reproduction of two species of Halichondria (Demospongiae: Halichondriidae) in the White Sea. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G, (eds.) Porifera research – biodiversity: innovation and sustainability. Série Livros 28. Rio de Janeiro: Museu Nacional; 327‒333.

Green, K. M., Russell, B. D., Clark, R. J., Jones, M. K., Garson, M. J., Skilleter, G. A., and Degnan, B. M. 2002. A sponge allelochemical induces ascidian settlement but inhibits metamorphosis. Marine Biology 140:355–363.

Indraningrat, A. A. G., Smidt, H., and Sipkema, D. 2016. Bioprospecting sponge-associated microbes for antimicrobial compounds. Marine Drugs 14(5):87.

Khalaman, V. V., Belyaeva, D. V., and Flyachinskaya, L. P. 2008. Effect of excretory–secretory products of some fouling organisms on settling and metamorphosis of the larvae of Styela rustica (Ascidiae). Russian Journal of Marine Biology 34(3):170‒173.

Khalaman, V. V., Flyachinskaya, L. P., and Lezin P. A. 2009. Impact of excretory-secretory products of some fouling organisms on settling of mussel’s larvae (Mytilus edulis L. Bivalvia, Mollusca). Invertebrate Zoology 61(1):65–72.

Khalaman, V. V. and Komendantov, A. Yu. 2011. Structure of fouling communities formed by Halichondria panicea (Porifera: Demospongiae) in the White Sea. Russian Journal of Ecology 42(6):493–501.

Khalaman, V. V., Korchagina, N. M., and Komendantov, A. Yu. 2014. The impact of waterborne cues from conspecifics and other species on the larvae of Halichondria panacea Pallas, 1766 (Porifera: Demospongiae). Russian Journal of Marine Biology 40(1):36‒42.

Knowlton, A. S. and Highsmith, R. C. 2005. Nudibranch-sponge feeding dynamics: Benefits of symbiont-containing sponge to Archidoris montereyensis (Cooper, 1862) and recovery of nudibranch feeding scars by Halichondria panicea (Pallas, 1766). Journal of Experimental Marine Biology and Ecology 327:36‒46.

Kunz, A. L., Labes, A., Wiese, J., Bruhn, T., Bringmann, G., and Imhoff, J. F. 2014. Nature’s lab for derivatization: New and revised structures of a variety of streptophenazines produced by a sponge-derived Streptomyces strain. Marine Drugs 12:1699–1714.

Page, M., Northcote, P., Battershill, C., and Kelly, M. 2005. Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. Journal of Chemical Ecology 31(5):1161–1174.

Purushottama, G. B., Venkateshvaran, K., Pani Prasad, K., and Nalini, P. 2009. Bioactivities of extracts from the marine sponge Halichondria panicea. Journal of Venomous Animals and Toxins Including Tropical Diseases 15(3):444–459.

Schneemann, I., Kajahn, I., Ohlendorf, B., Zinecker, H., Erhard, A., Nagel, K., Wiese, J., and Imhoff, J. F. 2010. Mayamycin, a cytotoxic polyketide from a Streptomyces strain isolated from the marine sponge Halichondria panicea. Journal of Natural Products 73:1309–1312.

Thompson, J. E., Walker, R. P., and Faulkner, D. J. 1985. Screening and bioassays for biologically-active substances from 40 marine sponge species from San Diego, California, USA. Marine Biology 88:11–21.

Ximenes, R. M., Melo, A. M., Magalhães, L. P. M., de Souza, I. A., and de Albuquerque, J. F. C. 2013. Antitumor activity of leaves from Hyptis mutabilis (A. Rich.) Briq. (Lamiaceae) in mice bearing tumor. Dataset Papers in Pharmacology. Volume 2013, Article ID 169357, 3 pages.

How to Cite
Khalaman, V., Chalisova, N., Krasnov, K., & Alexandrova, M. (2019). Cytostatic activity in the hydrophilic fraction of the crude extract from the White Sea sponge <em>Halichondria panicea</em&gt;. Biological Communications, 64(1), 41–45.
Full communications