Microencapsulation contaning L. acidophilus and S. boulardii for targeted release in the stomach and small intestine

Authors

  • Anh Ngo Haiduong Central College of Pharmacy, Nguyen Luong Bang, 324, Thanh Binh Ward, Hai Duong City, Hai Duong, Vietnam https://orcid.org/0009-0005-3367-4225
  • Thao Minh Viet Tri University of Industry, Tien Son Street, 9, Tien Cat Ward, Viet Tri City, Phu Tho Province, Vietnam
  • Nhi Bui Viet Tri University of Industry, Tien Son Street, 9, Tien Cat Ward, Viet Tri City, Phu Tho Province, Vietnam https://orcid.org/0000-0002-7238-6585
  • Xuan Dam Hanoi University of Pharmacy, Le Thanh Tong, 15, Hoan Kiem District Hanoi City, Vietnam https://orcid.org/0009-0004-4492-9089

DOI:

https://doi.org/10.21638/spbu03.2024.203

Abstract

In this study, a microencapsulation system was developed with a dual-layer structure comprising Lactobacillus acidophilus and Saccharomyces boulardii to enhance the survival rates of probiotic bacteria during transit through the stomach. Alginate and chitosan were identified as key factors influencing the shape, moisture content, and the number of encapsulated microorganisms in the microcapsules. The optimal concentrations of alginate and chitosan were determined to be 0.5 % and 3 %, respectively. The microencapsulated structure was clearly visualized through Scanning Electron Microscope images, and Infrared spectra confirmed the successful encapsulation. Experimental findings revealed that S. boulardii was released directly in the stomach, while L. acidophilus was released after a 2-hour delay, coinciding with the arrival of microcapsules in the small intestine. Subsequently, we proposed the release kinetics of microcapsules in the gastrointestinal tract. Although the viability of both S. boulardii and L. acidophilus in the microcapsules exhibited a steady decline over the storage period, a notable 109 CFU/g of bacteria persisted even after 120 days.

Keywords:

probiotics, L. acidophilus, S. boulardii, viability, release

Downloads

Download data is not yet available.
 

References

Albertini, B., Vitali, B., Passerini, N., Cruciani, F., Di Sabatino, M., Rodriguez, L., and Brigidi, P. 2010. Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. European Journal of Pharmaceutical Sciences 40(4):359–366. https://doi.org/10.1016/j.ejps.2010.04.011

Allan-Wojtas, P., Truelstrup Hansen, L., and Paulson, A. T. 2008. Microstructural studies of probiotic bacteria-loaded alginate microcapsules using standard electron microscopy techniques and anhydrous fixation. LWT — Food Science and Technology 41(1):101–108. https://doi.org/10.1016/j.lwt.2007.02.003

Bósquez, J. P. A., Ogˇuz, E., Cebeci, A., Majadi, M., Kiskó, G., Gillay, Z., and Kovacs, Z. 2022. Characterization and viability prediction of commercial probiotic supplements under temperature and concentration conditioning factors by NIR spectroscopy. Fermentation 8(2):66. https://doi.org/10.3390/fermentation8020066

Chen, J., Chen, X., and Ho, C. L. 2021. Recent development of probiotic Bifidobacteria for treating human diseases. Frontiers in Bioengineering and Biotechnology 22(9):770248. https://doi.org/10.3389/fbioe.2021.770248

Chávarri M., Marañón I., Ares R., Ibáñez F. C., Marzo F., and Villarán Mdel C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology 2010 Aug 15;142(1-2):185–9. doi: 10.1016/j.ijfoodmicro.2010.06.022. Epub 2010 Jun 30. PMID: 20659775.

Cook M. T., Tzortzis G., Charalampopoulos D., and Khutoryanskiy V. V. 2012. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release 162(1):56–67. doi: 10.1016/j.jconrel.2012.06.003

Călinoiu, L.-F., Ştefănescu, B., Pop, I., Muntean, L., and Vodnar, D. 2019. Chitosan coating applications in probiotic microencapsulation. Coatings 9(3):194. https://doi.org/10.3390/coatings9030194

De Lara Pedroso, D., Thomazini, M., Heinemann, R. J. B., and Favaro-Trindade, C. S. 2012. Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal 26(2):127–132. https://doi.org/10.1590/s1517-83822013000300017

Gao, H., Li, X., Chen, X., Hai, D., Wei, C., Zhang, L., and Li, P. 2022. The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. Journal of Microbiology and Biotechnology 32(10):1226–1233. https://doi.org/10.4014/jmb.2205.05041

Ghasemi-Niri, S. F., Solki, S., Didari, T., Mozaffari, Sh., Baeeri, M., Rezvanfar, M. A., Mohammadirad, A., Jamalifar, H., and Abdollahi, M. 2012. Better efficacy of Lactobacillus casei in combination with Bifidobacterium bifidum or Saccharomyces boulardii in recovery of inflammatory markers of colitis in rat. Asian Journal of Animal and Veterinary Advances 7(11):1148–1156. https://doi.org/10.3923/ajava.2012.1148.1156

Goktas, H., Dikmen, H., Bekiroglu, H., Cebi, N., Dertli, E., and Sagdic, O. 2022. Characteristics of functional ice cream produced with probiotic Saccharomyces boulardii in combination with Lactobacillus rhamnosus. LWT 153:112489. https://doi.org/10.1016/j.lwt.2021.112489

Gåserød, O., Sannes, A., and Skjåk-Braek, G. 1999. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials 20(8):773–83. https://doi.org/10.1016/s0142-9612(98)00230-0

Hansen, L. T., Allan-Wojtas, P., Jin, Y. L., and Paulson, A. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiology 19(1):35–45. https://doi.org/10.1006/fmic.2001.0452

He, C., Sampers, I., Van de Walle, D., Dewettinck, K., and Raes, K. 2021. Encapsulation of Lactobacillus in low-methoxyl pectin-based microcapsules stimulates biofilm formation: enhanced resistances to heat shock and simulated gastrointestinal digestion. Journal of Agricultural and Food Chemistry 69(22):6281–6290. https://doi.org/10.1021/acs.jafc.1c00719

Hedin, K. A., Kruse, V., Vazquez-Uribe, R., and Sommer, M. O. A. 2023. Biocontainment strategies for in vivo applications of Saccharomyces boulardii. Frontiers in Bioengineering and Biotechnology 11:1136095. https://doi.org/10.3389/fbioe.2023.1136095

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, Ph. C., and Sanders, M. E. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

Holkem, A. T., Raddatz, G. C., Nunes, G. L., Cichoski, A. J., Jacob-Lopes, E., Grosso, C. R. F., and de Menezes, C. R. 2016. Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT — Food Science and Technology 71:302–308. https://doi.org/10.1016/j.lwt.2016.04.012

Jeong, J.-J., Park, H. J., Cha, M. G., Park, E., Won, S.-M., Ganesan, R., Gupta, H., Gebru, Y. A., Sharma, S. P., Lee, S. B., Kwon, G. H., Jeong, M. K., Min, B. H., Hyun, J. Y., Eom, J. A., Yoon, S. J., Choi, M. R., Kim, D. J., and Suk, K. T. 2022. The Lactobacillus as a probiotic: focusing on liver diseases. Microorganisms 10(2):288. https://doi.org/10.3390/microorganisms10020288

Kaźmierczak-Siedlecka, K., Ruszkowski, J., Fic, M., Folwarski, M., and Makarewicz, W. 2020. Saccharomyces boulardii CNCM I-745: a non-bacterial microorganism used as probiotic agent in supporting treatment of selected diseases. Current Microbiology 77(9):1987–1996. https://doi.org/10.1007/s00284-020-02053-9

Khoramdareh, N. B., Hamedi, H., and Sharifan, A. 2022. Pistacia atlantica (Bene) oleoresin gum: the antioxidant and antimicrobial activity, and potential encapsulation of Saccharomyces boulardii and Lactobacillus acidophilus in kefir with sodium alginate/bene gum polymer. Research Square 1:1–29. https://doi.org/10.21203/rs.3.rs-2234440/v1

Khosravi Zanjani, M. A., Ghiassi Tarzi, B., Sharifan, A., and Mohammadi, N. 2014. Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iranian Journal of Pharmaceutical Research 13(3):843–52. https://doi.org/10.22037/IJPR.2014.1550

Krasaekoopt, W., Bhandari, B., and Deeth, H. 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal 13(1):3–13. https://doi.org/10.1016/s0958-6946(02)00155-3

Kwoji, I. D., Aiyegoro, O. A., Okpeku, M., and Adeleke, M. A. 2021. Multi-strain probiotics: synergy among isolates enhances biological activities. Biology (Basel) 10(4):322. https://doi.org/10.3390/biology10040322

Le, H. D. and Trinh, K. S. 2018. Survivability of Lactobacillus acidophilus, Bacillus clausii and Saccharomyces boulardii encapsulated in alginate gel microbeads. Carpathian Journal of Food Science and Technology 10:95–103.

Lee, Y., Ji, Y. R., Lee, S., Choi, M. J., and Cho, Y. 2019. Microencapsulation of probiotic Lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. International Dairy Journal 58:371–383. https://doi.org/10.4014/jmb.1903.03018

Li, J., Wang, J., Wang, M., Zheng, L., Cen, Q., Wang, F., Zhu, L., Pang, R., and Zhang, A. 2023. Bifidobacterium: a probiotic for the prevention and treatment of depression. Frontiers in Microbiology 14:1174800. https://doi.org/10.3389/fmicb.2023.1174800

Łubkowska, B., Jeżewska-Frąckowiak, J., Sroczyński, M., Dzitkowska-Zabielska, M., Bojarczuk, A., Skowron, P. M., and Cięszczyk, P. 2023. Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms 11:488. https://doi.org/10.3390/microorganisms11020488

Luise, D., Bosi, P., Raff, L., Amatucci, L., Virdis, S., and Trevisi, P. 2022. Bacillus spp. Probiotic strains as a potential tool for limiting the use of antibiotics, and improving the growth and health of pigs and chickens. Frontiers in Microbiology 13:801827. https://doi.org/10.3389/fmicb.2022.801827

Maleki, S., Najafi, F., Farhadi, K., Fakhri, M., Hosseini, F., and Naderi, M. 2020. Knowledge, attitude and behavior of health care workers in the prevention of nosocomial infections in hospitals of Kermanshah province (Iran). Medical Journal of the Islamic Republic of Iran 34:132. https://doi.org/10.47176/mjiri.34.132

McFarland, L. V. 2017. Common organisms and probiotics: Saccharomyces boulardii. In the microbiota in gastrointestinal pathophysiology. Academic Press, Cambridge. https://doi.org/10.1016/B978-0-12-804024-9.00018-5

Naghibzadeh, N., Salmani, F., Nomiri, S., and Tavakoli, T. 2022. Investigating the effect of quadruple therapy with Saccharomyces boulardii or Lactobacillus reuteri strain (DSMZ 17648) supplements on eradication of Helicobacter pylori and treatments adverse effects: a double-blind placebo-controlled randomized clinical trial. BMC Gastroenterology 22(1):107. https://doi.org/10.1186/s12876-022-02187-z

Nezamdoost-Sani, N., Khaledabad, M. A., Amiri, S., and Khaneghah, A. M. 2023. Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review. Food Bioscience 52:102433. https://doi.org/10.1016/j.fbio.2023.102433

Pais, P., Almeida, V., Yılmaz, M., and Teixeira, M. C. 2020. Saccharomyces boulardii: what makes it tick as successful probiotic? Journal of Fungi (Basel) 6(2):78. https://doi.org/10.3390/jof6020078

Shori, A. B. 2017. Microencapsulation improved probiotic survival during gastric transit. HAYATI Journal of Biosciences 24(1):1–5. https://doi.org/10.1016/j.hjb.2016.12.008

Singh, V. P., Sharma, J., Babu, S., Rizwanulla, and Singla, A. 2013. Role of probiotics in health and disease: a review. Journal of the Pakistan Medical Association 63:253–257.

Tegegne, B. A. and Kebede, B. 2022. Probiotics, their prophylactic and therapeutic applications in human health development: A review of the literature. Heliyon 8(6):e09725. https://doi.org/10.1016/j.heliyon.2022.e09725

Wang, T., Li, X., Liu, H., and Wang, S. 2021. Research on the development of microcapsules and their potential applications in Tibet Plateau. IOP Conf. Series: Earth and Environmental Science 791:012050. https://doi.org/10.1088/1755-1315/791/1/012050

Witzler, M., Vermeeren, S., Kolevatov, R. O., Haddad, R., Gericke, M., Heinze, Th., and Schulze, M. 2021. Evaluating release kinetics from alginate beads coated with poly-electrolyte layers for sustained drug delivery. ACS Applied Bio Materials 4(9):6719–6731. https://doi.org/10.1021/acsabm.1c00417

Yonekura, L., Sun, H., Soukoulis, C., and Fisk, I. 2014. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods 6:205–214. https://doi.org/10.1016/j.jff.2013.10.008

Zoghi, A., Khosravi-Darani, K., Sohrabvandi, S., Attar, H., and Alavi, S. A. 2019. Survival of probiotics in synbiotic apple juice during refrigeration and subsequent exposure to simulated gastro-intestinal conditions. Iranian Journal of Chemistry and Chemical Engineering 38(2):159–170. https://doi.org/10.30492/ijcce.2019.30783

Downloads

Published

2024-10-10

How to Cite

Ngo, A., Minh, T., Bui, N., & Dam, X. (2024). Microencapsulation contaning <em>L. acidophilus</em> and <em>S. boulardii</em> for targeted release in the stomach and small intestine. Biological Communications, 69(2), 76–89. https://doi.org/10.21638/spbu03.2024.203

Issue

Section

Full communications

Categories