First data on total and carbon cycling microbial diversity of the key reference soils of the “Ladoga” carbon measurement supersite

Authors

  • Timur Nizamutdinov Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-2600-5494
  • Darya Zhemchueva Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0009-0002-7768-8061
  • Evgeny Andronov Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation; All-Russia Research Institute for Agricultural Microbiology, shosse Podbel’skogo, 3, Saint Petersburg, 196608, Russian Federation; V. V. Dokuchaev Soil Science Institute, Pyzhyovskiy per., 7, Moscow, 119017, Russian Federation https://orcid.org/0000-0002-5204-262X
  • Evgeny Abakumov Department of Applied Ecology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-5248-9018

DOI:

https://doi.org/10.21638/spbu03.2024.305

Abstract

The “Ladoga” carbon supersite is part of the All-Russian carbon monitoring national system, it is located in the Boreal coniferous forest zone, and work is underway here to implement measures to control the emission of greenhouse gases. This study reports data on the total and carbon-associated diversity of the soil microbes of reference soils. We obtained 729 amplicon sequence variants from 35 soil samples. Total diversity is represented by 11 phyla of bacteria and 1 phylum of methanogenic archaea (for Histosol). Carbon-cycling bacteria diversity is represented by six phyla (Actinobacteriota; Proteobacteria; Acidobacteriota; Bacteroiodota; Firmicutes; and Verrucomicrobiota). The dominant carbon-cycling bacteria in the studied soils are Actinobacteriota and Proteobacteria. The analysis of α- and β-diversity allowed us to identify three clusters of microbiota different in taxonomic composition — these are topsoil of Podzol and subsoil of Podzol (statistically significant (p < 0.05) differences in abundance for Proteobacteria and Verrucomicrobiota were revealed). Histosol is distinguished in a separate cluster of microbial diversity; it differs from Podzol in the abundance of carbon-cycling bacteria by Proteobacteria and Bacteroiodota (p < 0.0001). Further studies of the soil microbiome of the “Ladoga” carbon supersite should be focused on the study of functionally specialized groups of carbon and nitrogen cycle microbes and their ecosystem functions.

Keywords:

carbon supersite, soil microbiota, 16S rDNA amplicon sequencing, high-throughput sequencing, Podzol, Histosol

Downloads

Download data is not yet available.
 

References

Abakumov, E., Nizamutdinov, T., Zhemchueva, D., Suleymanov, A., Shevchenko, E., Koptseva, E., Kimeklis, A., Polyakov, V., Novikova, E., Gladkov, G., and Andronov, E. 2024. The characterization of biodiversity and soil emission activity of the “Ladoga” carbon-monitoring site. Atmosphere 15(4):420. https://doi.org/10.3390/atmos15040420

Abakumov, E. V., Polyakov, V. I., and Chukov, S. N. 2022. Approaches and methods for studying soil organic matter in the Carbon polygons of Russia (Review). Eurasian Soil Science 55(7):849–860. https://doi.org/10.1134/S106422932207002X

Aksenov, A. S., Shirokova, L. S., Kisil, O. Y., Kolesova, S. N., Lim, A. G., Kuzmina, D., Pouillé, S., Alexis, M. A., Castrec-Rouelle, M., Loiko, S. V., and Pokrovsky, O. S. 2021. Bacterial number and genetic diversity in a permafrost peatland (Western Siberia): testing a link with organic matter quality and elementary composition of a peat soil profile. Diversity 13(7):328. https://doi.org/10.3390/d13070328

Baldrian, P., López-Mondéjar, R., and Kohout, P. 2023. Forest microbiome and global change. Nature Reviews Microbiology 21(8):487–501. https://doi.org/10.1038/s41579-023-00876-4

Barbato, R. A., Jones, R. M., Douglas, T. A., Doherty, S. J., Messan, K., Foley, K. L., Perkins, E. J., Thurston, A. K., and Garcia-Reyero, N. 2022. Not all permafrost microbiomes are created equal: influence of permafrost thaw on the soil microbiome in a laboratory incubation study. Soil Biology and Biochemistry 167:108605. https://doi.org/10.1016/j.soilbio.2022.108605

Bünger, W., Jiang, X., Müller, J., Hurek, T., and Reinhold-Hurek, B. 2020. Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants. Scientific Reports 10(1):8692. https://doi.org/10.1038/s41598-020-65277-6

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., and Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108(supplement_1):4516–4522. https://doi.org/10.1073/pnas.1000080107

Christiansen, N. A., Green, T. J., Fryirs, K. A., and Hose, G. C. 2022. Bacterial communities in peat swamps reflect changes associated with catchment urbanisation. Urban Ecosystems 25(5):1455–1468. https://doi.org/10.1007/s11252-022-01238-3

Dash, B., Nayak, S., Pahari, and Nayak, S. 2020. Verrucomicrobia in soil: an agricultural perspective. Frontiers in Soil and Environmental Microbiology 37–46.

Domeignoz-Horta, L. A., Pold, G., Liu, X.-J. A., Frey, S. D., Melillo, J. M., and DeAngelis, K. M. 2020. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications 11(1):3684. https://doi.org/10.1038/s41467-020-17502-z

Evdokimova, E. V., Gladkov, G. V., Kuzina, N. I., Ivanova, E. A., Kimeklis, A. K., Zverev, A. O., Kichko, A. A., Aksenova, T. S., Pinaev, A. G., and Andronov, E. E. 2020. The difference between cellulolytic ‘culturomes’ and microbiomes inhabiting two contrasting soil types. PLoS One 15(11):e0242060. https://doi.org/10.1371/journal.pone.0242060

FAO. 2012. Global ecological zones for FAO forest reporting: 2010 update. Working Paper 179. FAO, Rome, Italy.

Fu, Y., Luo, Y., Tang, C., Li, Y., Guggenberger, G., and Xu, J. 2022. Succession of the soil bacterial community as resource utilization shifts from plant residues to rhizodeposits. Soil Biology and Biochemistry 173:108785. https://doi.org/10.1016/j.soilbio.2022.108785

Glickman, C. M., Virdi, R., Hasan, N. A., Epperson, L. E., Brown, L., Dawrs, S. N., Crooks, J. L., Chan, E. D., Strong, M., Nelson, S. T., and Honda, J. R. 2020. Assessment of soil features on the growth of environmental nontuberculous mycobacterial isolates from Hawai’i. Applied and Environmental Microbiology 86(21):e00121–00120. https://doi.org/doi:10.1128/AEM.00121-20

Jeewani, P. H., Gunina, A., Tao, L., Zhu, Z., Kuzyakov, Y., Van Zwieten, L., Guggenberger, G., Shen, C., Yu, G., Singh, B. P., Pan, S., Luo, Y., and Xu, J. 2020. Rusty sink of rhizodeposits and associated keystone microbiomes. Soil Biology and Biochemistry 147:107840. https://doi.org/10.1016/j.soilbio.2020.107840

Kulichevskaya, I. S., Pankratov, T. A., and Dedysh, S. N. 2006. Detection of representatives of the Planctomycetes in Sphagnum peat bogs by molecular and cultivation approaches. Microbiology 75(3):329–335. https://doi.org/10.1134/S0026261706030155

Laffite, A., Florio, A., Andrianarisoa, K. S., Creuze des Chatelliers, C., Schloter-Hai, B., Ndaw, S. M., Periot, C., Schloter, M., Zeller, B., Poly, F., and Le Roux, X. 2020. Biological inhibition of soil nitrification by forest tree species affects Nitrobacter populations. Environmental Microbiology 22(3):1141–1153. https://doi.org/10.1111/1462-2920.14905

Makarova, M. V., Abakumov, E. V., Shevchenko, E. V., Paramonova, N. N., Pakhomova, N. V., Lvova, N. A., Vetrova, M. A., Foka, S. C., Guzov, Y. N., Ivakhov, V. M., Ionov, D. V., Khoroshavin, A. V., Kostsov, V. S., Mikushev, S. V., Mikhailov, E. F., Pavlovsky, A. A., and Titov, V. O. 2023. From carbon polygon to carbon farm: the potential and ways of developing the sequestration carbon industry in the Leningrad Region and St. Petersburg. Vestnik of Saint Petersburg University. Earth Sciences 68(1). https://doi.org/10.21638/spbu07.2023.105

Manucharova, N. A., Pozdnyakov, L. A., Vlasova, A. P., Yanovich, A. S., Ksenofontova, N. A., Kovalenko, M. A., Stepanov, P. Y., Gennadiev, A. N., Golovchenko, A. V., and Stepanov, A. L. 2021. Metabolically active prokaryotic complex in grassland and forests’ sod-podzol under polycyclic aromatic hydrocarbon influence. Forests 12(8):1103. https://doi.org/10.3390/f12081103

McMurdie, P. J. and Holmes, S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

Morten Dencker, S., Muhammad Zohaib, A., Carsten Suhr, J., Catherine, L., Timothy, M. V., Lorrie, M., Samuel, J., Samuel, F., and Anders, P. 2019. Transcriptomic responses to warming and cooling of an Arctic tundra soil microbiome. bioRxiv:599233. https://doi.org/10.1101/599233

Naylor, D., Sadler, N., Bhattacharjee, A., Graham, E. B., Anderton, C. R., McClure, R., Lipton, M., Hofmockel, K. S., and Jansson, J. K. 2020. Soil microbiomes under climate change and implications for carbon cycling. Annual Review of Environment and Resources 45:29–59. https://doi.org/https://doi.org/10.1146/annurev-environ-012320-082720

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P., O’hara, R., Simpson, G., Solymos, P., Stevens, M. H. H., and Wagner, H. 2018. Community ecology package. R package version 2:5–2

Parte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C., and Göker, M. 2020. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology 70(11):5607–5612. https://doi.org/10.1099/ijsem.0.004332

Peel, M. C., Finlayson, B. L., and McMahon, T. A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11(5):1633–1644. https://doi.org/10.5194/hess-11-1633-2007

Philippot, L., Chenu, C., Kappler, A., Rillig, M. C., and Fierer, N. 2024. The interplay between microbial communities and soil properties. Nature Reviews Microbiology 22(4):226–239. https://doi.org/10.1038/s41579-023-00980-5

Pinaev, A. G., Kichko, A. A., Aksenova, T. S., Safronova, V. I., Kozhenkova, E. V., and Andronov, E. E. 2022. RIAM: a universal accessible protocol for the isolation of high purity DNA from various soils and other humic substances. Methods and Protocols 5(6):99. https://doi.org/10.3390/mps5060099

Polyakov, V., Abakumov, E., Nizamutdinov, T., Shevchenko, E., and Makarova, M. 2023. Estimation of carbon stocks and stabilization rates of organic matter in soils of the “Ladoga” carbon monitoring site. Agronomy 13(3):807. https://doi.org/10.3390/agronomy13030807

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219

R Core Team, R. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/.

Rakitin, A. L., Begmatov, S., Beletsky, A. V., Philippov, D. A., Kadnikov, V. V., Mardanov, A. V., Dedysh, S. N., and Ravin, N. V. 2022. Highly distinct microbial communities in elevated strings and submerged flarks in the boreal Aapa-type mire. Microorganisms 10(1):170. https://doi.org/10.3390/microorganisms10010170

Schimel, J. and Schaeffer, S. M. 2012. Microbial control over carbon cycling in soil. Frontiers in Microbiology 3. https://doi.org/10.3389/fmicb.2012.00348

Serkebaeva, Y. M., Kim, Y., Liesack, W., and Dedysh, S. N. 2013. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a Northern Wetland, with focus on poorly studied phyla and candidate divisions. Plos One 8(5):e63994. https://doi.org/10.1371/journal.pone.0063994

Singh, S., Singh, S., Lukas, S. B., Machado, S., Nouri, A., Calderon, F., Rieke, E. R., and Cappellazzi, S. B. 2023. Long-term agro-management strategies shape soil bacterial community structure in dryland wheat systems. Scientific Reports 13(1):13929. https://doi.org/10.1038/s41598-023-41216-z

Suleymanov, A., Abakumov, E., Nizamutdinov, T., Polyakov, V., Shevchenko, E., and Makarova, M. 2023. Soil organic carbon stock retrieval from Sentinel-2A using a hybrid approach. Environmental Monitoring and Assessment 196(1):23. https://doi.org/10.1007/s10661-023-12172-y

Trifonova, T., Kosmacheva, A., Sprygin, A., Chesnokova, S., and Byadovskaya, O. 2021. Enzymatic activity and microbial diversity of sod-podzolic soil microbiota using 16S rRNA amplicon sequencing following antibiotic exposure. Antibiotics 10(8):970. https://doi.org/10.3390/antibiotics10080970

Tsitko, I., Lusa, M., Lehto, J., Parviainen, L., Ikonen, A. T. K., Lahdenperä, A.-M., and Bomberg, M. 2014. The variation of microbial communities in a depth profile of an acidic, nutrient-poor boreal bog in Southwestern Finland. Open Journal of Ecology 04:832–859. https://doi.org/10.4236/oje.2014.413071

Varsadiya, M., Urich, T., Hugelius, G., and Bárta, J. 2021. Microbiome structure and functional potential in permafrost soils of the Western Canadian Arctic. FEMS Microbiology Ecology 97(3):fiab008. https://doi.org/10.1093/femsec/fiab008

Vasar, M., Davison, J., Sepp, S.-K., Mucina, L., Oja, J., Al-Quraishy, S., Anslan, S., Bahram, M., Bueno, C. G., Cantero, J. J., Decocq, G., Fraser, L., Hiiesalu, I., Hozzein, Wael N., Koorem, K., Meng, Y., Moora, M., Onipchenko, V., Öpik, M., Pärtel, M., Vahter, T., Tedersoo, L., and Zobel, M. 2022. Global soil microbiomes: a new frontline of biome-ecology research. Global Ecology and Biogeography 31(6):1120–1132. https://doi.org/10.1111/geb.13487

Wu, H., Cui, H., Fu, C., Li, R., Qi, F., Liu, Z., Yang, G., Xiao, K., and Qiao, M. 2024. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Science of The Total Environment 909:168627. https://doi.org/10.1016/j.scitotenv.2023.168627

Xue, P., Minasny, B., McBratney, A., Pino, V., Fajardo, M., and Luo, Y. 2023. Distribution of soil bacteria involved in C cycling across extensive environmental and pedogenic gradients. European Journal of Soil Science 74(1):e13337. https://doi.org/10.1111/ejss.13337

Downloads

Published

2024-12-06

How to Cite

Nizamutdinov, T., Zhemchueva, D., Andronov, E., & Abakumov, E. (2024). First data on total and carbon cycling microbial diversity of the key reference soils of the “Ladoga” carbon measurement supersite. Biological Communications, 69(3), 174–184. https://doi.org/10.21638/spbu03.2024.305

Issue

Section

Brief communications

Categories