The crocodilian forearm and wrist: biomechanics and functional morphology

Authors

  • Dmitriy Pashchenko Borissiak Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya, 123, Moscow, 117997, Russian Federation https://orcid.org/0000-0001-8256-5432

DOI:

https://doi.org/10.21638/spbu03.2022.304

Abstract

An attempt has been made to explain the features of the wrist structure of crocodiles, which sharply distinguish them from other reptiles. Biomechanical model of a crocodilian forearm and manus is created with using of the vector contours method from the theory of mechanisms and machines. The key role of the V finger in the manus stability during the stance phase is shown. On the basis of this data, it is concluded that there is no bipedal stage in evolutionary history of crocodiles and their high specialization for quadrupedal parasagittal running with the emergence of a gallop as a result. The special way of parasagittal forelimb posture of the crocodiles offered to name instant parasagittality.

Keywords:

crocodiles, forelimb, wrist, biomechanics, high walk, parasagittalization

Downloads

Download data is not yet available.
 

References

Artobolevsky, I. I. 1988. The theory of mechanisms and machines. Moscow, Nauka. (In Russian)

Colbert, E. H. and Mook, C. C. 1951. The ancestral crocodilian Protosuchus. Bulletin of the American Museum of Natural History 97(3):143–182.

Baier, D. B., Garrity, B. M., Moritz, S., and Carney, R. M. 2018. Alligator mississippiensis sternal and shoulder girdle mobility increase stride length during high walks. Journal of Experimental Biology 221(22):jeb186791. https://doi.org/10.1242/jeb.186791

de Bakker, M. A. G., Fowler, D. A., den Oude, K., Dondorp, E. M., Navas, M. C. G., Horbanczuk, J. O., Sire, J.-Y., Szczerbińska, D., and Richardson, M. K. 2013. Digit loss in archosaur evolution and the interplay between selection and constraints. Nature 500(7463):445–448. https://doi.org/10.1038/nature12336

Farlow, J. O., Robinson, N. J., Kumagai, C. J., Paladino, F. V., Falkingham, P. L., Elsey, R. M., and Martin, A. J. 2017. Trackways of the American crocodile (Crocodylus acutus) in Northwestern Costa Rica: Implications for crocodilian ichnology. Ichnos 25(1):30–65. https://doi.org/10.1080/10420940.2017.1350856

Frey, E. 1985. Biomechanics of terrestrial locomotion in crocodiles. Principles of Construction in Fossil and Recent Reptiles 4:145–167.

Gauthier, J. A., Nesbitt, S. J., Schachner, E. R., Bever, G. S., and Joyce, W.G. 2011. The bipedal stem crocodilian Poposaurus gracilis: inferring function in fossils and innovation in archosaur locomotion. Bulletin of the Peabody Museum of Natural History 52(1):107–126. https://doi.org/10.3374/014.052.0102

Kubo, T. and Kubo, M. O. 2012. Associated evolution of bipedality and cursoriality among Triassic archosaurs: a phylogenetically controlled evaluation. Paleobiology 38(3):474–485. https://doi.org/10.1666/11015.1

Martin, J. E. and Benton, M. J. 2008. Crown clades in vertebrate nomenclature: correcting the definition of Crocodylia. Systematic Biology 57(1):173–181. https://doi.org/10.1080/10635150801910469

Meers, M. B. 2003. Crocodylian forelimb musculature and its relevance to Archosauria. The Anatomical Record. Part A 274(2):891–916. https://doi.org/10.1002/ar.a.10097

Müller, G. B. and Alberch, P. 1990. Ontogeny of the limb skeleton in Alligator mississippiensis: developmental invariance and change in the evolution of archosaur limbs. Journal of Morphology 203(2):151–164. https://doi.org/10.1002/jmor.1052030204

Pashchenko, D. I. 2018. A new interpretation of the crocodile forelimb morphological features as adaptation to parasagittal quadrupedal locomotion on the ground. Doklady Biological Sciences 483(1):235–238. https://doi.org/10.1134/S0012496618060054

Persons, W. S. and Currie, P. J. 2017. The functional origin of dinosaur bipedalism: cumulative evidence from bipedally inclined reptiles and disinclined mammals. Journal of Theoretical Biology 420:1–7. https://doi.org/10.1016/j.jtbi.2017.02.032

Preuschoft, H., Horn, H. G., and Christian, A. 1994. Biomechanical reasons for bipedalism in reptiles. Amphibia-Reptilia 15(3):275–284. https://doi.org/10.1163/156853894X00056

Romer, A. S. 1956. Osteology of Reptiles. Chicago, The University of Chicago Press.

Sheth, R., Marcon, L., Bastida, M. F., Junco, M., Quintana, L., Dahn, R., Kmita, M., Sharpe, J., and Ros, M. A. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338(6113):1476–1480.
https://doi.org/10.1126/science.1226804

Sennikov, A. G. 1989. Fundamental evolutional consistent patterns of archosaurian locomotor apparatus. Paleontologicheskiy zhournal 4:63–72. (In Russian)

Sennikov, A. G. 1995. Early thecodonts of Eastern Europe. Moscow, Nauka. (In Russian)

Vazquez, R. J. 1994. The automating skeletal and muscular mechanisms of the avian wing (Aves). Zoomorphology 114(1):59–71. https://doi.org/10.1007/BF00574915

von Huene, F. 1913. Beobachtungen über die Bewegungsart der Extremitäten bei Krokodilien. Biologisches Centralblatt 33:468–472.

Walker, A. D. 1972. New light on the origin of birds and crocodiles. Nature 237(5353):257–263. https://doi.org/10.1038/237257a0

Zanno, L. E., Drymala, S., Nesbitt, S. J., and Schneider, V. P. 2015. Early crocodylomorph increases top tier predator diversity during rise of dinosaurs. Scientific Reports 5:9276. https://doi.org/10.1038/srep09276

Downloads

Published

2022-10-10

How to Cite

Pashchenko, D. (2022). The crocodilian forearm and wrist: biomechanics and functional morphology. Biological Communications, 67(3), 168–179. https://doi.org/10.21638/spbu03.2022.304

Issue

Section

Full communications

Categories