Agreement of bioimpedance analysis and ultrasound scanning for fat mass, fat free mass and body fat percentage evaluation in the group of adult women

Authors

  • Elvira Bondareva Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, ul. Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation https://orcid.org/0000-0003-3321-7575
  • Olga Parfenteva Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, ul. Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation
  • Aleksandra Vasileva First Moscow State Medical University (Sechenov University), ul. Trubetskaya, 8/2, Moscow, 119991, Russian Federation
  • Nikolay Kulemin Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, ul. Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation
  • Aida Gadzhiakhmedova Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, ul. Malaya Pirogovskaya, 1a, Moscow, 119435, Russian Federation; First Moscow State Medical University (Sechenov University), ul. Trubetskaya, 8/2, Moscow, 119991, Russian Federation
  • Olga Kovaleva First Moscow State Medical University (Sechenov University), ul. Trubetskaya, 8/2, Moscow, 119991, Russian Federation
  • Nikita Khromov-Borisov Almazov Federal Medical Research Centre, ul. Akkuratova, 2, 197341, Saint Petersburg, Russian Federation

DOI:

https://doi.org/10.21638/spbu03.2023.305

Abstract

The study aims to perform an agreement analysis of bioimpedance (BIA) results obtained using АВС-02 “Medas” (Russia) and ultrasound scanning (US) using BodyMetrixTM (USA) for fat mass, fat free mass and body fat percentage in the group of females from Moscow. The study was performed with 180 female subjects 18-67 years of age. The agreement analysis conducted in the whole sample revealed a low level of agreement in estimating body fat percentage (CCC = 0.70 0.76 0.81) and fat free mass (CCC = 0.86 0.89 0.91), but agreement can be described as medium in estimating fat mass (CCC = 0.90 0.92 0.94). Then we adjusted the prediction equations and the agreement analysis was conducted again. Adjusted prediction equations improved the level of agreement to medium when estimating body fat percentage and fat free mass. Thus, the proposed equations can be used for the translation of body composition results obtained by US into the BIA data.

Keywords:

body composition, body fat mass, free fat mass, BodyMetrix, АВС-02 Medas, agreement analysis

Downloads

Download data is not yet available.
 

References

Baranauskas, M. N., Johnson, K. E., Juvancic-Heltzel, J. A., Kappler, R. M., Richardson, L., Jamieson, S., and Otterstetter, R. 2017. Seven-site versus three-site method of body composition using BodyMetrix ultrasound compared to dual-energy X-ray absorptiometry. Clinical Physiology and Functional Imaging 37(3):317–321. https://doi.org/10.1111/cpf.12307

Bielemann, R. M., Gonzalez, M. C., Barbosa-Silva, T. G., Orlandi, S. P., Xavier, M. O., Bergmann, R. B., Assunção, M. C., and Grupo de Estudos em Composição Corporal e Nutrição-CoCoNut. 2016. Estimation of body fat in adults using a portable A-mode ultrasound. Nutrition 32(4):441–446. https://doi.org/10.1016/j.nut.2015.10.009

Bondareva, E. A. and Parfenteva, O. I. 2021. Body composition parameters using using bio-electrical impedance analysis and ultrasound scanning: a reliability study. Ekologiya cheloveka 28(10):57–64. https://doi.org/10.33396/1728-0869-2021-10-57-64 (In Russian)

Dehghan, M. and Merchant, A. T. 2008. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutrition Journal 7:26. https://doi.org/10.1186/1475-2891-7-26

Esco, M. R., Nickerson, B. S., Fedewa, M. V., Moon, J. R., and Snarr, R. L. 2018. A novel method of utilizing skinfolds and bioimpedance for determining body fat percentage via a field-based three-compartment model. European Journal of Clinical Nutrition 72(10):1431–1438. https://doi.org/10.1038/s41430-017-0060-3

Franssen, F. M., Rutten, E. P., Groenen, M. T., Vanfleteren, L. E., Wouters, E. F. M., and Spruit, M. A. 2014. New reference values for body composition by bioelectrical impedance analysis in the general population: results from the UK Biobank. Journal of the American Medical Directors Association 15:448.e1–448.e6. https://doi.org/10.1016/j.jamda.2014.03.012

Jackson, A. S., Pollock, M. L., and Ward, A. 1980. Generalized equations for predicting body density of women. Medicine & Science in Sports & Exercise 12:175–181. https://doi.org/10.1249/00005768-198023000-00009

Johnson, K. E., Miller, B., Gibson, A. L., McLain, T. A., Juvancic-Heltzel, J. A., Kappler, R. M., and Otterstetter, R. 2017. A comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and A-mode ultrasound to assess body composition in college-age adults. Clinical Physiology and Functional Imaging 37(6):646–654. https://doi.org/10.1111/cpf.12351

Kasper, A. M., Langan-Evans, C., Hudson, J. F., Brownlee, T. E., Harper, L. D., Naughton, R. J., Morton, J. P., and Close, G. L. 2021. Come back skinfolds, all is forgiven: a narrative review of the efficacy of common body composition methods in applied sports practice. Nutrients 13(4):1075. https://doi.org/10.3390/nu13041075

Khromov-Borisov, N. N. 2022. Tabular form of description of statistical methods and programs in scientific publications. Science Editor and Publisher 7(2):182–184. https://doi.org/10.24069/SEP-22-40 (In Russian)

Kogure, G. S., Silva, R. C., Ribeiro, V. B., Mendes, M. C., Menezes-Reis, R., Ferriani, R. A., Furtado, C., and Reis, R. 2020. Concordance in prediction body fat percentage of Brazilian women in reproductive age between different methods of evaluation of skinfolds thickness. Archives of Endocrinology and Metabolism 64(3):257–268. https://doi.org/10.20945/2359-3997000000246

Martirosov, E. G., Nikolaev, D. V., and Rudnev, S. G. 2006. Technologies and methods of human body composition assessment. 248 pp. Nauka Publ. Moscow. (In Russian)

Miclos-Balica, M., Muntean, P., Schick, F., Haragus, H. G., Glisici, B., Pupazan, V., Neagu, A., and Neagu, M. 2021. Reliability of body composition assessment using A‑mode ultrasound in a heterogeneous sample. European Journal of Clinical Nutrition 75(3):438–445. https://doi.org/10.1038/s41430-020-00743-y

Nickerson, B. S., McLester, C. N., McLester, J. R., and Kliszczewicz, B. M. 2020. Agreement between 2 segmental bioimpedance devices, BOD POD, and DXA in obese adults. Journal of Clinical Densitometry: the official journal of the International Society for Clinical Densitometry 23(1):138–148. https://doi.org/10.1016/j.jocd.2019.04.005

Nikolaev, D. V., Smirnov, A. V., Bobrinskaya, I. G., and Rudnev, S. G. 2009. Bioelectric impedance analysis of human body composition. 392 pp. Nauka Publ. Moscow. (In Russian)

Pedrera-Zamorano, J. D., Roncero-Martin, R., Lavado-Garcia, J. M., Calderon-Garcia, J. F., Rey-Sanchez, P., Vera, V., Martinez, M., and Moran, J. M. 2015. Segmental fat-free and fat mass measurements by bioelectrical impedance analysis in 2,224 healthy Spanish women aged 18–85 years. American Journal of Human Biology 27:468–474. https://doi.org/10.1002/ajhb.22669

Pérez-Chirinos Buxadé, C., Solà-Perez, T., Castizo-Olier, J., Carrasco-Marginet, M., Roy, A., Marfell-Jones, M., and Irurtia, A. 2018. Assessing subcutaneous adipose tissue by simple and portable field instruments: Skinfolds versus A-mode ultrasound measurements. PloS ONE 13(11):e0205226. https://doi.org/10.1371/journal.pone.0205226

Price, K. L. and Earthman, C. P. 2019. Update on body composition tools in clinical settings: computed tomography, ultrasound, and bioimpedance applications for assessment and monitoring. European Journal of Clinical Nutrition 73(2):187–193. https://doi.org/10.1038/s41430-018-0360-2

Rudnev, S., Burns, J. S., Williams, P. L., Lee, M. M., Korrick, S. A., Denisova, T., Dikov, Y., Kozupitsa, G., Hauser, R., and Sergeyev, O. 2020. Comparison of bioimpedance body composition in young adults in the Russian Children’s Study. Clinical Nutrition ESPEN 35:153–161. https://doi.org/10.1016/j.clnesp.2019.10.007

Soboleva, N. P., Rudnev, S. G., Nikolayev, D. V., Eryukova, Т. A., Kolesnikov, V. A., Melnitchneko, O. A., Ponomareva, E. G., Starunova, O. A., and Sterlikov, S. A. 2014. The bioimpedance screening of population in health centers: prevalence of surplus body mass and obesity. Russian Medical Inquiry 4:4–13. (In Russian)

Tinsley, G. M. 2021. Five-component model validation of reference, laboratory and field methods of body composition assessment. The British Journal of Nutrition 125(11):1246–1259. https://doi.org/10.1017/S0007114520003578

Wagner, D. R. and Teramoto, M. 2020. Interrater reliability of novice examiners using A-mode ultrasound and skinfolds to measure subcutaneous body fat. PloS ONE 15(12):e0244019. https://doi.org/10.1371/journal.pone.0244019

Wagner, D. R. 2013. Ultrasound as a tool to assess body fat. Journal of Obesity 2013:280713. https://doi.org/10.1155/2013/280713

Downloads

Published

2023-11-30

How to Cite

Bondareva, E., Parfenteva, O., Vasileva, A., Kulemin, N., Gadzhiakhmedova, A., Kovaleva, O., & Khromov-Borisov, N. (2023). Agreement of bioimpedance analysis and ultrasound scanning for fat mass, fat free mass and body fat percentage evaluation in the group of adult women. Biological Communications, 68(3), 173–180. https://doi.org/10.21638/spbu03.2023.305

Issue

Section

Full communications

Categories