
FULL COMMUNICATIONS

GENETICS

G
EN

ET
IC

S

The application of Nanopore sequencing for 
variant calling on the human mitochondrial DNA

Anton Shikov1,2,3, Viktoriya Tsay1, Mikhail Fedyakov1, Yuri Eismont1, 
Alena Rudnik1, Stanislav Urasov1, Sergey Sherbak1,3, and  
Oleg Glotov1,4

1Genetics Laboratory, City Hospital No. 40, ul. Borisova, 9, Saint Petersburg,  
197706, Russian Federation
2All-Russia Research Institute for Agricultural Microbiology, Shosse Podbel’skogo, 3,  
Saint Petersburg, 190608, Russian Federation
3Faculty of Medicine, Saint Petersburg State University, 21-ya liniya, 8a, Saint Petersburg, 
199106, Russian Federation
4Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics,  
Gynecology and Reproductology, Mendeleyevskaya liniya, 3, Saint Petersburg,  
199034, Russian Federation

Address correspondence and requests for materials to Anton Shikov,  
antonshikov96@gmail.com

Abstract

The emergence of long-read sequencing technologies has made a revolutionary 
step in genome biology and medicine. However, long reads are characterized 
by a relatively high error rate, impairing their usage for variant calling as a part 
of routine practice. Thus, we here examine different popular variant callers on 
long-read sequences of the human mitochondrial genome, convenient in terms 
of small size and easily obtained high coverage. The sequencing of mitochon-
drial DNA from 8 patients was conducted via Illumina (MiSeq) and the Oxford 
Nanopore platform (MinION), with the former utilized as a gold standard when 
evaluating variant calling’s accuracy. We used a conventional GATK3-BWA-based 
pipeline for paired-end reads and Guppy basecaller coupled with minimap2 
for MinION data, respectively. We then compared the outputs of Clairvoyante, 
Nanopolish, GATK3, Longshot, DeepVariant, and Varscan tools applied on long-
read alignments by analyzing false-positive and false-negative rates. While for 
most callers, raw signals represented false positives due to homopolymeric 
errors, Nanopolish demonstrated both high similarity (Jaccard coefficient of 
0.82) and a comparable number of calls with the Illumina data (140 vs. 154) 
with the best performance according to AUC (area under ROC curve, 0.953) as 
well. In sum, our results, despite being obtained from a small dataset, provide 
evidence that sufficient coverage coupled with an optimal pipeline could make 
long reads of mitochondrial DNA applicable for variant calling.
Keywords: next-generation sequencing, Oxford Nanopore, Illumina, variant 
calling, mitochondrial DNA

Introduction

Next-generation sequencing (NGS) techniques have tremendously facilitated the 
sequencing of human genomes; consequently, they are now ubiquitously used 
in genomic medicine (Goodwin et al., 2016). Despite wide implementation in 
clinical practice (Di Resta and Ferrari, 2018), sequencing-by-synthesis methods, 
such as bridge amplification in the Illumina platform, have certain limitations due 
to the short-sized reads obtained, which makes them inapplicable for haplotype 
analysis (Bansal and Bafna, 2008). A significant step has been made with the oc-
currence of third-generation NGS approaches like those provided by Pacific Bio-
sciences (PacBio) and Oxford Nanopore Technologies (ONT) platforms, able to 
generate fragments up to 30 kb in size (Ardui et al., 2018). Unfortunately, Nano-
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pore sequencing is still accompanied by a high error rate, 
resulting in low per-base quality (Bowden et al., 2019); 
nevertheless, over the last years, unprecedented progress 
has been made in the improvement of third-generation 
sequencing technologies. Not only is the performance 
of flow cells improving, but also the robustness and the 
efficacy of base-calling and error-correction algorithms 
are growing (Edge and Bansal, 2019). 

Over the last decades, the extensive study of mito-
chondrial genetics has provided evidence that impair-
ments in mitochondrial DNA are linked with various 
pathological conditions (Dashti et al., 2021). Genes pre-
sented in mtDNA encode transcripts for independent 
protein synthesis in mitochondria as well as proteins 
involved in oxidative phosphorylation (Onyango et al., 
2016). Given its role in energetic metabolism, severe al-
terations in mitochondrial operation could initiate the 
development of multi-factored diseases. For example, 
more than 300 variants across the mtGenome (Li et al., 
2019) have been demonstrated to increase the risk of Al-
zheimer’s disease (Mannelli et al., 2015), dementia (Tra-
nah et al., 2012), parkinsonism (Coxhead et al., 2016), 
Huntington’s Disease (Banoei et al., 2007), and various 
neurodegenerative disorders (Simon et al., 1999). This 
link is usually explained by impairments in respiration, 
resulting in ROS accumulation and oxidative damage 
in neurons (Purevsuren et al., 2009). Apart from neu-
rodegenerative conditions, mitochondrial dysfunctions 
could exhibit comorbidity with diabetes (Naing et al., 
2014). Finally, destabilizations in the oxidative phos-
phorylation complex are related to cancer development 
(Lee et al., 2004). It was shown that mtDNA tends to 
accumulate mutations with age, contributing to age-
related neurodegenerative disorders, diabetes, and cell 
malignization (Li et al., 2019). 

The information mentioned above clearly indicates 
the necessity of precise variant calling while analyzing 
mtDNA for risk predictions and early disease diagnosis. 
Apart from clinical importance, mitochondrial DNA is 
convenient for methodological studies when compar-
ing different variant calling tools. These reasons include 
small size virtually neutralizing the effects related to 
reference alignment, a considerable number of mtDNA 
copies providing sufficient coverage, and haploid phas-
ing of variants, which increases recall rate (Alkanaq et 
al., 2019). Current interest in clinical aspects of mito-
chondrial genetics accelerates the development of di-
verse techniques to enhance the sequencing efficacy of 
mitochondrial DNA, applying capture-based approach-
es (Zhou et al., 2020) and preprocessing methods (Yao 
et al., 2019) and control region validation assay (Brand-
hagen et al., 2020). Nonetheless, accepted recommenda-
tions for NGS-driven analysis are focused on Illumina 
exclusively, and the diagnosing yield is discussed in the 
context of an adequate panel to be utilized (either target, 

whole-exome, or whole-genome ones) (Watson et al., 
2020). The overwhelming majority of modern clinical 
studies, either identifying novel pathogenic variants or 
examining diseases’ etiology regarding impairments in 
the mitochondrial genome, despite applying diverse se-
quencing approaches, still do not implement Nanopore 
data (Watson et al., 2020). The reason underlying this 
phenomenon could be explained by the fact that best 
practices for variant calling analysis for medical purpos-
es have been developed and widely accepted for short 
reads only (Koboldt, 2020). 

At the same time, long reads have found application 
in revealing structural variants (Aganezov et al., 2020), 
phasing analysis with haplotype reconstruction (Maestri 
et al., 2020; Popitsch et al., 2020), and the nanopore-
based assay for analyzing leukemic samples (Orsini et 
al., 2018; Cumbo et al., 2019). Nevertheless, reports on 
long reads’ usage with regard to mitochondrial genet-
ics are still scarce. It has been shown, however, that the 
ONT platform could provide a relevant sequencing 
result for the full mtGenome (Zascavage et al., 2019) 
and serve as a source for genotyping single nucleotide 
variants (Alkanaq et al., 2019) as well as large deletions 
(Wood et al., 2019) with accuracy relevantly comparable 
to short reads. Even so, in these studies, only two instru-
ments were applied, namely, PacBio’s SMRTtools (Pacif-
ic Biosciences Inc., Menlo Park, CA, USA) and Varscan 
(Koboldt et al., 2012), respectively, while there are avail-
able tools specifically devised for variant calling on 
long reads, such as Longshot (Edge and Bansal, 2019), 
Clairvoyante (Luo et al., 2019) or Nanopolish (Loman et 
al., 2015), and no detailed comparative analysis on mi-
tochondrial data have been carried out yet. Moreover, 
to the best of our knowledge, no recommendations in 
choosing an optimal pipeline to identify single nucleo-
tide polymorphisms in mtGenome have been made. 
Thus, our study aimed to compare several variant calling 
algorithms using the Illumina platform and the Oxford 
Nanopore techniques, attempting to dissect the most 
significant factors contributing to obtaining either false-
positive or false-negative calls.

Materials and methods

Patients’ DNA extraction 

All patients (n = 8) were referred to our department un-
der observation for suspected mitochondrial diseases 
(clinical and instrumental signs of myopathy, neuropa-
thy, oculopathy, cardiomyopathy, high blood  levels of 
lactate, pyruvate, lactate/pyruvate ratio). Notably, previ-
ous clinical exome sequencing had not shown any genet-
ic diseases for these patients. Informed consent from all 
the participants was obtained before including patients’ 
data in the analysis. 
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Library preparation for the Illumina data 

The samples’ DNA was extracted from WBC (white 
blood cells) via the automated MagNA Pure Compact 
System (Roche Life Science) based on magnetic-beads 
technology, and all sample preparation procedures were 
conducted in accordance with the standard Illumina 
protocol (Human mtDNA Genome). We obtained two 
long fragments when performing two PCR reactions for 
further sequencing with the target size of each PCR am-
plicon in the range of 7800–10400 bp for MTL1 primer 
pairs and 9500–12500 bp for MTL2, respectively. Sub-
sequently, the quantity of each sample was assessed with 
Quantus Fluorometer TM (Promega Corp., USA). The 
NGS itself comprised four stages described in Kapa Hy-
per Prep Kit and Illumina platform (MiSeq, USA) pro-
tocols, namely, fragmentation, end-repair, A-tailing, and 
adaptor ligation. We first pooled two PCR-products ac-
cording to the volumes presented in Kapa Hyper Prep 
Kit and utilized Covaris S220 to obtain fragments with a 
size range of 200–250 bp. Following fragmentation, each 
sample was quantified via the Agilent 4200 TapeStation 
system, which was also applied to assess the samples’ 
quality coupled with Quantus Fluorometer. All libraries 
displayed a fragment size of ~350bp and yield ~1μg.

Oxford Nanopore library preparation and 
sequencing 

Similar to short reads, amplicons from the respective 
samples were pooled. Subsequently, library prepara-
tion was carried out according to SQK-LSK109 (Oxford 
Nanopore Technologies, Oxford, UK) protocol with the 
following steps: (1)  end prep, (2)  ligation of barcode 
adapters, (3) PCR barcoding, (4) DNA repair and end-
prep. The final product was cleaned up and quantified 
via Quantus Fluorometer. Prepared sample libraries 
were loaded to FLO-MINSP6 flowcell of the MinION 
platform with 24 hours of active flowcell sequencing.

Illumina data analysis

We constructed the variant calling pipeline for short 
reads according to Genome Analysis Toolkit (GATK) 
best practices recommendations (Van der Auwera et 
al., 2013). Reads, quality-checked via FastQC toolkit, 
were then mapped to reference hg19  human genome 
with BWA (Burrows-Wheeler Algorithm) aligner 
v.0.7.12‑r1044 (Li et al., 2009). We applied the Picard 
MarkDuplicates utility for deduplication and realigned 
reads on target intervals (MT chromosome, 1-16569) 
with IndelRealigner following RealignerTargetCreator, 
respectively. After that, realigned BAM files were exposed 
to the base recalibration (BQSR) procedure via GATK 
BaseRecalibrator. Variants were identified using GATK 
HaplotypeCaller in the emit reference confidence (ERC) 

GVCF mode. All samples included in the dataset were 
jointly genotyped with the GATK GenotypeGVCFs tool. 
Variant filtration was done using Variant Quality Score 
Recalibration (VQSR) with stringent filtering criteria 
(SNP and insertion and deletions (INDEL) sensitivity 
90.0) (DePristo et al., 2011). Finally, VCF files were an-
notated with SnpEff and SnpSift (Cingolani et al., 2012) 
using dbSNP v.151 and ClinVar v. 2019‐01‐10 databases. 

ONT data analysis

The pipeline scheme for processing Nanopore and Illu-
mina data is presented in Suppl. 1. Raw ONT sequencing 
files in FAST5  format obtained with MinKNOW soft-
ware were processed with Guppy v3.2.1 (guppy_base-
caller). We then cleaned individual FASTQ files from in-
significant technical sequences applying guppy_barcod-
er in the “trim_barcodes” mode. Only those reads that 
passed filters were retained for further analysis. Selected 
reads were then aligned on the reference mitochondrial 
genome (NC_012920) with the minimap2 v2.17 align-
er (Li, 2018), and the BAM files obtained were sorted 
and indexed. The sequencing depth was evaluated via 
SAMtools depth (Li and Durbin, 2010) (Table S1, Ta-
ble S2, Supplementary Data Set1). We then launched 
several callers to identify variants: Clairvoyante v1.02 
(Luo et al., 2019) with a pre-trained model for Minion 
R9.4 samples (NA12878), Nanopolish v0.13.1 (Loman 
et al., 2015) with reads previously indexed via Nanopol-
ish index, Longshot v0.4.3 (Edge and Bansal, 2019), and 
DeepVariant v1.1.0 (Poplin et al., 2018) utilities were 
launched in defaults modes. GATK was applied identi-
cally to what was described above, and Varscan v2.4.0 
was launched at the SAMtools mpileup output with 
strict settings (–min-coverage 100, min-reads2 50) due 
to high sequencing depth (Koboldt et al., 2012). 

Statistical analysis

Results from VCF files were aggregated into a single 
table (Table S3) using a custom Python script, gather-
ing the data referred to variants’ annotation, allele fre-
quency (AF), GC-content, per-site depth, calling type 
(homozygous/heterozygous). GC-content was evaluated 
in accordance with the allele frequency for each site, 
multiplying the number of purines/pyrimidines by AF 
rates for alternative and reference alleles and averaging 
the results. Apart from the summarized table, the same 
characteristics were reported for each instrument sepa-
rately (Table S7). If the data was missed, as in the case of 
false-negative calls, the average values were attributed. 
The variants reported were checked for consistency with 
respective Illumina-based results and characterized ac-

1  Supplemental material to the article is available at https://
biocomm.spbu.ru/article/view/8649.
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cordingly (namely, as true positives, false negatives, and 
false positives). 

Statistical analysis was performed using R v.3.6.2 
language. We applied the nonparametric Wilcox test for 
group comparisons and adjusted resultant p-values if 
multiple comparisons occurred using FDR (false discov-
ery rate) adjustment. Several approaches were obtained to 
test variant callers’ efficacy. To characterize the similarity 
of the outputs, we calculated the pairwise Jaccard coef-
ficient as a ratio of common variants to their sum (Suppl. 
3). The data were binarized by assigning 1 and 0 if the vari-
ants were reported/absent in the output. Next, we used 
these binarized vectors to build characteristics ROC (re-
ceiver operating characteristic) curves which were com-
pared with DeLong’s test followed by FDR adjustment of 
p-values using the pROC v1.17.0.1 package (Robin et al., 
2011). To determine the most significant factors affecting 
long reads-based variant calling, we built a generalized 
linear mixed model with tools interpreted as groups to ac-
count for mixed effects utilizing the glmer function from 
the lmer4 v1.1-26 package (Bates et al., 2015). The model 
selection process was carried out according to the algo-
rithm described by Peng and Lu (2012). Data visualiza-
tion was performed with the ggplot2 v.3.3.0 (Wickham, 
2016) and ggsci v2.9 packages. 

Results

Sequencing output 

In our study, the library comprising 8 samples with indi-
vidual barcodes was analyzed. After 24h MinION flow-
cell sequencing, a total of 399 FAST5 files (62 Gb) were 
generated. The FAST5-to-FASTQ conversion dramati-
cally reduced the data amount to 8.9 Gb of files contain-
ing 1,593,000 collected reads. The amount of analyzable 
reads gradually decreased when considering passing 
filters (1,463,255), inferring those with recognizable 
barcodes (932,558), and finally, selecting successfully 
mapped ones (651,610). No such dramatic loss (almost 
2.5  times) was noticed for the Illumina data. Raw sig-
nals were transformed to 16 paired FASTQ files with a 
total volume of 569 Mb via Illumina bcl2fastq2 conver-
sion software, and the demultiplexed files obtained com-
prised 7,291,354 reads, of which 4,406,087 were aligned 
on the reference mtDNA sequence. Although the resul-
tant loss for short reads was lower (1.6 times), long reads 
were more robust to alignment-based loss (1.4 times in-
stead).

Mean coverage for aligned reads was 2872x (ranging 
from 21x to 7863x) for the Illumina platform and 3867x 
(with a range from 14x to 9478x) for Nanopore, respec-
tively (Fig. 1a, Table S1, Table S2). Despite the presence 
of such poorly covered regions, they were noticed only 
at single-nucleotide sites (Suppl. 2); hence, it did not af-

fect the distribution of variants’ detection across the ge-
nome on the whole (Fig. 1b). However, the patterns of 
per-site coverage for both platforms were distinct. While 
Illumina provided relatively uniform coverage close to 
mean values with peaks in flanking intervals, a conspic-
uous drop to an average of 847x at the 5 kb interval was 
noticed for long reads (p-value < 2.2e-16 with Wilcox 
test). Remarkably, a significantly high difference in this 
region was also shown for short reads (2160x, p-value < 
2.2e-16 with Wilcox test), even when excluding flanking 
peaks, which resulted in the interval characterized by 
2528x coverage. Thus, for both NGS technologies, less 
covered regions occurred due to chemistry features pre-
sumably at the amplicons’ borders; however, in terms of 
absolute values, this more profoundly affected Nanopore 
reads. Such effects should be taken into consideration; 
nevertheless, in this study, it did not exert an effect on 
the variant calling procedure. Nanopore data is com-
monly associated with homopolymer errors, resulting 
in a high error rate in alignment files. On that account, 
we calculated the error rate within the samples using the 
SAMtools stat utility. The mean error rate obtained was 
8.2 %, which is quite typical for Nanopore-generated 
reads, while for short reads, it reached 1.8 % only.

Variant calling results

We then estimated raw outputs from variant calling 
pipelines (Fig. 1c, Table S3, Table S4). After summariz-
ing the results of different sequencing platforms and 
callers, 627 variants were identified, of which the mini-
mum number was shown for Longshot (47) and the 
maximum ones for DeepVariant (404), whereas GATK 
applied on short reads reported 140  variants (Fig.  1c, 
Table S4). Of all the callers, the most similar results to 
the Illumina-based pipeline were observed for Varscan 
and Nanopolish programs with 129  and 154  variants, 
respectively. Noteworthy, we found a significant corre-
lation (p-value < 0.0017 using linear regression model) 
between the sum of detected variants and the number 
of unique calls. Clairvoyante and DeepVariant detected 
109  instrument-restricted variants each, while Long-
shot output did not contain any unique calls (Fig.  1d, 
Table  S4). Notably, 26  polymorphisms were identified 
with all sequencing approaches and variant calling tools, 
4 of which were also presented in all samples (Table S3), 
namely, rs2853518 (750A>G), rs2001030 (1438A>G), 
rs2854128 (2706A>G), and rs193302980/rs527236041 
(14766C>T). Such an observation could indicate that 
some specific regions, detectable for both short and long 
reads, could be considered as target points to evaluate 
Nanopore-based variant calling accuracy. 

In order to check the consistency of results, we 
performed paired comparisons between different vari-
ant callers and sequencing platforms using the Jaccard 
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distance metrics and presented the results as a heat-
map (Suppl. 3). As could be inferred from it, the high-
est similarity score was observed between the Illumina 
pipeline and the Nanopolish tool (0.82). We then ex-
tracted 23 missense variants with a MODERATE effect 
according to SnpEff annotation, as missense mutations 
are of great importance for clinical genetics, and thus 
they should be detected accurately (Table 1, Table S6). 
Clairvoyante, DeepVariant, and Nanopolish managed to 
report all of these SNPs, while Longshot demonstrated 
the worst performance with only 6  variants reported. 
Notably, 2 variants were found in all samples: previous-
ly described rs193302980/rs527236041 and missed by 
Longshot rs2853508 (15326A>G).

Comparative analysis of variant callers

As the Jaccard coefficient showed similarity superficially 
without the ability to infer information about tools’ per-
formance, we built ROC (receiver operating characteris-

tic) curves on binarized variant calling results using the 
Illumina data as a comparison reference. Longshot out-
performed other tools in terms of the false-positive rate, 
meaning that almost all the calls represented true posi-
tives; however, it also demonstrated one of the small-
est AUC (area under ROC curve, 0.668), outstripping 
GATK only (0.591). In contrast, Nanopolish seemed to 
show an appropriate trade-off between sensitivity and 
accuracy, with the highest AUC of 0.953.

Next, we pried which factors exhibited the most sig-
nificant contribution to either missing or misreporting 
variants. To this end, we first analyzed two variants that 
were detected with Illumina-based pipeline exclusively. 
These variants, namely rs878871521 (302A>AC) and 
rs369786048 (310T>TC), were annotated as INDELs. 
Notably, there were four INDELs in the short reads 
data, while the other two, rs879005804 (451A>AT) and 
rs78907894 (513GCA>G), were detectable for long-
reads. While for all these variants, the mean allele fre-
quency was 0.966, indicating the predominance of alter-

Table 1. Missense variants’ detection with different sequencing platforms and variant callers

Patients Variant Clairvoyante DeepVariant GATK Nanopolish Longshot Varscan

1 3505A>G + + • + • +

5,6,7,8 4216T>C + + + + • +

7 4917A>G + + + + • +

4 4960C>T + + + + + +

1 5046G>A + + + + • +

1 5460G>A + + + + • +

4 8084A>G + + • + • +

4 8472C>T + + • + • +

2 8684C>T + + + + • +

4 8836A>G + + + + • +

3 9055G>A + + • + • +

2 10084T>C + + • + • •

8 10192C>T + + • + • •

3,5,6,8 10398A>G + + + + + +

5,6,8 13708G>A + + + + • +

5,6 13934C>T + + + + + +

1,2,3,4,5,6,7,8 14766C>T + + + + + +

4 14777A>C + + + + • •

3,5,6,7,8 14798T>C + + + + + +

1,2,3,4,5,6,7,8 15326A>G + + + + • +

5,6,7,8 15452C>A + + + + • +

3 15479T>C + + • + + +

1 15884G>C + + + + • +
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native alleles in the reads, the missed ones were charac-
terized by considerably lower coverage (488x) compared 
to average per-site depth (1836x). It is noteworthy that 
two identifiable INDELs, despite their apparent homo-
zygotic nature, were reported as heterozygotes by vari-
ant callers applied at Nanopore reads due to their mean 
allele frequency of 0.465. 

Considering all the observations, we summa-
rized properties that could possibly affect variant call-
ing, namely, GC-content, alternative allele frequencies 
(AF), variant type (SNP/INDEL, homozygotes/hetero-
zygotes), and per site-coverage for each calling pipeline 
(Table S8, Suppl. 4). Differences in GC-content were 
non-significant, whereas for other quantitative variables, 
such as coverage and AF, a highly significant difference 
between tools was observed according to the pairwise 
Wilcox test followed by FDR adjustment (Table S9). 
Similarly, a significant result was observed when com-
paring the sums of INDELs and heterozygous calls (Chi-
squared test p-value < 2.2e-16 for both types); however, 
these sums were proportional to each other, which was 
confirmed by Cramer’s V coefficient (0.721). Notably, 
the mean per-site depth was strikingly different, ranging 
from 23 in GATK applied at long reads to 9747 for Na-
nopolish (Suppl. 4e, Table S8). Such a discrepancy could 

be explained by the programs’ behavior with reads’ qual-
ity: instruments devised for short reads usually have 
strict quality cut-offs, while tools designed for long reads 
mainly operate with nominal coverage. 

While the results obtained are informative, they 
do not link variants’ properties with the calling perfor-
mance. To this end, we characterized each variant with 
the aforementioned properties specified in terms of 
consistency with the Illumina data as true positive, false 
negative, or false positive (Table S10). Next, we built a 
generalized mixed effects logistic regression model to 
identify factors affecting variant calling success signifi-
cantly. After the model selection process, we considered 
three variables: per-site coverage, variant type (INDEL/
SNP), and AF. We built models both with or without Il-
lumina results, which were practically identical and pro-
vided almost the same p-values, and we also constructed 
individual models to delineate the patterns of false posi-
tives, false negatives, and all true/false calls (Suppl. 5, 
Suppl. 6). The latter groups slightly differed in terms of 
p-values. Allele frequency was the most significant fac-
tor (p-value < 2e-16) regardless of the model used; SNP/
INDEL attribution was also shown to significantly affect 
variant calling with p-values of 9.89e-16 1.17e-14, and 
6.49e-06  for the combined model, false-positive- and 

Fig. 1. The comparative analysis of different sequencing platforms and variant calling pipelines. (a) Mean per-site sequencing depth across the 
mitochondrial genome. Red color denotes the Illumina data; blue color refers to the ONT long reads. (b) Shown is the distribution of the vari-
ants obtained. Color code is identical to (a); circles stand for INDELs, and triangles represent SNPs; the size of the points is proportional to the 
number of programs reported the variant. (c) The sum of raw calls for each pipeline. (d) Cumulative numbers of variants uniquely called with 
each instrument. (e) ROC (receiver operating characteristic) curves of false-positive and false-negative rates for callers applied at the Nanopore 
date comparing to the Illumina-based calls.
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false-negative–restricted models, respectively. For mean 
coverage, however, almost no impact was reported with 
the exception of the combined model, where a p-value 
on the border of significance (0.0633)  was observed. 
Despite the variables’ non-multicollinearity according 
to VIF (variance inflation factor) function, variant at-
tribution was significantly associated with AF (p-value 
< 2e-16 using logistic regression), indicating that false-
positively called INDELs tend to display smaller alter-
native allele frequency. The graphical representation 
of the models corroborated and complemented ROC 
curves-based results (Suppl. 6). Similar to ROC curves, 
Longshot was the closest to Illumina-based pipeline in 
terms of false-positive errors (Suppl. 6b), and Nanopo-
lish showed the best overall performance (Suppl. 6a). 
Interestingly, Clairvoyante was the most robust to false 
negatives of all the tools (Suppl. 6c), although this did 
not compensate a lot of erroneously detected INDELS. 

Discussion

The main advantages of MinION discussed in the lit-
erature are easiness in handling, rapid development, 
expected cost reduction of medical examination in the 
coming years, and the ability to generate reads up to 
megabases long, which makes them of great potential 
to be included in clinical practice (Edge and Bansal, 
2019). Nanopore reads find extensive implementation 
in forensic sequencing (Cornelis et al., 2019), charac-
terizing structural variations and somatic mutations in 
cancer samples (Orsini et al., 2018; Cumbo et al., 2019; 
Aganezov et al., 2020), typing STEC O157:H7 Shiga tox-
in-producing Escherichia coli isolates for health moni-
toring (Greig et al., 2019). The usage of long reads for 
mitochondrial genome sequencing was reported for 
vertebrate species identification (Franco-Sierra and 
Díaz-Nieto, 2020), equine genetics (Dhorne-Pollet et al., 
2020), the structural-wise grouping of plan mitochon-
drial genomes (Masutani et al., 2021), and clinical di-
agnostics (Wood et al., 2019). Nevertheless, despite the 
growing number of studies, long reads are still rarely 
applied as clinical panels (Orsini et al., 2018) due to 
low base-to-base quality, hampering their application 
for variant calling in comparison with short reads, for 
which protocols, standards, and recommendations are 
being continuously developed (DePristo et al., 2011; Ko-
boldt et al., 2012; Van der Auwera et al., 2013; Koboldt, 
2020; Watson et al., 2020). 

The popularity of second-generation sequencing 
techniques could be explained by their accurate (>99.5% 
accuracy) output that can be applied in clinical practice; 
however, these approaches are not free from specific er-
rors related to sequencing design (Slatko B. et al., 2018). 
For instance, the Ion torrent technique is prone to ho-
mopolymer errors, while the Illumina platform may be 

accompanied by substitution errors (Quail et al., 2012). 
Additionally, being short-sized, these reads could be in-
adequately mapped to homologous regions of the refer-
ence genome (Menzel et al., 2013). For the mitochon-
drial genome, this effect is even more profound due to 
the presence of nuclear DNA of mitochondrial origin 
(nuMTs), thence in clinical/whole-exome or whole-ge-
nome panes, false mapping of such reads would substan-
tially impair variant calling. Finally, short reads do not 
allow detecting large structural variations or performing 
phasing analysis of mutations (Suzuki et al., 2017). In 
contrast, long reads are considered to be of great poten-
tial to detect links even between distant mutations af-
fecting the same gene, which is extremely important for 
monitoring chronic leukemia progression (Orsini et al., 
2018), and they also could evaluate mitochondrial het-
eroplasmy (Zascavage et al., 2019). While variant call-
ing on long reads is still scarce, some studies reported 
at least comparable performance between them and 
conventional short reads-based pipelines (Orsini et al., 
2018; Alkanaq et al., 2019; Greig et al., 2019; Wood et 
al., 2019; Magdy et al., 2020). Furthermore, new instru-
ments for specific purposes have been devised recently, 
such as Nanopanel2 for identifying low-frequency so-
matic polymorphisms (Popitsch et al., 2020) or NanoVar 
for characterizing structural variations in low-depth se-
quencing data (Tham et al., 2020). However, in the stud-
ies mentioned, a single instrument was used, namely, 
PacBio’s SMRTtools (Alkanaq et al., 2019), Nanopolish 
(Orsini et al., 2018; Greig et al., 2019; Magdy et al., 2020), 
or Varscan (Wood et al., 2019); thus, virtually no guide-
lines for choosing an optimal caller have been proposed.

Considering the issues mentioned above, we char-
acterized six popular algorithms in terms of specific-
ity and accuracy when comparing them with Illumina 
reads. While it may seem evident that tools for calling 
on short reads would fail to succeed when applied to 
Nanopore data, Varscan was reported to be implement-
ed for such purposes (Wood et al., 2019). However, in 
our study, quite expectedly, these instruments did not 
show adequate performance, which is most probably 
explained by non-robust behavior to high error-rate ac-
companying ONT sequences and stronger requirements 
for per-base quality gaining low coverage in calling re-
gions due to discarding most of the reads during analy-
sis (Suppl. 4e). Three other programs varied in terms of 
false-positive and false-negative calls generated. Long-
shot implies Pair-Hidden Markov Model calculating 
pairwise probabilities for each site to represent an SNV 
(Edge and Bansal, 2019). This approach improves de-
tection in duplicated genomic regions; however, it can-
not detect INDELs, and despite the highest precision, it 
lacks specificity (Fig. 1e, Suppl. 6). Clairvoyante, a multi-
task five-layer convolutional neural network model, was 
developed for predicting both INDEls and SNPs in er-
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ror-prone long reads (Luo et al., 2019). While it dem-
onstrated the highest sensitivity, it was not free from an 
extensively high rate of false-positive results (Suppl. 6). 
We propose that this observation could be explained by 
the fact that a pre-trained model was utilized as our data 
was insufficient to build a working model. In the cur-
rent study, Nanopolish outperformed other calling tools, 
exhibiting the most appropriate trade-off between sen-
sitivity and precision with the highest similarity to the 
Illumina reference. The program’s underlying algorithm 
is HMM-based as in Longshot; however, instead of 
analyzing base pairs’ distribution patterns, Nanopolish 
characterizes the intensity of signals and repots variants 
accordingly (Loman et al., 2015). This approach could, 
in fact, suffer from false-negative results (Orsini et al., 
2018); nonetheless, Nanopolish applied to our data dis-
played high sensitivity (Fig. 1e). A possible explanation 
of these results could lie in high coverage. Nanopolish 
put into analysis the most considerable number of reads, 
gaining the highest coverage within calling regions 
(Suppl. 4e) and providing enough data for generating 
recognizable signals’ patterns, which improved its vari-
ant calling performance. 

When dissecting the generalized logistic regres-
sion model, we revealed that the two significant factors 
hampering precise calling on long reads are variant type 
and allele frequency (AF), which are, however, intercon-
nected. More specifically, false-reported INDELs tend 
to have a lower AF as well, indicating that post-calling 
error-correction algorithms should primarily process 
these calls. It is also noteworthy that some variants were 
presented in all samples, and they referred to the Euro-
pean haplogroup (Patel et al., 2019). Interestingly, they 
have potential clinical significance influencing cisplatin 
anticancer therapy (rs2853518, rs2001030, rs2854128 
(Patel et al., 2019)), increasing the risk of familial breast 
cancer (rs2853508 (Toncheva et al., 2020)), and possibly 
mediating neuropathological conditions (rs193302980 
(Valentino et al., 2020)). As haplogroups of mitochon-
drial DNA are comprehensively classified, a possible ap-
proach for benchmarking variant calling performance 
could implement tracking the presence/absence of such 
haplogroup-related variants. 

To sum up, despite a relatively small number of 
samples presented, our research adds another report to 
the growing body of evidence supporting the applicabil-
ity of Nanopore reads in variant calling. Having char-
acterized and compared the efficacy of several variant 
calling instruments, we recommend applying Nanopo-
lish as finely balanced between precision and recall 
while detecting variants in the mitochondrial genome. 
However, our results are different from other studies in 
which other DNA sources were examined; thus, our rec-
ommendations, despite being relevant to mitochondrial 
genetics, cannot be generalized on a larger scale. This 

observation stresses the need to develop guidelines and 
best practices for long reads examination similar to what 
is formulated for short reads-based clinical analysis. 
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Supplementary 1

The overview of the pipeline for variant calling. Raw ONT FAST5 files were processed with Guppy basecaller fol-
lowed by Guppy barcoder. After alining reads with minimap2 and sorting BAM files using SAMtools, six variant 
callers were applied. Raw Illumina signals in bcl format were basecalled using bcl2fastq utility and aligned with 
BWA, and the variant calling results were obtained with GATK. Illumina- and ONT-generated VCF files were then 
compared with ROC curves and logistic regression with a mixed linear model applied.

SUPPLEMENTS
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Supplementary 2

The per-site sequencing depth distribution at the logarithmic scale. The red color denoteы the ONT platform, while 
the blue color stands for the Illumina reads. 

Supplementary 3

The heatmap presented summarizes a pairwise comparison of variant callers. The intensity of the color is propor-
tional to the Jaccard coefficient indicating the similarity of the outputs.
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Supplementary 4

Instrument-wise statistics of the variants identified. (a) Mean GC-content for sites proportional to their allele fre-
quency. (b) The cumulative sum of heterozygous polymorphic sites. (c) Mean allele frequencies of alternative alleles. 
(d) Total number of INDELs for each pipeline. (d) Mean per-site coverage.
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Supplementary 5

Logit regression depicting the consistency with the Illumina data for variants callers applied at long reads for all 
sites (a), false-negative calls (b), and false-positive calls (c).
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Supplementary 6

Logit regression depicting the consistency with the Illumina data for variants callers applied at long reads, including 
the Illumina statistics in the analysis, for all sites (a), false-positive calls (b), and false-negative calls (c).


