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Abstract

Agrobacterium-mediated gene transfer leads to crown gall or hairy roots dis-
ease, due to expression of transferred T-DNA genes. Spontaneous plant regen-
eration from the transformed tissues can produce natural transformants car-
rying cellular T-DNA (cT-DNA) sequences of agrobacterial origin. In 2019, based
on genomic sequencing data, cT-DNA horizontally transferred from Agrobacte-
rium were found in two dozen species of angiosperms. This made it possible
to evaluate the spread of this phenomenon, as well as make some generaliza-
tions regarding the diversity of horizontally transferred genes. The presented
research is a continuation of work in this field. It resulted in the description
of new naturally occurring transgenic species Aeschynomene evenia C. Wright,
Eperua falcata Aubl., Eucalyptus cloeziana F. Muell., Boswellia sacra Flueck., Kewa
caespitosa (Friedrich) Christenh., Pharnaceum exiguum Adamson, Silene nocti-
flora L., Nyssa sinensis Oliv., Vaccinium corymbosum L., Populus alba L. x Populus
glandulosa Moench. The previously identified patterns regarding the frequency
of the occurrence of natural transformants and the general properties of the
cT-DNAs were confirmed in this study.
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Introduction

Agrobacterium-mediated transformation is the most common method for obtain-
ing genetically modified plants. It is based on the ability of these soil bacteria to
transfer a fragment of their plasmid (T-DNA, transferred DNA) and integrate
it into the chromosome of the host plant. In nature, such a transfer leads to the
development of two types of diseases: crown gall and hairy root diseases. These
neoplasms are transgenic tissues on a non-transgenic plant. Scientists have man-
aged to replace T-DNA genes with the sequences they need, transfer them us-
ing agrobacterial vectors into plant cells, and regenerate whole plants from such
transgenic cells (Nester, 2014). It turned out that similar processes occur in na-
ture, since plants were found to contain sequences homologous to the T-DNA of
Agrobacterium in their genomes (Chen and Otten, 2017; Matveeva, 2018). This
T-DNA was named cellular T-DNA (cT-DNA). The first such plants were found
within the genus Nicotiana (White et al., 1983), and more than 20 years later in
the genomes of Linaria and Ipomoea (Matveeva et al., 2012; Kyndt et al., 2015).
Until 2019, the list of naturally transgenic plants was limited to these three genera.
Digressing slightly from the main topic, we want to note that we are aware that the
phylogeny of the genus Agrobacterium has been revised since the first discovery
of T-DNA in wild plants (Young et al., 2001, 2003; Farrand et al., 2003); however,
in the text of the manuscript we will use the collective term Agrobacterium as a
tribute to tradition, and also because of the impossibility of accurately identifying
the type of bacteria that participated in the transformation of the plant millions
of years ago. The small fragments of T-DNA present in plant genomes are not
sufficient for this. At the same time, further in the text of the manuscript, when
indicating the closest of the modern strains, we will provide their modern name.
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The development of genomic sequencing and bio-
informatics methods have opened up new opportuni-
ties for the search for new natural GMOs. Such a search
was crowned with success in 2019 (Matveeva and Otten,
2019): another two dozen species, the ancestors of which
underwent Agrobacterium-mediated transformation dur-
ing their evolution, were described within the genera Eu-
trema, Arachis, Nissolia, Quillaja, Euphorbia, Parasponia,
Trema, Humulus, Psidium, Eugenia, Juglans, Azadirachta,
Silene, Dianthus, Vaccinium, Camellia and Cuscuta. Anal-
ysis of transcriptome data revealed an additional list of
natural transformants. However, the degree of confidence
in natural transgenicity based on transcriptomic data is
lower than that based on results of genome sequencing
and assembly. This is due to the lack of information about
the localization site of the sequences, which leads to the
possibility that the sequences result from Agrobacterium
DNA contamination. The most interesting results of tran-
scriptome assembly were several T-DNA-like sequences
of the representatives of the genus Diospyros, containing
a combination of opine and plast-genes. Matveeva and
Otten’s (2019) study was done exclusively using bioinfor-
matic analysis of published sequences of plant genomes.
A few months later, an article was published in which
molecular methods confirmed the presence of T-DNA in
plants of the genus Cuscuta, previously identified by bio-
informatics means (Zhang et al., 2020). Numerous new
examples of natural transformants show that at least 7%
of the dicotyledonous species are naturally transformed
plants, and provide valuable material for studying the role
of horizontal gene transfer in plant evolution (Matveeva
and Otten, 2019). These results also serve as an important
argument in support of GMOs.

A year has passed since the publication of Matveeva
and Otten (2019). During this time, new plant genomes
were sequenced and deposited in the NCBI database
(O’Leary et al. 2016). The aim of this work was to update
the list of naturally transgenic plants taking into account
new NGS data, and generalize all the results obtained.

Material and methods

The search for T-DNA-like sequences was done based
on National Center for Biotechnology Information
(NCBI) Whole-Genome Shotgun (WGS) contigs of all
plant genomes sequenced since April 2019 to date, us-
ing the TBLASTN algorithm with default settings. In the
second step, Vir protein sequences were used to search
for possible Agrobacterium contaminations in those ge-
nomes. In the third step, contigs that potentially encod-
ed T-DNA-like protein sequences with identity levels
30% or higher were analyzed further. They were used
as queries in BLASTX with default settings to detect the
closest protein homologs and to identify proteins encod-
ed by plant genes surrounding the ¢cT-DNA. All query

sequences are detailed in our previous paper (Matveeva
and Otten, 2019). The Vector NTI AdvanceTM software
was used to build the cT-DNA maps.

Phylogenetic analysis of rolB/C homologs was done
in MEGA 7.0 (Kumar et al., 2016) by using the Maximum
Likelihood method based on the JTT matrix-based model
(Jones et al., 1992) (In addition, the Dayhoff matrix based
model (Schwarz and Dayhof, 1979), Poisson correction
model (Zuckerkandl and Pauling, 1965) and Equal Input
model (Tajima and Nei, 1984) were used for more reliable
conclusions). The bootstrap consensus tree inferred from
500 replicates was taken to represent the evolutionary his-
tory of the taxa analyzed (Felsenstein, 1985). Branches
corresponding to partitions reproduced in less than 50 %
bootstrap replicates were collapsed. Initial tree(s) for the
heuristic search were obtained automatically by apply-
ing Neighbor-Join and BioNJ algorithms to a matrix of
pairwise distances estimated using a JTT model, and then
selecting the topology with superior log likelihood value.
The analysis involved 19 amino acid sequences. All posi-
tions with less than 95% site coverage were eliminated.
That is, fewer than 5% alignment gaps, missing data, and
ambiguous bases were allowed at any position. There were
a total of 140 positions in the final dataset.

The supplementary materials present a similar anal-
ysis performed by UPGMA method (Sneath and Sokal,
1973) and neighbor-joining method (Saitou Nei, 1987).

Results and discussion

Since April 2019 (Matveeva and Otten, 2019), the ge-
nomes of another 206 angiosperm species have been
sequenced. New examples of natural GMOs were identi-
fied in 10 species (about 5%) from 10 genera, 9 fami-
lies and 7 orders, according to the previously described
methodology (Matveeva and Otten, 2019). They are list-
ed in Table 1. Schemes of extended cT-DNAs are shown
in Figure 1.

For representatives of two genera, the cT-DNA
structure was specified. At the same time, their trans-
genic nature was described earlier.

Until recently, two variants of cT-DNA have been
characterized in plants of the genus Ipomoea (Kyndt
et al,, 2015; Quispe-Huamangquispe et al., 2019). In
our study, based on the genome sequences of I. trifida
(Kunth) G. Don and I. batatas (L.) Lam., a new ¢T-DNA
variant was discovered. It contains mas2’-like and masI -
like sequences. The fragment that we found in I trifida
was named It-TDNA3. A similar (86 %) fragment was
also found in I. batatas. At the same time, the boundary
sequences of plant origin are 97 % similar, showing that
they result from the same transformation event. The da-
tabase also contains short contigs containing mas2’ ho-
mologues. However, it is not possible to attribute them
to any extended sequence. Further research is required
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Fig. 1. Structure of cT-DNA plant species. (Wide green arrows show sequences similar to Agrobacterium T-DNA genes, blue arrows show inverted
repeats, green thin arrows show direct repeats. Red arrows show short repeating sequences).

to clarify the nature of these sequences. Therefore, they
are not currently listed in the results table.

We predicted a cT-DNA in Diospyros lotus L. (date-
plum) based on the analysis of the TSA database (Matve-
eva and Otten, 2019). Analysis of the results of genome
assembly made it possible to describe seven variants of
cT-DNA in this species, representing footprints of sever-
al independent transformation events in the evolution of

this species (Fig. 1). DI-TDNA1 and 2 are located close to
the boundaries of the assembled sequences. They share
99 % similarity and may be part of the same cT-DNA. If
so, then this is the youngest cT-DNA in the genome of
this species, which can be dated by the repeat structure.
It is followed by DI-TDNAS5, 7 and 6. DI-TDNAG is the
oldest one. Other traces of multiple acts of agrobacte-
rial transformation in the evolution of ancestral forms of
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Fig. 2. Molecular phylogenetic analysis of ro/B/C homologs from Rhizobium, Ensifer, Laccaria, Ipomoea, Vaccinium and Nyssa species by Maximum
Likelihood method based on the JTT matrix-based model. (Dayhoff matrix based model, Poisson correction model and Equal Input model re-
sulted to the same topology of the tree). The cluster containing new ro/B/C-like gene is outlined in red.

modern species have been previously described within
the genera Nicotiana and Parasponia (Chen et al., 2014;
Matveeva and Otten, 2019)

All new species of naturally transgenic plants be-
long to the same orders where natural GMOs were pre-
viously described. Vaccinium corymbosum L.and Silene
noctiflora L.belong to genera in which natural GMOs
were previously found. They contain sequences similar
to those described earlier, which can be further used
for phylogenetic studies based on the T-DNA structure.
Our study also confirms the prevalence of opine genes
in natural transformants. As before, we observe ex-
tended cT-DNAs organized as repeats. Inverted repeats
may be generated during the process of T-DNA transfer
and integration into plant chromosomes. Direct repeats
may possibly be explained by DNA rearrangements as-
sociated with transposons found around the repeated
cT-DNA regions. An interesting feature of eucalyptus
T-DNA is that relatively short fragments of agrobacte-
rial origin with similar opine genes are interspersed with
extended DNA fragments of plant origin. A large num-
ber of repeats of the same opine genes, that are found
in Silene species, Kewa caespitosa (Friedrich) Christenh.
and Pharnaceum exiguum Adamson is another feature
that requires further study; it may result from the inser-
tion of multiple copies during the initial transformation

event, or from amplification of integrated copies at a
later stage.

The data on the fine structure of cT-DNA in rep-
resentatives of different taxa obtained earlier and in the
present work can be further used to search for patterns
of host specificity of modern agrobacterial strains. This
issue can be investigated both from a phylogenetic and
from an ecological point of view, since the idea of coevo-
lution of symbionts is gaining in importance (Matveeva
et al., 2018). We can already illustrate this thesis with
the case of an unusual plast gene, which we described
for the first time in the genomic sequence of Vaccinium
macrocarpon Aiton. This fragment attracted our interest
because it was closer to fungal plast-genes than agrobac-
terial ones. In the present work, a similar sequence was
found in Nyssa sinensis Oliv. Figure 2 shows that Nyssa,
Vaccinium and Laccaria sequences cluster together with
rolB/C-like gene of Ensifer sp. from the Rhizobiaceae
family. Phylogenetic trees constructed by other methods
(Supp. Fig. 1) have a similar topology, which confirms
the reliability of this cluster. The genera Nyssa and Vac-
cinium are not related, but these plants share similar
habitats, characterized by increased moisture (https://
www.hortweek.com; Song and Hancock, 2011). Perhaps
the search for an Agrobacterium strain similar to those
that transformed these species will lead to the discovery


https://www.hortweek.com
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of bacterial determinants that are important for the sur-
vival of such strains in wet habitats.

Conclusion

Thus, in this study, new natural GMOs were described in
10 species (Aeschynomene evenia, Eperua falcate, Euca-
lyptus cloeziana, Boswellia sacra, Kewa caespitosa, Phar-
naceum exiguum, Silene noctiflora, Nyssa sinensis, Vac-
cinium corymbosum, Populus alba x Populus glandulosa)
belonging to 10 genera, 9 families and 7 orders. The new
type of cT-DNA was described in Ipomoea trifida and
Ipomoea batatas, and the structure of cT-DNAs of Dio-
spyros lotus cv. Kunsenshi was clarified. The previously
identified patterns regarding the frequency of the oc-
currence of naturally transgenic plants and the general
properties of the cT-DNAs were confirmed. The data ob-
tained can be used further for genetic engineering, plant
phylogeny and evolutionary research.
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