Study of gene expression of the Toll-like receptor system in the forebrain cortex of rat pups with prenatal alcohol exposure and pharmacologic correction with rifampicin

Authors

  • Marat Airapetov Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation; S. M. Kirov Military Medical Academy, ul. Akademika Lebedeva, 6, Saint Petersburg, 194044, Russian Federation https://orcid.org/0000-0002-8318-9069
  • Sergei Eresko Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation https://orcid.org/0000-0002-0269-6078
  • Polina Ignatova Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation https://orcid.org/0000-0003-0930-8151
  • Daria Ganshina Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation
  • Daria Sukhanova Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation https://orcid.org/0009-0007-0303-9719
  • Alexandra Mikhailova Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation https://orcid.org/0009-0001-4472-5826
  • Andrei Lebedev Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation https://orcid.org/0000-0003-0297-0425
  • Evgenii Bychkov Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation https://orcid.org/0000-0002-8911-6805
  • Petr Shabanov Institute of Experimental Medicine, ul. Akademika Pavlova, 12, Saint Petersburg, 197376, Russian Federation https://orcid.org/0000-0003-1464-1127

DOI:

https://doi.org/10.21638/spbu03.2024.301

Abstract

Ethanol causes changes in the toll-like receptor (TLR) system in the brain promoting activation of neuroinflammatory pathways. Alcohol consumption during pregnancy induces neuroinflammatory processes in the fetus, which can lead to the development of symptoms of fetal alcohol spectrum disorder (FASD). Modeling prenatal alcohol exposure in our experiment resulted in changes in the expression of TLR system genes (Tlr3, Tlr4, Hmgb1, Trif, cytokine genes) in the forebrain cortex of baby rats. The administration of rifampicin (from the first to the seventh day of neonatal development) normalized the altered expression level of the studied genes. This suggests that rifampicin may prevent the development of persistent neuroinflammatory phenomena in the forebrain cortex of baby rats.

Keywords:

brain, PAE, fetal alcohol spectrum disorder, toll-like receptors, cytokine, rifampicin

Downloads

Download data is not yet available.
 

References

Acuña, L., Hamadat, S., and Corbalán, N. S. 2019. Rifampicin and its derivative rifampicin quinone reduce microglial inflammatory responses and neurodegeneration induced in vitro by α-synuclein fibrillary aggregates. Cells 8(8):776. https://doi.org/10.3390/cells8080776

Acuña, L., Corbalán, N. S., and Raisman-Vozari, R. 2020. Rifampicin quinone pretreatment improves neuronal survival by modulating microglia inflammation induced by α-synuclein. Neural Regeneration Research 15(8):1473–1474. https://doi.org/10.4103/1673-5374.274336

Airapetov, M. I., Eresko, S. O., Bychkov, E. R., Lebedev, A. A., and Shabanov, P. D. 2020. The expression level of toll-like receptors changes in the emotiogenic brain structures of rats under conditions of prolonged alcoholization and ethanol withdrawal. Medical Immunology 22(1):77–86. https://doi.org/10.15789/1563-0625-EOT-1836

Airapetov, M. I., Eresko, S. O., Bychkov, E. R., Lebedev, A. A., and Shabanov, P. D. 2021a. Hmgb1 gene expression changes in the striatum and amigdal of the rat’s brain under alcoholization and ethanol withdrawal. Biomeditsinskaia khimiia 67(1):95–99. https://doi.org/10.18097/PBMC20216701095

Airapetov, M., Eresko, S., Lebedev, A., Bychkov, E., and Shabanov, P. 2021b. The role of toll-like receptors in neurobiology of alcoholism. BioScience Trends 15(2):74–82. https://doi.org/10.5582/bst.2021.01041

Airapetov, M. I., Eresko, S. O., Kochkin, D. V., Bychkov, E. R., Lebedev, A. A., and Shabanov, P. D. 2022a. Ginsenosides affect the system of toll-like receptors in the brain of rats under conditions of long-term alcohol withdrawal. Biomeditsinskaia khimiia 68(6):459–469. https://doi.org/10.18097/PBMC20226806459

Airapetov, M. I., Eresko, S. O., Skabelkin, D. A., Iskalieva, A. R., Lebedev, A. A., Bychkov, E. R., and Shabanov, P. D. 2022b. The effect of rifampicin on the system of toll-like receptors in the nucleus accumbens of the brain of long-term alcoholized rats during alcohol withdrawal. Biomeditsinskaia khimiia 68(4):279–287. https://doi.org/10.18097/PBMC20226804279

Ajrapetyancz, M. G. 1989. Consequences of Alcohol Intoxication for Offspring. 124 p. Nauka (publisher), Moscow. (In Russian)

Alfonso-Loeches, S., Pascual-Lucas, M., Blanco, A. M., Sanchez-Vera, I., and Guerri, C. 2010. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. Journal of Neuroscience 30(24):8285–8295. https://doi.org/10.1523/JNEUROSCI.0976-10.2010

Ali, A. E., Mahdy, H. M., Elsherbiny, D. M., and Azab, S. S. 2018. Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochemical Pharmacology 156:431–443. https://doi.org/10.1016/j.bcp.2018.09.004

Bergdolt, L. and Dunaevsky, A. 2019. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Progress in Neurobiology 175:1–19. https://doi.org/10.1016/j.pneurobio.2018.12.002

Bi, W., Zhu, L., Jing, X., Zeng, Z., Liang, Y., Xu, A., Liu, J., Xiao, S., Yang, L., Shi, Q., Guo, L., and Tao, E. 2014. Rifampicin improves neuronal apoptosis in LPS-stimulated co-cultured BV2 cells through inhibition of the TLR-4 pathway. Molecular Medicine Reports 10(4):1793–1799. https://doi.org/10.3892/mmr.2014.2480

Bi, W., Cheng, X., Zeng, Z., Zhou, R., Luo, R., Zhang, J., and Zhu, L. 2021. Rifampicin ameliorates lipopolysaccharide-induced cognitive and motor impairments via inhibition of the TLR4/MyD88/NF-κB signaling pathway in mice. Neurological Research 43(5):358–371. https://doi.org/10.1080/01616412.2020.1866353

Blednov, Y. A., Ponomarev, I., Geil, C., Bergeson, S., Koob, G. F., and Harris, R. A. 2012. Neuroimmune regulation of alcohol consumption: Behavioral validation of genes obtained from genomic studies. Addiction Biology 17(1):108–120. https://doi.org/10.1111/j.1369-1600.2010.00284.x

Bodnar, T. S., Raineki, C., Wertelecki, W., Yevtushok, L., Plotka, L., Zymak-Zakutnya, N., Honerkamp-Smith, G., Wells, A., Rolland, M., Woodward, T. S., Coles, C. D., Kable, J. A., Chambers, Ch. D., and Weinberg, J. 2018. Altered maternal immune networks are associated with adverse child neuro-development: Impact of alcohol consumption during pregnancy. Brain, Behavior, and Immunity 73:205–215. https://doi.org/10.1016/j.bbi.2018.05.004

Brombacher, T. M., Nono, J. K., De Gouveia, K. S., Makena, N., Darby, M., Womersley, J., Tamgue, and O., Brombacher, F. 2017. IL-13–Mediated Regulation of Learning and Memory. The Journal of Immunology 198:2681–2688. https://doi.org/10.4049/jimmunol.1601546

Cantacorps, L., Alfonso-Loeches, S., Moscoso-Castro, M., Javier Cuitavi, J., Gracia-Rubio, I., López-Arnau, R., Escubedo, E., Guerri, C., and Valverde, O. 2017. Maternal alcohol binge drinking induces persistent neuroinflammation associated with myelin damage and behavioural dysfunctions in offspring mice. Neuropharmacology 123:368–384. https://doi.org/10.1016/j.neuropharm.2017.05.034

Caraci, F., Gulisano, W., Guida, C. A., Impellizzeri, A. A. R., Drago, F., Puzzo, D., and Palmeri, A. A. 2015. Key role for TGF-β1 in hippocampal synaptic plasticity and memory. Scientific Reports 5:11252. https://doi.org/10.1038/srep11252

Cattane, N., Vernon, A. C., Borsini, A., Scassellati, C., Endres, D., Capuron, L., Tamouza, R., Eriksen Benros, M., Leza, J. C., Pariante, C. M., Riva, M. A., and Cattaneo, A. 2022. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. European Neuropsychopharmacology 58:55–79. https://doi.org/10.1016/j.euroneuro.2022.02.002

Chen, T., Chen, C., Zhang, Z., Zou, Y., Peng, M., and Wang, Y. 2016. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice. Brain, Behavior, and Immunity 56:42–55. https://doi.org/10.1016/j.bbi.2016.04.004

Chin, P. Y., Dorian, C., Sharkey, D. J., Hutchinson, M. R., Rice, K. C., Moldenhauer, L. M., and Robertson, S. A. 2019. Toll-like receptor-4 antagonist (+)-naloxone confers sexually dimorphic protection from inflammation-induced fetal programming in mice. Endocrinology 160(11):2646–2662. https://doi.org/10.1210/en.2019-00493

Coleman, L. G., Zou, J., and Crews, F. T. 2017. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. Journal of Neuroinflammation 14(1):1–15. https://doi.org/10.1186/s12974-017-0799-4

Couch, A. C. M., Berger, T., Hanger, B., Matuleviciute, R., Srivastava, D. P., Thuret, S., and Vernon, A. C. 2021. Maternal immune activation primes deficiencies in adult hippocampal neurogenesis. Brain, Behavior, and Immunity 97:410–422. https://doi.org/10.1016/j.bbi.2021.07.021

Darbinian, N., Darbinyan, A., Merabova, N., Bajwa, A., Tatevosian, G., Martirosyan, D., Zhao, H., Selzer, M., and Goetzl, L. 2021. Ethanol-mediated alterations in oligodendrocyte differentiation in the developing brain. Neurobiology of Disease 148:105181. https://doi.org/10.1016/j.nbd.2020.105181

Donzis, E. J. and Tronson, N. C. 2014. Modulation of learning and memory by cytokines: Signaling mechanisms and long-term consequences. Neurobiology of Learning and Memory 115:68–77. https://doi.org/10.1016/j.nlm.2014.08.008

Ferguson, C., McKay, M., Harris, R. A., and Homanics, G. E. 2013. Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease (TALEN)-mediated gene inactivation. Alcohol 47(8):595–599. https://doi.org/10.1016/j.alcohol.2013.09.043

Gadani, S. P., Cronk, J. C., Norris, G. T., and Kipnis, J. 2012. IL-4 in the Brain: A Cytokine to remember. The Journal of Immunology 189:4213–4219. https://doi.org/10.4049/jimmunol.1202246

Gano, A., Lebonville, C. L., and Becker, H. C. 2022. TLR3 activation with poly I:C exacerbates escalated alcohol consumption in dependent male C57BL/6J mice. The American Journal of Drug and Alcohol Abuse 12:1–12. https://doi.org/10.1080/00952990.2022.2092492

Hinojosa, A. E., Garcia-Bueno, B., Leza, J. C., and Madrigal, J. L. 2011. CCL2/MCP-1 modulation of microglial activation and proliferation. Journal of Neuroinflammation 8:77. https://doi.org/10.1186/1742-2094-8-77

Holmes, V. A., Wallace, J. M., Gilmore, W. S., McFaul, P., and Alexander, H. D. 2003. Plasma levels of the immunomodulatory cytokine interleukin-10 during normal human pregnancy: a longitudinal study. Cytokine 21:265–269. https://doi.org/10.1016/s1043-4666(03)00097-8

Kaul, D., Habbel, P., Derkow, K., Krüger, C., Franzoni, E., Wulczyn, F. G., Bereswill, S., Nitsch, R., Schott, E., Veh, R., Naumann, T., and Lehnardt, S. 2012. Expression of toll-like receptors in the developing brain. Plos One 7(5):e37767. https://doi.org/10.1371/journal.pone.0037767

Lawrimore, C. J., Coleman, L. G., and Crews, F. T. 2019. Ethanol induces interferon expression in neurons via TRAIL: Role of astrocyte-to-neuron signaling. Psychopharmacology (Berlin) 236(10):2881–2897. https://doi.org/10.1007/s00213-018-5153-8

Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

Lobo-Silva, D., Carriche, G. M., Gil Castro, A., Roque, S., and Saraiva, M. 2016. Balancing the immune response in the brain: IL-10 and its regulation. Journal of Neuroinflammation 13:2081. https://doi.org/10.1186/s12974-016-0763-8

MacDowell, K. S., Munarriz-Cuezva, E., Caso, J. R., Madrigal, J. L. M., Zabala, A., Meana, J. J., García-Bueno, B., and Leza, J. C. 2017. Paliperidone reverts toll-like receptor 3 signaling pathway activation and cognitive deficits in a maternal immune activation mouse model of schizophrenia. Neuropharmacology 116:196–207. https://doi.org/10.1016/j.neuropharm.2016.12.025

Mattson, S. N., Bernes, G. A., and Doyle, L. R. 2019. Fetal alcohol spectrum disorders: A review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcohol, Clinical and Experimental Research 43(6):1046–1062. https://doi.org/10.1111/acer.14040

Meyer, U., Murray, P. J., Urwyler, A., Yee, B. K., Schedlowski, M., and Feldon, J. 2008. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Journal of Molecular Psychiatry 13:208–221. https://doi.org/10.1038/sj.mp.4002042

Mori, S., Sugama, S., Nguyen, W., Michel, T., Sanna, M. G., Sanchez-Alavez, M., Cintron-Colon, R., Moroncini, G., Kakinuma, Y., Maher, P., and Conti, B. 2017. Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress. Journal of Neuroinflammation 14:525. https://doi.org/10.1186/s12974-017-0862-1

Mousa, A., Seiger, A., Kjaeldgaard, A., and Bakhiet, M. 1999. Human first trimester forebrain cells express genes for inflammatory and anti-inflammatory cytokines. Cytokine 11:55–60. https://doi.org/10.1006/cyto.1998.0381

Nolvi, S., Merz, E. C., Kataja, E. L., and Parsons, C. E. 2022. Prenatal stress and the developing brain: Postnatal environments promoting resilience. Biological Psychiatry 93(10):942–952. https://doi.org/10.1016/j.biopsych.2022.11.023

O’Loughlin, E., Pakan, J. M. P., Yilmazer-Hanke, D., and McDermott, K. W. 2017. Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. Journal of Neuroinflammation 14(1):212. https://doi.org/10.1186/s12974-017-0981-8

Qin, L., Zou, J., Barnett, A., Vetreno, R. P., Crews, F. T., and Coleman, L. G. Jr. 2021. TRAIL mediates neuronal death in AUD: A link between neuroinflammation and neurodegeneration. Brain, Behavior, and Immunity 93: 79-88. https://doi.org/10.1016/j.bbi.2021.04.001

Qosa, H., Abuznait, A. H., Hill, R. A., and Kaddoumi, A. 2012. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease. Journal of Alzheimer’s Disease 31(1):151–165. https://doi.org/10.3233/JAD-2012-120319

Ren, Z., Wang, X., Yang, F., Xu, M., Frank, J. A., Wang, H., Wang, S., Ke, Z.-j., and Luo, J. 2017. Ethanol-induced damage to the developing spinal cord: The involvement of CCR2 signaling. Biochimica et Biophysica Acta 1863(11):2746–2761. https://doi.org/10.1016/j.bbadis.2017.07.035

Riley, E. P., Infante, M. A., and Warren, K. R. 2011. Fetal alcohol spectrum disorders: An overview. Neuropsychology Review 21:73–78. https://doi.org/10.1007/s11065-011-9166-x

Rizzo, M. D., Crawford, R. B., Bach, A., Sermet, S., Amalfitano, A., and Kaminski, N. E. 2019. Imiquimod and interferon-alpha augment monocyte-mediated astrocyte secretion of MCP-1, IL-6, and IP-10 in a human co-culture system. Journal of Neuroimmunology 333:576969. https://doi.org/10.1016/j.jneuroim.2019.576969

Schepanski, S., Buss, C., Hanganu-Opatz, I. L., and Arck, P. C. 2018. Prenatal immune and endocrine modulators of offspring’s brain development and cognitive functions later in life. Frontiers in Immunology 9:2186. https://doi.org/10.3389/fimmu.2018.02186

Shabanov, P. D. and Kalishevich, S. Yu. 1998. Biology of Alcoholism. 272 p. Lan' Publ., St. Petersburg. (In Russian)

Shin, W. H., Lee, D. Y., Park, K. W., Kim, S. U., Yang, M. S., Joe, E. H., and Jin, B. K. 2004. Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia 46:142–152. https://doi.org/10.1002/glia.10357

Shukla, P. K., Meena, A. S., Rao, R., and Rao, R. 2018. Deletion of TLR-4 attenuates fetal alcohol exposure-induced gene expression and social interaction deficits. Alcohol 73:73–78. https://doi.org/10.1016/j.alcohol.2018.04.004

Siegel, A. and Zalcman, S. S. 2008. The Neuroimmunological Basis of Behavior and Mental Disorders. 454 p. Springer. https://doi.org/10.1007/978-0-387-84851-8

Sowell, K. D., Uriu-Adams, J. Y., Van de Water, J., Chambers, C. D., Coles, C. D., Kable, J. A., Yevtushok, L., Zymak-Zakutnya, N., Wertelecki, W., and Keen, C. L. 2018. Collaborative initiative on fetal alcohol spectrum disorders (CIFASD). Implications of altered maternal cytokine concentrations on infant outcomes in children with prenatal alcohol exposure. Alcohol 68:49–58. https://doi.org/10.1016/j.alcohol.2017.08.006

Turbic, A., Leong, S. Y., and Turnley, A. M. 2011. Chemokines and inflammatory mediators interact to regulate adult murine neural precursor cell proliferation, survival and differentiation. Plos One 6:e25406. https://doi.org/10.1371/journal.pone.0025406

Usui, N., Kobayashi, H., and Shimada, S. 2023. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. International Journal of Molecular Sciences 24(6):5487. https://doi.org/10.3390/ijms24065487

Vetreno, R. P. and Crews, F. T. 2012. Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and toll-like receptors in the adult prefrontal cortex. Neuroscience 226:475–488. https://doi.org/10.1016/j.neuroscience.2012.08.046

Vivien, D. and Ali, C. 2006. Transforming growth factor-β signalling in brain disorders. Cytokine and Growth Factor Reviews 17:121–128. https://doi.org/10.1016/j.cytogfr.2005.09.011

Wang, P., Liu, B.-Y., Wu, M.-M., Wei, X.-Y., Sheng, S., You, S.-W., Shang, L.-X., and Kuang, F. 2019. Moderate prenatal alcohol exposure suppresses the TLR4-mediated innate immune response in the hippocampus of young rats. Neuroscience Letters 699:77–83. https://doi.org/10.1016/j.neulet.2019.01.049

Wang, X., Grace, P. M., Pham, M. N., Cheng, K., Strand, K. A., Smith, C., Li, J., Watkins, L. R., and Yin, H. 2013. Rifampin inhibits toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB Journal 27(7):2713–2722. https://doi.org/10.1096/fj.12-222992

Woods, R. M., Lorusso, J. M., Potter, H. G., Neill, J. C., Glazier, J. D., and Hager, R. 2021. Maternal immune activation in rodent models: A systematic review of neurodevelopmental changes in gene expression and epigenetic modulation in the offspring brain. Neuroscience and Biobehavioral Reviews 129:389–421. https://doi.org/10.1016/j.neubiorev.2021.07.015

Zahednasab, H., Firouzi, M., Kaboudanian-Ardestani, S., Mojallal-Tabatabaei, Z., Karampour, S., and Keyvani, H. 2019. The protective effect of rifampicin on behavioral deficits, biochemical, and neuropathological changes in a cuprizone model of demyelination. Cytokine 113:417–426. https://doi.org/10.1016/j.cyto.2018.10.016

Zhou, X., Spittau, B., and Krieglstein, K. 2012. TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. Journal of Neuroinflammation 9:210. https://doi.org/10.1186/1742-2094-9-210

Downloads

Published

2024-12-06

How to Cite

Airapetov, M., Eresko, S., Ignatova, P., Ganshina, D., Sukhanova, D., Mikhailova, A., … Shabanov, P. (2024). Study of gene expression of the Toll-like receptor system in the forebrain cortex of rat pups with prenatal alcohol exposure and pharmacologic correction with rifampicin. Biological Communications, 69(3), 125–135. https://doi.org/10.21638/spbu03.2024.301

Issue

Section

Full communications

Categories