Preferable and limiting conditions of trans-Palearctic Orthocephalus species (Heteroptera: Miridae)

Authors

  • Anna Namyatova Laboratory of Phytosanitary Diagnostics and Forecasts, All-Russian Institute of Plant Protection, Shosse Podbel'skogo, 3, Saint Petersburg, 190608, Russian Federation; Laboratory of Insect Taxonomy, Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, Saint Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-9678-3430

DOI:

https://doi.org/10.21638/spbu03.2022.305

Abstract

The environmental conditions limiting the distribution of trans-Palearctic species from various groups remain poorly studied. This work addresses the topic from three perspectives: (1) analysis of climatic variables, biomes and climate zones corresponding to the actual records; (2) assessment of environmental niches and contribution of biomes to those niches; (3) comparison of the distributional limits of trans-Palearctic and more local species. The genus Orthocephalus (Insecta: Heteroptera: Miridae) is used as a model taxon. The results have demonstrated that all trans-Palearctic species of this genus are known from numerous biomes and climate zones, but each of them has unique preferences. Biomes significantly contribute to the environmental niches of some of those species. None of the trans-Palearctic species were recorded from the hot steppe and desert climate zones, which occupy large areas in the Palearctic, although certain rare and local species inhabit those regions. This means that the trans-Palearctic species cannot easily adapt to those conditions.

Keywords:

distribution, climatic variables, climate zones, biomes, plant bugs, insects, environmental niche modelling

Downloads

Download data is not yet available.
 

References

Arnold, K. 2008. Aktuelle Heteropteren-Funde nach 1980 aus dem Freistaat Sachsen (Insecta: Hemiptera) 2. Beitrag. Faunistische Abhandlungen 25:79–89.

Bale, J. S. 1996. Insect cold hardiness: a matter of life and death. European Journal of Entomology 93:369–382.

Bohl, C. L., Kass, J. M., and Anderson, R. P. 2019. A new null model approach to quantify performance and significance for ecological niche models of species distributions. Journal of Biogeography 46(6):1101–1111. https://doi.org/10.1111/jbi.13573

Beukema, W., Martel, A., Nguyen, T. T., Goka, K., Schmeller, D. S., Yuan, Z., Laking, A. E., Nguen, T. Q., Lin, C.-F., Shelton, J., Loyau, A., and Pasmans, F. 2018. Environmental context and differences between native and invasive observed niches of Batrachochytrium salamandrivorans affect invasion risk assessments in the Western Palaearctic. Diversity and Distributions 24(12):1788–1801. https://doi.org/10.1111/ddi.12795

Beaumont, L. J., Hughes, L., and Poulsen, M. 2005. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling 186(2):251–270. https://doi.org/10.1016/j.ecolmodel.2005.01.030

Cho, Y. B., Yoon, S. J., Yoon, S. M., Ryu, J. W., Min, H. K., and Oh, K. S. 2008. Insect fauna of Gyeongju National Park, Korea. Journal of Korean Nature 1(1):11–20. https://doi.org/10.1016/s1976-8648(14)60122-5

Cho, Y. J., Lee, Y. H., Oh, J. B., Suh, S. J., and Choi, D. S. 2011. Some notes on the insect fauna of Gadeok-do Island. Journal of Korean Nature 4(4):319–324. https://doi.org/10.7229/jkn.2011.4.4.319

Clark, M. S. and Worland, M. R. 2008. How insects survive the cold: molecular mechanisms — a review. Journal of Comparative Physiology B 178(8):917–933. https://doi.org/10.1007/s00360-008-0286-4

Conradi, T., Slingsby, J. A., Midgley, G. F., Nottebrock, H., Schweiger, A. H., and Higgins, S. I. 2020. An operational definition of the biome for global change research. New Phytolologist 227(5):1294–1306. https://doi.org/10.1111/nph.16580

Crisp, M. D., Arroyo, M. T., Cook, L. G., Gandolfo, M. A., Jordan, G. J., McGlone, M. S., Weston, P. H., Westoby, M., Wilf, P., and Linder, H. P. 2009. Phylogenetic biome conservatism on a global scale. Nature 458(7239):754–756. https://doi.org/10.1038/nature07764

Dioli, P. 1993. Eterotteri insubrici ed eterotteri xerotermici nei territori perilacustri della Lonbardia e del Ticino. Societa Ticinese di Scienze Naturale Memorie. 11:81–86.

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., and Yates, C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1):43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Estrada-Peña, A., Sánchez, N., and Estrada-Sánchez, A. 2012. An assessment of the distribution and spread of the tick Hyalomma marginatum in the western Palearctic under different climate scenarios. Vector Borne and Zoonotic Diseases 12(9):758–768. https://doi.org/10.1089/vbz.2011.0771

Estrada-Peña, A., Farkas, R., Jaenson, T. G., Koenen, F., Madde, M., Pascucci, I., Salman, M., Tarrés-Call, J., and Jongejan, F. 2013. Association of environmental traits with the geographic ranges of ticks (Acari: Ixodidae) of medical and veterinary importance in the western Palearctic. A digital data set. Experimental and Applied Acarology 59(3):351–366. https://doi.org/10.1007/s10493-012-9600-7

Frieß, T. 2006. Naturschutzfachliche Analyse der Wanzenfauna (Insecta, Heteroptera) unterschiedlicher Almflächen im Nationalpark Gesäuse (Österreich, Steiermark). Denisia 19:857–873.

Frieß, T. 2014. Die Wanzenfauna (Insecta: Heteroptera) des Nationalparks Gesäuse (Österreich, Steiermark). Beiträge zur Entomofaunistik 15:21–59.

Fields, P. G. 1992. The control of stored-product insects and mites with extreme temperatures. Journal of Stored Products Research 28(2):89–118. https://doi.org/10.1016/0022-474X(92)90018-L

Filazzola, A., Sotomayor, D. A., and Lortie, C. J. 2018. Modelling the niche space of desert annuals needs to include positive interactions. Oikos 127(2):264–273. https://doi.org/10.1111/oik.04688

Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., and Wang, G. 2006. Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology 46(1):5–17. https://doi.org/10.1093/icb/icj003

Gierlański, G. 2017. Nowe dane o występowaniu pluskwiaków różnoskrzydłych (Hemiptera: Heteroptera) na użytkach zielonych w Masywie Śnieżnika (Sudety Wschodnie). Heteroptera Poloniae. Acta Faunistica 11:63–72.

Gorczyca, J. and Chłond, D. 2005. Orthotylinae of Poland — faunistic review (Hemiptera, Heteroptera, Miridae). Annals of the Upper Silesian Museum (Entomology) 13:87–134.

Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J., and Moritz, C. 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58(8):1781–1793. https://doi.org/10.1554/03-274

Halimi, E., Paparisto, A., and Topi, D. 2014. Systematic and ecological analysis on plant bugs (Miridae, Hemiptera) in the habitats of Lushnja region. Albanian Journal of Agricultural Sciences 295–298.

Hanberry, B. B. 2013. Finer grain size increases effects of error and changes influence of environmental predictors on species distribution models. Ecological Informatics 15:8–13. https://doi.org/10.1016/j.ecoinf.2013.02.003

Jueterbock, A., Smolina, I., Coyer, J. A., and Hoarau, G. 2016. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Ecology and Evolution 6(6):1712–1724. https://doi.org/10.1002/ece3.2001

Jueterbock, A. 2018. MaxentVariableSelection: Selecting the Best Set of Relevant Environmental Variables along with the Optimal Regularization Multiplier for Maxent Niche Modeling.

Jung, S., Kim, J., and Duwal, R. K. 2017. An annotated catalogue of the subfamily Orthotylinae (Hemiptera: Heteroptera: Miridae) from the Korean Peninsula. Journal of Asia-Pacific Biodiversity 10(3):403–408. https://doi.org/10.1016/j.japb.2017.05.006

King, A. M. and MacRae, T. H. 2015. Insect heat shock proteins during stress and diapause. Annual Review of Entomology 60:59–75. https://doi.org/10.1146/annurev-ento-011613-162107

Kment, P. and Baňař, P. 2012. True bugs (Hemiptera: Heteroptera) of the Bílé Karpaty Protected Landscape Area and Biosphere Reserve (Czech Republic). Acta Musei Moraviae, Scientiae biologicae 96(2):323–628.

Kondorosy, E. 2011. Keszthely és környéke poloskafaunájának alapvetése (Heteroptera). Folia Musei Historico-Naturalis Bakonyiensis 28:105–145.

Konstantinov, F. V. and Namyatova, A. A. 2019. Taxonomic revisions and specimen databases in the internet age: dealing with a species rich insect taxon. Entomological Review 99(3):340–361. https://doi.org/10.1134/S0013873819030072

Koštál, V. and Tollarová-Borovanská, M. 2009. The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus. PloS One 4(2):e4546. https://doi.org/10.1371/journal.pone.0004546

Kozminykh, V. O. and Naumkin, D. V. 2017. True bugs (Insecta, Heteroptera) of the Basegi Nature Reserve and notes on the heteropterous fauna of the Northern Urals Fauna Urala i Sibiri 1:90–100. [In Russian]

Kramer‐Schadt, S., Niedballa, J., Pilgrim J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckman, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J. W., Breitenmoser-Wuersten, C., Belant, J. L., Hofer, H., and Wilting, A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19(11):1366–1379. https://doi.org/10.1111/ddi.12096

Lim, J. S., Lee B. W., Park S. Y., and Jo, D. G. 2011. Insect fauna of Maebongsan mountain, Hongcheon-gun, Gangwon-do. Journal of Korean Nature 4(4):293–307. https://doi.org/10.7229/jkn.2011.4.4.293

Lim, J. S., Park, S. Y., Lee, B. W., and Jo, D. G. 2012. A faunistic study of insects from Daebudo and Youngheungdo Islands in Korea. Journal of Korean Nature 5(4):311–325. https://doi.org/10.7229/jkn.2012.5.4.000

Lim, J. S., Park S. Y., and Lee, B. W. 2013a. A study on the insect fauna in and around Goseong-gun, Gangwon-do, South Korea. Journal of Asia-Pacific Biodiversity 6(2):221–237. https://doi.org/10.7229/jkn.2013.6.2.221

Lim, J. S., Park, S. Y., Lim, J. O., and Lee, B. W. 2013b. A faunistic study of insects from Is. Ulleungdo and its nearby islands in South Korea. Journal of Asia-Pacific Biodiversity 6(1):93–121. https://doi.org/10.7229/jkn.2013.6.1.093

Liu, C., Newell, G., and White, M. 2016. On the selection of thresholds for predicting species occurrence with presence‐only data. Ecology and Evolution 6(1):337–348. https://doi.org/10.1002/ece3.1878

Lohman, D. J., Peggie D., Pierce N. E., and Meier, R. 2008. Phylogeography and genetic diversity of a widespread Old World butterfly, Lampides boeticus (Lepidoptera: Lycaenidae). BMC Evolutionary Biology 8(1):1–14. https://doi.org/10.1186/1471-2148-8-301

McDowell, W. G., Benson, A. J., and Byers, J. E. 2014. Climate controls the distribution of a widespread invasive species: implications for future range expansion. Freshwater Biology 59(4):847–857. https://doi.org/10.1111/fwb.12308

Melber, A., Günther, H., and Rieger, C. 1991. Die Wanzenfauna des österreichischen Neusiedlerseegebietes (Insecta, Heteroptera). Wissenschaftliche Arbeiten aus dem Burgenland 89:63–192.

Mudereri, B. T., Mukanga, C., Mupfiga, E. T., Gwatirisa, C., Kimathi, E., and Chitata, T. 2020. Analysis of potentially suitable habitat within migration connections of an intra-African migrant-the Blue Swallow (Hirundo atrocaerulea). Ecological Informatics 57:101082. https://doi.org/10.1016/j.ecoinf.2020.101082

Muscarella, R., Galante P. J., Soley‐Guardia, M., Boria, R. A., Kass, J. M., Uriarte M., and Anderson, R. P. 2014a. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5(11):1198–1205. https://doi.org/10.1111/2041-210X.12261

Muscarella, R., Kass, J. M., and Galante, R. 2014b. ENMeval Vignette.

Namyatova, A. A. 2020. Climatic niche comparison between closely related trans-Palearctic species of the genus Orthocephalus (Insecta: Heteroptera: Miridae: Orthotylinae). PeerJ 8:e10517. https://doi.org/10.7717/peerj.10517

Namyatova, A. A. and Konstantinov, F. V. 2009. Revision of the genus Orthocephalus Fieber, 1858 (Hemiptera: Heteroptera: Miridae: Orthotylinae). Zootaxa 2316(1):1–118. https://doi.org/10.11646/zootaxa.2358.1.6

Nikolaeva, A. M. 2011. The preliminary list of the terrestrial heteropteran species (Insecta: Heteroptera) of the Mescchera National Park. Trudy Mordovskogo Gosudarstvennogo Prirodnogo Zapovedika Imeni Smidovicha 14:316–322. [In Russian]

O’Donnell, M. S. and Ignizio, D. A. 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geological Survey Data Series 691, 10 p. https://doi.org/10.3133/ds691

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R. 2001. Terrestrial ecoregions of the World: a new map of life on Earth. A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11):933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Overgaard, J., Kristensen, T. N., Mitchell, K. A., and Hoffmann, A. A. 2011. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? The American Naturalist 178(S1):S80–S96. https://doi.org/10.1086/661780

Overgaard, J. and MacMillan, H. A. 2017. The integrative physiology of insect chill tolerance. Annual Review of Physiology 79:187–208. https://doi.org/10.1146/annurev-physiol-022516-034142

Park, S. J., Kwon, H., Park, S. K., and Park, D. S. 2013. Comparative insect faunas between Ganghwado and six others islands of West Coastal in Incheon, Korea. Journal of Asia-Pacific Biodiversity 6(2):197–219. https://doi.org/10.7229/jkn.2013.6.2.197

Parolo, G., Rossi, G., and Ferrarini, A. 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology 45(5):1410–1418. https://doi.org/10.1111/j.1365-2664.2008.01516.x

Peel, M. C., Finlayson, B. L., and McMahon, T. A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

Peterson, A. T. and Nakazawa, Y. 2008. Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecolology and Biogeography 17(1):135–144. https://doi.org/10.1111/j.1466-8238.2007.00347.x

Pearson, R. G., Raxworthy, C. J., Nakamura, M., and Peterson, T. A. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34(1):102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

Phillips S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., and Ferrier, S. 2009. Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data. Ecological Applications 19(1):181–197. https://doi.org/10.1890/07-2153.1

Putshkov, V. G. 1961. A new genus and two species from the tribe Halticini Kirk. (Miridae, Heteroptera) from East Ukraine. Zoologicheskii Zhurnal 15:25–30. [In Russian]

Pyron, A. R. and Burbrink, F. T. 2009. Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake, Lampropeltis getula. Molecular Ecology 18(16):3443–3457. https://doi.org/10.1111/j.1365-294X.2009.04292.x

Renault, D., Salin, C., Vannier, G., and Vernon, P. 2002. Survival at low temperatures in insects: what is the ecological significance of the supercooling point? CryoLetters 23(4):217–228.

Ribes, J. 1989. Mescellinea Fauna Iberica. (Heteroptera). Sessió Conjunta d´Entomologia VI:19–35.

Rinehart, J. P., Li, A., Yocum, G. D., Robich, R. M., Hayward, S. A., and Denlinger, D. L. 2007. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proceedings of the National Academy of Sciences 104(27):11130–11137. https://doi.org/10.1073/pnas.0703538104

Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., and Firth, D. 2020. Package “MASS”.

Roháčová, M. 2007. True bugs (Heteroptera) of the Natural Monument Kamenná after twenty years. Práce a Studie Musea Beskyd, Přírodní Vědy (Frýdek-Místek) 15:43–58.

Rubel, F. and Kottek, M. 2010. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift 19(2):135–141. https://doi.org/10.1127/0941-2948/2010/0430

Shcheglovitova, M. and Anderson, R. P. 2013. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecological Modelling 269:9–17. https://doi.org/10.1016/J.ECOLMODEL.2013.08.011

Shi, K., Li, Y., and Bao, C. 2016. Study on species diversity, zoogeographical distribution and ecological properties of the Miridae (Hemiptera) family in the Hulun Buir City, Inner Mongolia of China. International Proceedings of Chemical, Biological and Environmental Engineering 91:4–47.

Sinclair, B. J., Ferguson, L. V., Salehipour-Shirazi, G., and MacMillan, H. A. 2013. Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects. Integrative and Comparative Biology 53(4):545–556. https://doi.org/10.1093/icb/ict004

Sofronova, E. V. 2017. The true bugs (Hemiptera, Heteroptera) of the Baykalo-Lenskiy Reserve with new records from Irkutskaya Oblast’ in East Siberia, Russia. Euroasian Entomological Journal 16(3):207–212. [In Russian]

Stohlgren, T. J., Pyšek, P., Kartesz, J., Nishino, M., Pauchard, A., Winter, M., Pino, J., Richardson, D. M., Wilson, J. R. U., Murray, B. R., Phillips, M. L., Ming-yang, L., Celesti-Grapow, L., and Font, X. 2011. Widespread plant species: natives versus aliens in our changing world. Biological Invasions 13(9):1931–1944. https://doi.org/10.1007/s10530-011-0024-9

Tamanini, L. 1981. Gli eterotteri della Basilicata e della Calabria (Italia meridionale) (Hemiptera, Heteroptera). Memorie del Museo civico di storia naturale di Verona ser. 2 3:1–164.

Terhzaz, S., Teets, N. M., Cabrero, P., Henderson, L., Ritchie, M. G., Nachman, R. J., Dow, J. A. T., Denlinger, D. L., and Davies, S. A. 2015. Insect capa neuropeptides impact desiccation and cold tolerance. Proceedings of the National Academy of Sciences 112(9):2882–2887. https://doi.org/10.1073/pnas.1501518112

Thuiller, W., Richardson, D. M., Pyšek, P., Midgley, G. F., Hughes, G. O., and Rouget, M. 2005. Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11(12):2234–2250. https://doi.org/10.1111/j.1365-2486.2005.001018.x

Velasco, J. A. and González-Salazar, C. 2019. Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecological Informatics 51:25–32. https://doi.org/10.1016/j.ecoinf.2019.02.005

Vinokurov, N. N. and Khruleva, O. A. 2021. Bugs (Heteroptera) of treeless areas of Chukotka (Russia). Ecologica Montenegrina 41(1):15–34. https://doi.org/10.37828/em.2021.41.4

Vinokurov, N. N., Kanyukova, E. V., and Ostapenko, K. A. 2016. Homoptera (Cicadina) and Heteroptera of the Sikhote-Alin State Nature Biosphere reserve. Amurian Zoological Journal 8(4):233–249. [In Russian]

Vinokurov, N. N., Golub, V. B., and Zinovjeva, A. N. 2017. Plant bugs (Heteroptera, Miridae) of the South Urals State Nature Reserve. II. Orthotylinae, Phylinae. Eurasian Entomological Journal 16(3):247–252.

Wan, J. Z., Wang, C. J., and Yu, F. H. 2017. Wind effects on habitat distributions of wind-dispersed invasive plants across different biomes on a global scale: Assessment using six species. Ecological Informatics 42:38-45. https://doi.org/10.1016/j.ecoinf.2017.09.002

Warren, D. L., Glor, R. E., and Turelli, M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x

Williams, K. J., Belbin, L., Austin, M. P., Stein, J. L., and Ferrier, S. 2012. Which environmental variables should I use in my biodiversity model? International Journal of Geographical Information Science 26(11):2009–2047. https://doi.org/10.1080/13658816.2012.698015

Downloads

Published

2022-10-10

How to Cite

Namyatova, A. (2022). Preferable and limiting conditions of trans-Palearctic <em>Orthocephalus</em> species (Heteroptera: Miridae). Biological Communications, 67(3), 180–202. https://doi.org/10.21638/spbu03.2022.305

Issue

Section

Full communications

Categories