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Abstract

In the modern world, crop plants represent a major source of daily consumed 
foods. Among them, cereals and legumes — i.e. the crops accumulating oils, 
carbohydrates and proteins in their seeds — dominate in European agriculture, 
tremendously impacting global protein consumption and biodiesel production. 
Therefore, the seeds of crop plants attract the special attention of biologists, 
biochemists, nutritional physiologists and food chemists. Seed development 
and germination, as well as age- and stress-related changes in their viability and 
nutritional properties, can be addressed by a variety of physiological and bio-
chemical methods. In this context, the methods of functional genomics can be 
applied to address characteristic changes in seed metabolism, which can give 
access to stress-resistant genotypes. Among these methods, proteomics is one 
of the most effective tools, allowing mining metabolism changes on the protein 
level. Here we discuss the main methodological approaches of seed proteomics 
in the context of physiological changes related to environmental stress and 
ageing. We provide a comprehensive comparison of gel- and chromatography-
based approaches with a special emphasis on advantages and disadvantages 
of both strategies in characterization of the seed proteome.
Keywords: food safety, LC-MS, post-translational modifications, proteomics, 
seed quality.
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Introduction

Due to their relatively low costs, crop plants are the 
basis of the human diet in most countries and repre-
sent a major source of daily consumed foods (Altshul, 
1962; Miller, Herman, Jahn, and Bradford, 2010; Brad-
ford et al., 2018). Among them, cereals and legumes are 
characterized by the highest content of energetically 
valuable reserved molecules  — proteins, polysaccha-
rides and lipids (mostly represented by triacylglycer-
ols  — i.e. oils) (Duranti, 2006; Bourgeois et al., 2009; 
Yoshida et al., 2010; Lafiandra et al., 2012; Guerrier and 
Gavaletto, 2018) — and are, therefore, most intensively 
cultured worldwide (Goff and Salmeron, 2004; Cernay, 
Pelzer, and Makovski, 2016). During the last decades, 
soybeans (Glycine max), common (dry) beans (Phaseo-
lus vulgaris) and peanuts (Arachis hypogaea) have be-
come major sources of food protein (Messina, 1999; 
Asgar et al., 2010). Indeed, soybeans were cultivated 
on an area of approximately 100 million ha with crop 
yields of 238  million tons in the year 2010; soybeans 
account for the most pronounced portion of world le-
gume yields (Nedumaran et al., 2015). The area share 
of this crop in the developed world (Europe, the United 
States and Canada) is much higher than in developing 
countries (Nedumaran et al., 2015). On the other hand, 
according to the Food and Agriculture Organization of 
the United Nations, cereals such as maize (Zea mays), 
wheat (mostly Triticum aestivum), rice (Oryza sativa) 
and barley (Hordeum vulgare) are the most prominent 
sources of food carbohydrates (FAO, 2018). World ce-
real production in 2017 was estimated at 2627 million 
tons, with maize, wheat and rice accounting for about 
1070, 750  and 700  million tons, respectively (FAO, 
2017). Finally, oilseed rape (Brassica napus), soybean 
and sunflower (Helianthus annuus) are the most impor-
tant sources of food oils (Carre and Pouzet, 2012; Bates, 
Stymne, and Ohlrogge, 2013; Liu et al., 2014). Moreover, 
rapeseed oil is one of the most important sources of bio-
diesel (I. C. E. Committees, 2015).

Obviously, sustaining seed quality is of principle 
importance for effective agriculture and production of 
safe foods (Miller, Herman, Jahn, and Bradford, 2010). 
In this context, the mechanisms underlying seed viabil-
ity and ensuring high quality of food protein need to be 
well understood. It is important to note that seed quality 
can be affected by prolonged storage (Sano et al., 2016), 
especially under high humidity and/or temperature con-
ditions (Murthy, Kumar, and Sun, 2003; Walters, Ball-
esteros, and Vertucci, 2010; Sum, Sreenivasan, Singh, 
and Radhamani, 2013). Not less important are environ-
mental conditions of seed development. Environmental 
stressors applied during seed maturation might com-
promise seed viability and shelf life (Ghassemi-Golezani 
and Mazloomi-Oskooyi, 2008; Pereira Lima et al., 2017). 

For example, even a transient drought can suppress deg-
radation of embryonic chlorophylls and thereby dramat-
ically decrease the quality of formed seeds (Smolikova 
and Medvedev, 2016; Smolikova et al., 2017a; Smolikova 
et al., 2017b). For these reasons, the seeds of crop plants 
attract the particular attention of biologists, biochemists, 
nutritional physiologists and food chemists, addressing 
these two principle questions. 

In general, seed quality (in the widest sense of these 
words) can be addressed by a rich pattern of physi-
ological methods, including assessment of membrane 
integrity, germination tests, monitoring of morphologi-
cal alterations and vigor (Hampton and TeKrony, 1995; 
McDonald, 1998; Don, 2009; Corbineau, 2012). As seed 
vigor is dependent on the environmental conditions of 
seed development and storage, knowledge about the 
mechanisms of seed ageing gives access to new meth-
odological approaches to seed vigor characterization 
(Hampton and TeKrony, 1995; Smolikova, 2014; Filho, 
2015). On the biochemical level, these experiments can 
be complemented by oxidative stress assays (Bailly and 
Kraner, 2011; Kocsy, 2015). However, today, methods 
of functional genomics and systems biology provide an 
excellent opportunity to address seed quality on a prin-
cipally new level, assuming an integrated systematic 
and physiology-based approach (Rajjou et al., 2008; Fu, 
Ahmed, and Diederichsen, 2015; Nagel et al., 2015; Smo-
likova et al., 2016). Indeed, integration of transcriptomic, 
proteomic and metabolomic methodological platforms 
gives access to the whole network of metabolic events 
underlying gene expression (May et al., 2011; Mochida 
and Shinozaki, 2011; Brink-Jensen, Bak, Jorgensen, and 
Ekstrom, 2013). Due to the high specificity and sensitiv-
ity of modern analytical instrumentation, these so-called 
omics techniques allow scientists to consider plant me-
tabolism on the level of organs (Lombardo et al., 2011; 
Palma, Corpas, and del Rio, 2011), tissues (Gupta et al., 
2015), or even individual cell groups (Barkla and Vera-
Estrella, 2015). Moreover, this approach gives insight in 
a time dimension — i.e. it allows seed germination and 
development to be addressed (Wang et al., 2016; Gupta, 
Bhaskar, Sriram, and Wang, 2017). 

As proteins represent an important seed compo-
nent critical for germination and seedling development, 
during the past decade proteomics has become an im-
portant tool of seed research. Importantly, proteomics 
makes it possible to address physiological changes by 
characterization of alteration in protein abundances (ex-
pression) simultaneously with assessment of post-trans-
lational modification patterns, which might be infor-
mative in the sense of antinutritive alterations in seeds. 
Here we present a short overview of the techniques cur-
rently established in this field and potentially applicable 
to assessment of seed quality, both in terms of viability 
and potential food safety aspects. We also consider the 
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methods of proteomics required for assessment of pro-
tein dynamics and characterization of PTM patterns.

Methodological approaches in  
seed proteomics

The proteome is a complex system, representing the 
result of interconnected dynamic properties of indi-
vidual proteins (Larance and Lamond, 2015). Accord-
ingly, characterization of the proteome includes an-
notation of individual proteins, determination of their 
abundances, expression of isoforms, synthesis and 
degradation rates, sub-cellular localization, interac-
tions and post-translational modifications. Although 
different analytical techniques can be applied to ad-
dress these questions (e.g., immunochemical methods 
such as ELISA or western blotting) (Jimenez-Lopez et 
al., 2018), in the absolute majority of cases, proteome 
analysis relies on mass spectrometry (MS) and bioinfor-
matics (Heyer et al., 2017; Takac, Samajova, and Samaj, 
2017). Quasi-molecular ions (those less than 25kDa) of 
proteins can be either fragmented directly  — the so-
called top-down approach (Chmelik et al., 2009; Ca-
therman, Skinner, and Kelleher, 2014) — or the macro-
molecules can be first subjected to limited proteolysis 
prior to MS analysis — the bottom-up strategy (Gillet, 
Leither, and Aebersold, 2016). In the latter case, annota-
tion of individual proteins relies on sequence tags — i.e. 
information on exact monoisotopic mass, charge and 
fragment ions  — obtained in tandem mass spectro-
metric (MS/MS) experiments with proteolytic peptides 
(Mortz et al., 1996). Because of the intrinsic limitations 
of the top-down strategy — relatively small molecular 
weight and a strong requirement for high sample pu-
rity (Soboleva et al., 2017)  — it is only rarely applied 
in seed proteomics (Hummel, Wigger, and Brock-
meyer, 2015). In contrast, bottom-up methods find 
application in all aspects of seed biology (Rathi et al.,  
2016). 

Due to the high complexity of living organisms 
in general and the plant proteome in particular, mass-
spectrometric methods employed in its characteriza-
tion need to be complemented by adequate separation 
techniques. Generally, based on the nature of these 
techniques, all bottom-up proteomic methods can be 
attributed to either gel-based or gel-free strategy (Tan, 
Lim, and Lau, 2017). The latter group of methods is also 
often referred to as liquid chromatography (LC)-based 
proteomics, although it also can rely on non-chromato-
graphic techniques such as capillary electrophoresis 
(Chen, Cociorva, Norris, and Yates, 2017). Besides the 
applied separation techniques, gel-based and gel-free 
approaches differ in their workflow (Fig. 1): in the for-
mer, separation is done on the protein level (i.e. prior to 
enzymatic digestion), whereas in the latter, peptides are 

subjected to separation after enzymatic digestion (Tan, 
Lim, and Lau, 2017).

Gel-based bottom-up proteomic strategy

The gel-based strategy (Fig. 1)  typically relies on two-
dimensional gel electrophoresis (2D-GE), comprising 
two steps of protein separation: by isoeletric points and 
by molecular weight (SDS-PAGE). For the first step, iso-
electrofocusing, proteins are solubilized in aqueous buf-
fers containing haotropic agents (7–8  mol/L urea and 
2 mol/L thiourea) and detergents (typically 3-((3-chol-
amidopropyl)dimethylammonio)-1-propanesulfonate, 
CHAPS) to disturb polar and non-polar interactions in 
the protein molecule, respectively (Rabilloud, Chevallet, 
Luche, and Lelong, 2010). The samples can be supple-
mented with carrier-ampholytes if no immobilized pH 
gradients are used (mostly not the case today) (Rabil-
loud and Lelong, 2011). Generally, most of the proteins 
can be reconstituted in this buffer, although CHAPS is 
not the best detergent in this case (Rabilloud and Le-
long, 2011). Protein isolation can rely on different 
methods, providing extraction of total protein, or only 
its water-soluble fraction. For protein extraction, plant 
tissues are typically shock-frozen in liquid nitrogen and 
ground sequentially with a mortar and ball mill (Pau-
del et al., 2016). In the easiest and most straightforward 
way, ground plant material is extracted directly with the 
sample buffer, containing urea and thiourea in presence 
or absence of CHAPS or optionally Triton X-100 (Gal-
lardo, Kurt, Thompson, and Ochatt, 2003; Han, Yin, He, 
and Yang, 2013; Gallardo, Kurt, Thompson, and Ochatt, 
2018). Thereby, to reduce interference with low molecu-
lar weight metabolites, pre-extraction with petroleum 
ether can be employed (Murad and Rech, 2012). In the 
most comprehensive way, the total protein fraction can 
be isolated by phenol or acetone extraction (Isaacson et 
al., 2006). Among these two approaches, phenol extrac-
tion provides lower protein yields but higher purities — 
i.e. it is advantageous when sufficient sample amounts 
are available. Alternatively, the soluble protein fraction 
can be extracted by aqueous buffers (typically Tris-HCl 
or HEPES), further precipitated by acetone and dried 
(Han, Yin, He, and Yang, 2013).

In the easiest way, individual protein-containing 
electrophoretic zones can be visualized with colloidal 
Coomassie Blue dye (Neuhoff, Arold, Taube, and Eh-
rhardt, 1988) or by formaldehyde-free silver staining 
(Chevallet et al., 2008). These methods, however, are 
not ideal, as the first approach suffers from low sensi-
tivity; the second one — from low linearity (Rabilloud 
and Lelong, 201). Alternatively, fluorescent staining 
(e.g., SYPROTM Ruby gel stain), providing both good 
sensitivity and linearity of up to three orders of magni-
tude, can be applied (Zhou et al., 2002). Independently 
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from their nature, all these methods generate patterns of 
characteristic signals, so-called “spots” visible by eye or 
in fluorescence detection mode (Soboleva et al., 2017). 
The resolution of the method is high enough to distin-
guish up to 1500 spots in one 2D-GE experiment (Gygi 
et al., 2000). However, on the one hand, it is difficult to 
separate all proteins (some spots can contain several 
polypeptides); and on the other hand, different isoforms 
of one protein can be represented by individual spots. 
Thus, in a good case scenario, several hundred proteins 
might be reliably identified in one 2D-electrophoregram 
of a seed protein extract. Annotation of electrophoretic 
zones typically relies on MS analysis. For this, individual 

spots are excised, destained, and proteins, immobilized 
in gel, and can be digested with site-specific proteases 
(most often with trypsin) (Rathi et al., 2016). The result-
ing digests are extracted from gel sections and analyzed 
by matrix-assisted laser desorption-ionization  — time 
of flight (MALDI-TOF) — or electrospray ionization — 
(ESI)-MS. 

In the simplest case, MALDI-TOF-MS analysis re-
lies on the so-called peptide fingerprinting approach — 
i.e. identification of proteins by the patterns of proteolyt-
ic peptides (Clauser, Baker, and Burlingame, 1999). This 
technique, however, lacks both sensitivity and selectivi-
ty: only the major proteins can be identified in each spot, 

Fig.	1. The overview of the experimental workflows for gel-based and LC-based (gel-free) proteomics.
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and this method requires very high electrophoretic reso-
lution. In a more sophisticated method, MALDI-TOF/
TOF instrumentation and tandem mass spectrometry 
(MS/MS) can be applied to obtain more reliable results 
(Binita et al., 2014; Min et al., 2017). ESI-MS, coupled 
online to reversed phase high-performance liquid chro-
matography (RP-HPLC), has a much higher potential 
in identification of individual proteins composing elec-
trophoretic zones, and it might thereby provide a higher 
sequence coverage of proteins immobilized in gel (Arun, 
2015). 

One of the most important features of 2D-GE is its 
applicability to characterization of protein dynamics — 
i.e., alterations in protein expression profiles in time or 
in response to application of certain experimental con-
ditions. Most often, quantification of proteins separated 
by 2D-GE relies on the measurements of staining inten-
sities (e.g., by fluorescent detection) or UV/VIS densi-
ties of corresponding protein spots. This typically relies 
on software analysis tools providing convenient access 
to spot detection, matching, normalization, analysis, 
and annotation, also often combined with robotized 
spot cutting. The most widely used softwares are based 
on numerical approaches. PDQuest (Bio-Rad Laborato-
ries), Delta2D (Decodon), and Melanie (GeneBio) can 
be successfully complemented by home-made systems 
(Marengo et al., 2005). Integration of densitograms of 
intensity patterns gives direct access to quantitative 
profiles of protein abundances (also often referred to as 
protein expression). The obtained values allow clear and 
straightforward statistical interpretation of data (Jensen, 
Jessen, and Jorgensen, 2008). For example, hierarchi-
cal clustering provides classification of individual pro-
teins by their expression profiles (Faria-Oliveira et al., 
2015). Subsequent annotation of protein functions and 
localization gives an opportunity for reliable conclusion 
about affected functions and metabolic pathways, as 
well as the impact of certain sub-cellular structures in 
observed plant response (Gong et al., 2012). In this way, 
protein dynamics (i.e. changes in expression of individ-
ual polypeptide species) can be addressed in the context 
of protein functions, relations to other molecular part-
ners (proteins and metabolites), as well as localization in 
organ, tissue and cell (Li et al., 2016). 

However, it is important to mention that despite 
multiple advantages of 2D–GE — relatively low prices for 
instrumentation, ease of handling, availability of effec-
tive interpretation software tools — this method has sev-
eral intrinsic disadvantages. It suffers from low inter-gel 
reproducibility — i.e. high variability between treatment 
groups, analytical replicates, experiment time points and 
performers. Fortunately, the inter-group variation can 
be overcome by sample multiplexing in terms of the dif-
ference gel electrophoresis (DIGE) approach (Beckett, 
2012). For this, cyanine dyes (Cy3 and Cy5) are added 

to alternating samples, whereas the third dye (Cy2) can 
be used for standardization (Unlu, Morgan, and Mindin, 
1997). Mixing all three mixtures of protein derivatives 
in a 1:1:1 ratio gives direct access to protein expression 
(Unlu, Morgan, and Minde, 1997). The individual dyes 
contain different fluorophore moieties, so green, yellow 
and red fluorescence can be acquired from the same gel 
with minimal cross-talk and sensitivities of up to 150 pg 
per visualized electrophoretic zone (Tan, Lim, and Lau, 
2017). Unfortunately, the DIGE approach does not allow 
reduction of inter-replicate variability or the personnel-
related bias. Indeed, as most of the spots contain more 
than one protein, the reliability of quantitative protein 
profiles obtained by 2D-GE is often questionable. More-
over, in comparison to LC-based methods, 2D-GE has 
much lower analytical resolution and linear dynamic 
range. Hence, currently, gel-free methods are being ac-
tively optimized in analysis of the seed proteome. 

Gel-free (LC-based) bottom-up  
proteomic strategy

In comparison to gel-based techniques, LC-MS repre-
sents a much more powerful analytical tool, providing 
reliable identification of several thousand proteins in 
one separation experiment (Kocher, Pichler, Swart, and 
Mechtler, 2012). Obviously, due to its high analytical res-
olution, the LC-MS-based approach is preferable in anal-
ysis of complex proteomes. Generally, it relies on sepa-
ration of individual proteolytic peptides after enzymatic 
proteolysis of the total protein mixture (Fig. 1). However, 
LC-MS proteomics has some limitations which need 
to be kept in mind when planning plant proteomic ex-
periments. First, the conventional ionization technique 
used in LC-MS-based proteomics is ESI (Soboleva et al., 
2017), although off-line LC-MALDI-TOF/TOF-MS can 
also be employed (Krokhin, Ens, and Standing, 2005). 
This technique is highly prone to matrix effects, which 
are most often manifested as suppression of low-inten-
sity peptide signals by highly abundant coeluting species 
(Taylor, 2005). Taking into account the high numbers of 
proteolytic peptides formed during enzymatic digestion 
(dozens or even hundreds of thousands), high separation 
efficiency becomes a critical requirement for successful 
ionization and detection of all of them. 

Secondly, ESI is absolutely incompatible with de-
tergents (in particular SDS and CHAPS), and these 
substances directly hamper LC-MS (Vissers, Chervet, 
and Salzmann, 1996). Moreover, SDS, Triton X100 and 
CHAPS, conventially used in gel-based proteomics, can 
be efficiently retained on reversed phase and broadly 
coeluted with proteolytic peptides, suppressing their 
detection (Chen, Cociorva, Norris, and Yates, 2007). 
Therefore, conventional detergents cannot be used for 
solubilization of proteins when ESI-MS experiments 
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are planned. In the simplest method, researchers target 
only the soluble part of the plant proteome by extraction 
with aqueous buffers (Bilova et al., 2016a). In this case, 
it is necessary to keep in mind that such extracts may 
contain low molecular weight metabolites, which might 
affect efficiency of the proteolysis and therefore need to 
be removed prior to digestion. For this, size-exclusion 
chromatography, performed on PD-10 columns, proved 
to be an efficient tool (Bilova et al., 2016b). Alternatively, 
enzymatic digest of the whole amount of protein in each 
particular sample can be performed. For this, isolated 
protein is dissolved in a sample buffer containing SDS 
(which is known to be one of the best detergents) and 
separated by SDS-PAGE. Afterwards, the whole lanes are 
excised and cut in several (at least about ten) segments 
for in-gel digestion with trypsin (Han, Yin, He, and 
Yang, 2013). The resulting digests are pooled, desalted 
by reversed phase solid phase extraction (RP–SPE), ly-
ophilized, and analyzed by LC–MS after reconstitution 
in an appropriate solvent. Obviously, both these strate-
gies have a disadvantage of incomplete recovery of the 
seed proteome. 

Another limitation of LC-based proteomics is so-
called “undersampling” in LC–MS, related to data-
dependent acquisition (DDA) experiments, which are 
still most widely used in LC-proteomics (Kalli, Smith, 
Sweredoski, and Hess, 2013). This type of MS experi-
ment relies on acquisition of several (usually 5–10, or 
up to 20 in modern instruments) MS/MS spectra of the 
most intense signals observed in a so-called survey MS 
scan (which typically takes from 20 to 500 ms, depend-
ing on the instrument) (Majovsky et al., 2014). Thus, the 
number of MS/MS scans acquirable during the time of 
the whole DDA experiment is limited and usually es-
sentially lower than the number of peptides detected 
on the MS level. Another issue worthy of consideration 
is the relatively low intra- and inter-batch precision of 
label-free quantification. Therefore, reliable inter- and 
intra-run normalization is strictly mandatory (Wilm, 
2009). In this context, techniques relying on metabolic 
(Guo and Li, 2011), chemical (Yao, 2011) and/or stable 
isotope (Soboleva, 2017) labeling are advantageous, as 
they provide a possibility of sample multiplexing prior 
to (preferred) or after proteolysis. Finally, probably the 
most important factor limiting the application of LC–
MS-based methods is the high costs of instrumentation 
and requirements of the skills of personnel. 

Taken together, overcoming these limitations re-
quires essential investments of work and resources. 
Because of this, 2D–GE is still the most widely used 
technique in plant protein research in general, and in 
seed proteomics in particular. However, several studies 
employing the LC–MS-based shotgun proteomics ap-
proach justify this technique as an advantageous one in 
comparison to other strategies. Indeed, the current state 

of analytical science provides successful solutions for all 
the limitations listed above. First of all, the ultra-high 
performance chromatography (UHPLC) technique pro-
vides highly-efficient separations (Soboleva et al., 2017), 
minimizing matrix effects and supression of low-inten-
sity peptide signals by coeluting highly abundant coun-
terparts. Secondly, quantitative reconstitution of hydro-
phobic proteins without any accompanying effects on 
the sensitivity has been achieved. For this, commercially 
available degradable detergents can be used (Zhang et 
al., 2013). Among them, RapiGest SF Surfactant (Waters 
Corporation) is probably the most widely used acid–la-
bile detergent for blood plasma analysis, as it ensures 
complete reconstitution of isolated blood proteins and 
can be precipitated by hydrochloric acid upon enzymat-
ic digestion (Jagadeeshaprasad et al., 2016). However, 
recently it was effectively applied to digestion of barley 
seed protein, resulting in identification of 226 proteins 
in shotgun data-independent experiments (Kaspar-
Schoenefeld et al., 2016). Among many others, Progenta 
anionic acid labile surfactant (AALSII) is another op-
tion for enzymatic digestion of hydrophobic (e.g., mem-
brane) proteins (Waas et al., 2016). We recently used this 
detergent for analysis of the total Arabidopsis leaf pro-
teome (Frolov et al., 2016; Paudel et al., 2016). Later, we 
successfully applied this approach to germinating seeds 
of oilseed rape (Brassica napus) (Frolov et al., 2017). 
When combined with long chromatographic gradients, 
this digestion protocol results in identification of thou-
sands of proteins (Paudel et al., 2016). To avoid analyti-
cal undersampling in DDA experiments (Kalli, Smith, 
Sweredoski, and Hess, 2013), enrichment, depletion 
and pre-fractionation procedures can be used. For ex-
ample, glycated leaf protein can be selectively enriched 
by boronic acid chromatography (Bilova et al., 2016b), 
whereas removal of major legume reserve seed proteins 
by protamine sulfate is a good example of a depletion 
procedure that essentially increases sequence coverage 
of the seed proteome (Kim et al., 2015). Pre-fraction-
ation can be reliably established on the chromatographic 
level by application of two-dimensional separations. For 
example, hydrophilic interaction liquid chromatography 
(HILIC) can be used as the first dimension (orthogonal 
to reversed phase chromatography). Several (typically 
5–10) fractions are collected, dried, reconstituted in ap-
propriate low-organic solvent and separated by RP-(U)
HPLC. This design has proved to be applicable both for 
mammalian (human) (Bollineni, Hoffmann, and Fe-
dorova, 2011)  and plant (Paudel et al., 2016) samples. 
Alternatively, pre-fractionation can be performed at 
the level of multipole pre-filter in a mass-spectrometer. 
This technique, known as the gas phase fractionation 
approach (Canterbury et al., 2014), gives access to low-
abundant peptides and, therefore, provides an essential 
increase of protein sequence coverage.
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Summarizing and taking into account the consid-
erations mentioned above, according to our experience, 
an efficient LC-MS-based proteomic workflow can be 
structured as follows (Fig. 2). After shock-freezing in 
liquid nitrogen, seed tissues are ground in a ball mill, 
and approximately 50–200  mg (depending on species) 
of grinded material are taken for phenol-based extrac-
tion procedure (Isaacson et al., 2006; Frolov et al., 2017). 
After several cleaning steps, proteins are precipitated 
from phenol phase with ice-cold methanolic ammoni-
um acetate solution, sequentially washed with methanol 
and acetone, dried and completely reconstituted in a 
“shotgun buffer” containing haotropic agents (urea and 
thiourea) and detergent (Progenta Anionic Acid-Labile 
Surfactant, AALSII) (Frolov et al., 2016). Afterwards, af-
ter determination of protein contents and verification of 
results with SDS-PAGE, solubilized proteins are digested 
by trypsin (Greifenhagen et al., 2016). When complete-
ness of the proteolysis is verified with SDS-PAGE, AALS 
can be destroyed and the digests can be pre-cleaned with 
RP-SPE either in a cartridge or stage-tip format as de-
scribed by Spiller et al. (2017). 

After pre-cleaning, samples are analyzed by nano 
(U)HPLC–ESI–MS in a data-independent acquisition 
(DIA) or data-dependent acquisition (DDA) mode 
(Fig.  3). Identification of peptide sequences relies on 
tandem mass spectrometry (MS/MS, Fig. 3A and B), 
while label quantification is usually based on integration 
of extracted ion chromatograms (XICs, Fig. 3C, inserts). 
Whereas annotation of fragments by XICs is critical for 
DIA (Jamwal et al., 2017), the major challenge of DDA 
experiments is analytical undersampling (Kalli, Smith, 
Sweredoski, and Hess, 2013). Indeed, as only a limited 
number of quasi-molecular ions can be involved in frag-
mentation in each DDA cycle, an essential (if not the ma-
jor) part of a proteome is left undetected. To avoid (or at 
least minimize) this problem, LC-MS analysis needs to 
rely either on enrichment/pre-fractionation techniques 
(when annotation of the maximum possible number of 
proteins is the main scope of the study) or prolonged 
gradients (when reliable label-free quantification is de-
sired) (Bollineni, Hoffmann, and Fedorova, 2011; Pau-
del et al., 2016 ). The choice of mass analyzer is based 
on the principle goal of the research. When the experi-
ment can be described as “discovery proteomics”, high 
mass accuracy at least at the MS level is a pre-requisite 
for reliable annotation of sequence tags. The high mass 
accuracy in MS/MS scans might significantly increase 
the reliability of protein annotation. Therefore, for DDA 
experiments, linear ion trap (LTQ)-Orbitrap and espe-
cially the modern quadrupole (Q)-Orbitrap instruments 
are the best choice (Bollineni, Hoffmann, and Fedorova, 
2011; Kalli, Smith, Sweredoski, and Hess, 2013; Schel-
tema et al., 2014). Importantly, the acquired data are well 
compatible with the most well-established data process-

ing pipelines, like OpenMS, Progenesis QI (Non-Linear 
Dynamics/Waters Corporation) and MaxQuant (Max 
Planck Institute of Biochemistry, Martinsried, Germa-
ny), compatible with various search machines (Weisser 
et al., 2013). The processed data can be subjected to sta-
tistical interpretation and used as input information for 
gene ontology tools (Tyanova et al., 2016).

Profiles	of	post-translational	modifications

Seed maturation is accompanied by accumulation of re-
serve biopolymers (Smolikova et al., 2017b). Although 
for some species reserve molecules are represented with 

Fig.	2. Detailed workflow for LC-based proteomics: protein isolation, 
sample preparation, analysis and data processing.
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proteins (i.e. legumes), abundances of carbohydrates 
and lipids might be relatively high even in such seeds 
(Landry, Fuchs, and Hu, 2016). Although it is obviously 
favorable at the early steps of seed maturation, high con-
tents of these metabolites might affect the patterns on 
non-enzymatic modifications of seed proteins. Indeed, 
oxidative stress, accompanying both seed maturation 
and ageing, in the presence of high amounts of reduc-
ing sugars (generated by de-polymerization of reserve 
polysaccharides) and unsaturated fatty acids or fatty 
acid residues in lipids, results in oxidative degradation of 
these biomolecules. Thereby, sugars are involved in met-

al-catalyzed monosaccharide autoxidation (Wolff and 
Dean, 1987), whereas fatty acid residues in lipids can be 
subjected to lipid peroxidation (Ayala, Munoz, and Ar-
guelles, 2014). Resulting reactive carbonyl compounds 
(RCCs) readily interact with side chains of nucleophilic 
amino acid residues, such as lysine, arginine, histidine, 
and cysteine in reactions of glyco- and lipoxydation 
(Vistoli et al., 2013). Moreover, as the both processes are 
free radial-based, they are accompanied by enhanced 
production of reactive oxygen species, and they promote 
oxidative stress (Vistoli et al., 2013). Thus, glycation, 
lipid peroxidation and oxidation need to be addressed 

Fig. 3. Tandem mass spectra of m/z 902.42 corresponding to the (M+2H)2+ of the tryptic peptide ESDADITVAALPMDEAR240, representing glucose-
1-phosphate adenylyltransferase (A), and of m/z 1222.09 corresponding to the (M+2H)2+ of the tryptic peptide AGVPMEVMGLMLGEFVDEYTVR72, 
representing 26S proteasome non-ATPase regulatory subunit-like protein (B), and annotation of these sequences by characteristic retention 
times (tR) at corresponding extracted ion chromatograms (C, inserts XIC1 and XIC2,) obtained from a total ion chromatogram (C, TIC) of tryptic 
peptide mixture from Pisum sativum L. seed proteins: XIC 1 (for m/z 902.42 ± 0.02, tR 91.95); XIC 2 (for m/z 1222.09 ± 0.02, tR 166.15).
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when studying seed development and ageing. Indeed, 
it was shown that seed proteins undergo this kind of 
modification during prolonged storage (Strelec, Ugar-
cic-Hardi, and Hlevnjak, 2008) and accelerated ageing 
of seeds (Wettlaufer and Leopold, 1991). It is important 
to note that resulting advanced glycation end products 
(AGEs) and advanced lipoxidation end products (ALEs) 
are known to interact with immunoglobulin-like recep-
tors for advanced glycation end-products (RAGEs), and 
to trigger inflammatory response in mammals. Howev-
er, the phenomena of seed protein glyco- and lipoxyda-
tion were generally addressed only at the biochemical 
level (i.e. measurement of basic markers, like total con-
tents of Amadori compounds and thiobarbituric acid-
reactive substances) (Murthy, Kumar, and Sun, 2003) or 
profiles of prospective glyco- and lipoxidation products 
(Colville et al., 2012), whereas a comprehensive pro-
teomics survey of modification profiles still needs to be 
done. In the most efficient way, such analyses might rely 
on the LC–MS-based approach with a special focus on 
in-depth analysis of low-abundant species. 

As was mentioned before, the coverage of non-en-
zymatic modifications (which are typically represented 
with low-intensity signals in chromatograms) can be 
increased by implementation of enrichment/depletion 
and pre-fractionation procedures (Bilova et al., 2016b; 
Paudel et al., 2016). Besides, fragmentation of high-
intensity signals of abundant unmodified peptides can 
be suppressed in DDA experiments by using the result-
based exclusion strategy (Paudel et al., 2016). In terms of 
this approach, acquired DDA data are searched against 
a sequence database without consideration of specific 
variable post-translational modifications (typically, only 
methionine sulfoxide is used in this case). Based on 
these results, quasi-molecular ions of unmodified pep-
tides are excluded from fragmentation, i.e. correspond-
ing m/z values are entered in a so-called exclusion list, 
located in an instrument method. Analogously, peptide 
signals can be submitted to an inclusion list — in this 
case, target m/z value will be fragmented upon detec-
tion in the survey scan without consideration of relative 
signal intensity (Greifenhagen et al., 2014). 

Identification of glyco- and lipoxydized peptides 
relies on their specific m/z increments and characteris-
tic tandem mass spectrometric (MS/MS) fragmentation 
patterns (Frolov and Hoffmann, 2008; Milic, Hoffmann, 
and Fedorova, 2013). Thereby, either collision-activated 
dissociation (CAD) (Frolov et al., 2006) or electron cap-
ture/transfer dissociation (ECD/ETD) can be employed 
(Zhang et al., 2007). When fragmentation occurs under 
CAD conditions, sequence information can be derived 
by indicative b- and y-fragment ion series (Fig. 4). For 
most AGEs, ALEs and oxidation products, the positions 
of individual side chain modifications can be unambigu-
ously assigned by characteristic mass increments of frag-

ment ions because these modifications are stable under 
CAD conditions (Ehrlich et al., 2009; Frolov, Bluher, 
and Hoffman, 2014; Greifenhagen, Frolov, and Hoff-
mann, 2014; Schmidt, Böhme, Singer, and Frolov, 2015). 
In contrast, early glycation products (i.e. Amadori and 
Heyns compounds) (Heyns and Noack, 1962; Hodge, 
1955) are readily involved in fragmentation already at 
relatively low collision energies, yielding characteristic 
patterns of signals in their tandem mass spectra (Frolov, 
Singer, and Hoffmann, 2006). Thus, early glycated pep-
tides can be easily recognized by a characteristic pattern 
of (M-H2O)n+, (M-2H2O)n+, (M-3H2O)n+, (M-4H2O)n+ 
signals and additional loss of one water and one formal-
dehyde molecule (Frolov and Hoffmann, 2010; Frolov et 
al., 2014). This characteristic pattern of oxonium, pyry-
lium and furylium ions (Horvat and Jakas, 2004) can be 
considered a signature of protein glycation in peptide 
sequence (Frolov et al., 2006). It is important to note that 
these patterns are less abundant when resonance excita-
tion is used, i.e. the loss of one water molecule is usually 
missing in the spectra acquired with a Paul trap (Frolov 
et al., 2014). Remarkably, neutral losses related to glyca-
tion moiety accompany b- and y-fragment series and, 
therefore, can be used for peptide sequencing (Fig.  4) 
(Frolov, Singer, and Hoffmann, 2006). This is also true 
for complex molecules containing a monosaccharide 
part, e.g., nucleotides (Fedorova, Frolov, and Hoffmann, 
2010). However, for oligosaccharide-derived Amadori 
compounds (e.g., Nε-(lactosyl)lysine-containing pep-
tides), CAD does not deliver any valuable sequence 
information (Milkovska-Stamenova and Hoffmann, 
2016). Therefore, in such cases, ETD or ECD fragmenta-
tion capabilities are strongly desired.

Due to the high variability of non-enzymatic post-
translational modifications, the high complexity of real 
proteomes and the different fragmentation behavior of 
individual PTMs, it seems logical to address the path-
ways of fragmentation in some simple models. In the 
most straightforward way, such experiments might rely 
on synthetic peptide models (Frolov, Bluher, and Hoff-
mann, 2014; Greifenhagen, Frolov, and Hoffmann, 2015). 
Indeed, synthesis of glycated peptides is well established 
for a large selection of early and advanced glycation 
products (Gruber and Hofmann, 2005; Frolov, Singer, 
and Hoffmann, 2006, 2007; Ehrlich et al., 2009; Greif-
enhagen, Frolov, and Hoffmann, 2014; Schmidt, Böhme, 
Singer, and Frolov, 2015). Based on these synthetic stan-
dards, efficient methods for structural characterization, 
as well as specific and sensitive detection, can be de-
signed. Detection techniques might rely on neutral loss 
(Gadgil et al., 2007) or precursor ion (Frolov et al., 2006; 
Greifenhagen et al., 2014; Schmidt et al., 2015) scans. In 
the latter case, indicative characteristic fragments, re-
lated to modified amino acid residues, can serve as di-
agnostic signals. On the other hand, the knowledge of 



52 BIOLOGICAL  COMMUNICATIONS,  vol. 63,  issue 1,  January–March,  2018 | https://doi.org/10.21638/spbu03.2018.106

fragmentation patterns allows reliable identification of 
individual oxidation or glycation products (Frolov et al., 
2014; Greifenhagen, Frolov, and Hofmann, 2015; Greif-
enhagen, Frolov, Bluher, and Hofffmann, 2016a, 2016b). 
Additionally, it provides valuable information for new 
quantification methods. Thus, based on the patterns 
of characteristic b- and y-fragments, multiple reaction 
monitoring (MRM)-based quantitative methods can be 
developed (Spiller, Frolov, and Hoffmann, 2017; Spiller 
et al., 2017). Not less importantly, synthetic peptide 
models provide access to valuable kinetic information. 
Indeed, both formation (Frolov et al., 2014) and degra-
dation (Greifenhagen, Frolov, and Hoffmann, 2015) ki-

netics of individual glycation products can be addressed 
with this analytical tool.

Conclusion

The seed proteome represents a highly complex system, 
only a minor part of which has been characterized so far. 
Changes in protein dynamics accompanying seed ger-
mination are characterized better, but still insufficiently, 
due to generally low overall numbers of annotated seed 
proteins. Moreover, the role of non-enzymatic post-
translational modifications in regulatory events accom-
panying seed development and germination has also 

Fig.	4. Tandem mass spectra of m/z 855.42 corresponding to the (M+3H)3+ of the tryptic AGE-modified peptide AD(Glarg)EDVHMOxNIEAALT-
DLIGEPAK159, representing argininosuccinate lyase from Pisum sativum L. seeds (A), and of m/z 794.41 corresponding to the (M+2H)2+ of the 
tryptic Amadori/Heyns-modified peptide EACCAMQSQKTriosylVISLPR601  representing chloride channel protein CLC-d from Arabidopsis thaliana 
L. leaves (B), and annotation of these by the corresponding extracted ion chromatograms (XICs, inserts) at the characteristic retention times 
(tRs), obtained from corresponding total ion chromatogram (TICs): (TIC at Fig. 3) XIC 1 (for m/z 855.42 ± 0.02, tR 142.13); C — TIC and XIC 2 (for 
m/z 794.41 ± 0.02, tR 20.08). Modifications: Glarg, glyoxal-derived hydroimidazolone, 1-(4-amino-4-carboxybutyl)2-imino-5-oxo-imidazolidine; 
MOx, methionine sulfoxide; CCAM, cysteine carbamidomethylation; KTriosyl, Nε-(triosyl)lysine.
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been only minimally addressed so far. Thus, the quality 
and completeness of proteomics information available to 
date are insufficient and need to be improved. The most 
obvious reason for this is the relatively low analytical 
power of the methods routinely used for characteriza-
tion of the seed proteome. Indeed, as 2D-GE is the most 
widely used analytical technique for this, additional en-
richment/depletion or pre-fractionation steps need to be 
included in established workflows to increase their ana-
lytical power. However, one needs to keep in mind the 
limited potential of gel-based techniques to characterize 
the whole complexity of the seed proteome. Therefore, 
LC-based methods (which are currently rarely used), 
relying on highly-effective separation systems, are obvi-
ously advantageous. High resolution mass spectrometry 
needs to be employed for efficient identification and reli-
able quantification of individual proteins. 

References

Altshul, A. M. 1962. Seed proteins and world food prob-
lems. Economy Botany 16:2–13. https://doi.org/10.1007/
BF02986049

Arun, K. A. V. 2015. Gel-based proteomics in plants:time to 
moove on from the tradition. Frontiers of Plant Science 
6:369. https://doi.org/10.3389/fpls.2015.00369

Asgar, M. A., Fazilah, A, Huda, N, Bhat, R, and Karim, A. A. 
2010. Nonmeat protein alternatives as meat extenders 
and meat analogs. Comprehensive Reviews in Food Sci-
ence and Food Safety 9:513–529. https://doi.org/10.1111/
j.1541-4337.2010.00124.x

Ayala, A., Munoz, M F, and Arguelles, S. 2014. Lipid peroxi-
dation: production, metabolism, and signaling mecha-
nisms of malondialdehyde and 4-hydroxy-2-nonenal. 
Oxidative Medicine and Cellular Longevity 2014:360–438. 
https://doi.org/10.1155/2014/360438

Bailly, C. and Kraner, I. 2011. Analyses of ROS and antioxi-
dants in relation to seed longevity and germination. 
Methods in Molecular Biology 773:343–367. https://doi.
org/10.1007/978-1-61779-231-1_20

Barkla, B. J. and Vera-Estrella, R. 2015. Single cell-type com-
parative metabolomics of epidermal bladder cells from 
the halophyte Mesembryanthemum crystallinum. Fron-
tiers in Plant Science 6:435. https://doi.org/10.3389/
fpls.2015.00435

Bates, P. D., Stymne, S., and Ohlrogge, J. 2013. Biochemi-
cal pathways in seed oil synthesis. Current Opinion in 
Plant Biology 16:358–364. https://doi.org/10.1016/j.
pbi.2013.02.015

Beckett, P. 2012. The basics of 2D DIGE. Methods in Molecular 
Biology 854:9–19 https://doi.org/10.1007/978-1-61779-
573-2_2

Bilova, T., Greifenhagen, U., Paudel, G., Lukasheva, E., 
Brauch,  D., Osmolovskaya, N., Tarakhovskaya, E., 
Balcke, G. U., Tissier, A., Vogt, T., Milkovski, C., Birkemey-
er, C., Wessjohann, L. A., and Frolov, A. 2016a. Glycation 
of plant proteins under environmental stress―meth-
odological approaches, potential mechanisms and bio-
logical role; pp. 295–316 in Shanker, A. (Ed.). Abiotic and 
biotic stress in plants ― recent advances and future per-
spectives. IntechOpen. ISBN 978-953-51-2250-0. https://
doi.org/10.5772/61860. 

Bilova, T., Lukasheva, E., Brauch, D., Greifenhagen, U., Pau-
del,  G., Tarakhovskaya, E., Frolova, N., Mittasch, J., 

Balcke,  G. U., Tissier, A., Osmolovskaya, N., Vogt, T., 
Wessjohann, L. A, Birkemeyer, C., Milkowski, C., and 
Frolov, A. 2016b. A Snapshot of the plant glycated pro-
teome: structural, functional, and mechanistic aspects. 
Journal of Biologial Chemistry 291:7621–7636. https://doi.
org/10.1074/jbc.M115.678581

Binita, K., Kumar, S., Sharma, V. K., Sharma, V., and Yadav, S. 
2014. Proteomic identification of Syzygium cumini seed 
extracts by MALDI–TOF/MS. Applied Biochemical Biotech-
nology 172:2091–2105. https://doi.org/10.1007/s12010-
013-0660-x

Bollineni, R. C., Hoffmann, R., and Fedorova, M. 2011. Identifi-
cation of protein carbonylation sites by two-dimensional 
liquid chromatography in combination with MALDI– and 
ESI–MS. Journal of Proteomics 74:2338–2350. https://doi.
org/10.1016/j.jprot.2011.07.002

Bourgeois, M., Jacquin, F., Savois, V., Sommerer, N., Labas, V., 
Henry, C., and Burstin, J. 2009. Dissecting the proteome 
of pea mature seeds reveals the phenotypic plastic-
ity of seed protein composition. Proteomics 9:254–271. 
https://doi.org/10.1002/pmic.200700903

Bradford, K. J., Dahal, P., Asbrouk, J. V., Kunusoth, K., Bello, P., 
Thompson, J., and Wu, F. 2018. The dry chain: Reducing 
postharvest losses and improving food safety in humid 
climates. Trends in Food Siene and Technology 71:84–93.
https://doi/org/10.1016/j.tifs.2017.11.002 

Brink-Jensen, K., Bak, S., Jorgensen, K, and Ekstrom, C T. 2013. 
Integrative analysis of metabolomics and transcrip-
tomics data: a unified model framework to identify un-
derlying system pathways. PLoS One 8:e72116  https://
doi.org/10.1371/journal.pone.0072116

Canterbury, J. D., Merrihew, G. E., MacCoss, M. J., Good-
lett,  D. R., and Shaffer, S. A. 2014. Comparison of data 
acquisition strategies on quadrupole ion trap instru-
mentation for shotgun proteomics. Journal of Amerian 
Society for Mass Spectrometry 25:2048–2059. https://doi.
org/10.1007/s13361-014-0981-1

Carre, P. and Pouzet, A. 2012. Rapeseed market, world-
wide and in Europe oilseeds and fats. Crops and lipids 
21:D102. https://doi.org/10.1051/ocl/2013054

Catherman, A. D., Skinner, O. S, and Kelleher, N. L. 2014. Top 
Down proteomics: facts and perspectives. Biochemical 
and Biophysical Research Communications 445:683–693. 
https://doi.org/10.1016/j.bbrc.2014.02.041

Cernay, C., Pelzer, E., and Makovski, D. 2016. A global ex-
perimental dataset for assessing grain legume produc-
tion. Sientifi Data 3:160084. https://doi.org/10.1038/
sdata.2016.84

Chen, D., Shen, X., and Sun, L. 2017. Capillary zone electro-
phoresis-mass spectrometry with microliter-scale load-
ing capacity, 140 min separation window and high peak 
capacity for bottom-up proteomics. Analyst 142:2118–
2127. https://doi.org/10.1039/c7an00509a

Chen, E. I., Cociorva, D., Norris, J. L., and Yates, J. R., III. 
2007. Optimization of mass spectrometry-compatible 
surfactants for shotgun proteomics. Journal of Pro-
teome Research 6:2529–2538. https://doi.org/10.1021/
pr060682a

Chevallet, M., Luche, S., Diemer, H., Strub, J. M., Van, D. A., 
and Rabilloud, T. 2008. Sweet silver: a formaldehyde-
free silver staining using aldoses as developing agents, 
with enhanced compatibility with mass spectrom-
etry. Proteomics 8:4853–4861. https://doi.org/10.1002/
pmic.200800321

Chmelik, J., Zidkova, J., Rehulka, P., Petry-Podgorska, I., and 
Bobalova, J. 2009. Influence of different proteomic pro-
tocols on degree of high-coverage identification of non-
specific lipid transfer protein 1 modified during malting. 

https://doi.org/10.1007/BF02986049
https://doi.org/10.1007/BF02986049
https://doi.org/10.3389/fpls.2015.00369
https://doi.org/10.1111/j.1541-4337.2010.00124.x
https://doi.org/10.1111/j.1541-4337.2010.00124.x
https://doi.org/10.1155/2014/360438
https://www.ncbi.nlm.nih.gov/pubmed/21898265
https://doi.org/10.1007/978-1-61779-231-1_20
https://doi.org/10.1007/978-1-61779-231-1_20
https://doi.org/10.1016/j.pbi.2013.02.015
https://doi.org/10.1016/j.pbi.2013.02.015
https://www.ncbi.nlm.nih.gov/pubmed/22311750
https://www.ncbi.nlm.nih.gov/pubmed/22311750
https://doi.org/10.1007/978-1-61779-573-2_2
https://doi.org/10.1007/978-1-61779-573-2_2
http://dx.doi.org/10.5772/61860
http://dx.doi.org/10.5772/61860
http://dx.doi.org/10.1074/jbc.M115.678581
http://dx.doi.org/10.1074/jbc.M115.678581
https://doi.org/10.1007/s12010-013-0660-x
https://doi.org/10.1007/s12010-013-0660-x
https://doi.org/10.1016/j.jprot.2011.07.002
https://doi.org/10.1016/j.jprot.2011.07.002
https://doi.org/10.1002/pmic.200700903
https://doi/org/10.1016/j.tifs.2017.11.002
https://doi.org/10.1371/journal.pone.0072116
https://doi.org/10.1371/journal.pone.0072116
https://doi.org/10.1007/s13361-014-0981-1
https://doi.org/10.1007/s13361-014-0981-1
https://doi.org/10.1051/ocl/2013054
https://doi.org/10.1016/j.bbrc.2014.02.041
https://doi.org/10.1038/sdata.2016.84
https://doi.org/10.1038/sdata.2016.84
https://doi.org/10.1039/c7an00509a
https://doi.org/10.1021/pr060682a
https://doi.org/10.1021/pr060682a
https://doi.org/10.1002/pmic.200800321
https://doi.org/10.1002/pmic.200800321


54 BIOLOGICAL  COMMUNICATIONS,  vol. 63,  issue 1,  January–March,  2018 | https://doi.org/10.21638/spbu03.2018.106

Electrophoresis 30:560–567. https://doi.org/10.1002/
elps.200800530

Clauser, K. R., Baker, P., and Burlingame, A. L. 1999. Role of 
accurate mass measurement (+/- 10  ppm) in protein 
identification strategies employing MS or MS/MS and 
database searching. Analytical Chemistry 71:2871–2882. 
https://doi.org/10.1021/ac9810516

Colville, L., Bradley, E. L., Lloyd, A. S., Pritchard, H. W., Cas-
tle, L., and Kranner, I. 2012. Volatile fingerprints of seeds 
of four species indicate the involvement of alcoholic fer-
mentation, lipid peroxidation, and Maillard reactions in 
seed deterioration during ageing and desiccation stress. 
Journal of Experimental Botany 63:6519–6530. https://doi.
org/10.1093/jxb/ers307

Corbineau, F. 2012. Markers of seed quality: from present 
to future. Seed Science Research 22:S61–S68. https://doi.
org/10.1017/S0960258511000419

Don, R. 2009. ISTA Handbook on seedling evaluation. 3rd Edi-
tion. By the ISTA Germination Committee https://www.
seedtest.org/

Duranti, M. 2006. Grain legume proteins and nutraceu-
tical properties. Fitoterapia 77:67–82. https://doi.
org/10.1016/j.fitote.2005.11.008

Ehrlich, H., Hanke, T., Frolov, A., Langrock, T., Hoffmann, R., 
Fischer, C., Schwarzenbolz, U., Henle, T., Born, R., and 
Worch, H. 2009. Modification of collagen in vitro with re-
spect to formation of Nepsilon-carboxymethyllysine. In-
ternational Journal of Biological Macromolecules 44:51–56. 
https://doi.org/10.1016/j.ijbiomac.2008.10.001

FAO Cereal Supply and Demand Brief. 2017. https://www.fao.
org/worldfoodsituation

Faria-Oliveira, F., Carvalho, J., Ferreira, C., Hernaez, M. L., 
Gil, C., and Lucas, C. 2015. Quantitative differential pro-
teomics of yeast extracellular matrix: there is more to 
it than meets the eye. BMC Microbiology 15:271. https://
doi.org/10.1186/s12866-015-0550-1

Fedorova, M., Frolov, A., and Hoffmann, R. 2010. Fragmenta-
tion behavior of Amadori-peptides obtained by non-en-
zymatic glycosylation of lysine residues with ADP-ribose 
in tandem mass spectrometry. Journal of Mass Spectrom-
etry 45:664–669. https://doi.org/10.1002/jms.1758

Filho, J. M. 2015. Seed vigor testing: an overview of the past, 
present and future. Scientia Agricola 72:363–374. https://
doi.org/10.1590/0103-9016-2015-0007

Food and Agriculture Organization of the United Nations, 
2018. https://www.fao.org

Frolov, A. and Hoffmann, R. 2008. Analysis of Amadori pep-
tides enriched by boronic acid affinity chromatography. 
Annals of New York Academy of Science 1126:253–256. 
https://doi.org/10.1196/annals.1433.060

Frolov, A. and Hoffmann, R. 2010. Identification and relative 
quantification of specific glycation sites in human serum 
albumin. Analytical and Bioanalytical Chemistry 397:2349–
2356. https://doi.org/10.1007/s00216-010-3810-9

Frolov, A., Bilova, T., Paudel, G., Berger, R., Balcke, G. U., Birke-
meyer, C., and Wessjohann, L. A. 2016. Early responses 
of mature Arabidopsis thaliana plants to reduced water 
potential in the agar-based polyethylene glycol infusion 
drought model. Journal of Plant Physiology 280:70–83. 
https://doi.org/10.1016/j.jplph.2016.09.013

Frolov, A., Bluher, M., and Hoffmann, R. 2014. Glycation sites 
of human plasma proteins are affected to different ex-
tents by hyperglycemic conditions in type 2  diabetes 
mellitus. Analytical and Bioanalytical Chemistry 406:5755–
5763. https://doi.org/10.1007/s00216-014-8018-y

Frolov, A., Didio, A., Ihling, C., Chantzeva, V., Grishina, T., Hoeh-
enwarter, W., Sinz, A., Smolikova, G., Bilova, T., and Med-
vedev, S. 2017. The effect of simulated microgravity on 

the Brassica napus seedling proteome. Functional Plant 
Biology 45(4):440–452. https://doi.org/10.1071/FP16378

Frolov, A., Hoffmann, P., and Hoffmann, R. 2006. Fragmen-
tation behavior of glycated peptides derived from D-
glucose, D-fructose and D-ribose in tandem mass spec-
trometry. Journal of Mass Spectrometry 41:1459–1469. 
https://doi.org/10.1002/jms.1117

Frolov, A., Schmidt, R., Spiller, S., Greifenhagen, U., and Hoff-
mann, R. 2014. Formation of arginine-derived advanced 
glycation end products in peptide-glucose mixtures 
during boiling. Journal of Agrical and Food Chemistry 
62:3626–3635. https://doi.org/10.1021/jf4050183

Frolov, A., Singer, D., and Hoffmann, R. 2006. Site-specif-
ic synthesis of Amadori-modified peptides on solid 
phase. Journal of Peptide Science 12:389–395. https://doi.
org/10.1002/psc.739

Frolov, A., Singer, D., and Hoffmann, R. 2007. Solid-phase 
synthesis of glucose-derived Amadori peptides. Journal 
of Peptide Science 13:862–867. https://doi.org/10.1002/
psc.901

Fu, Y. B., Ahmed, Z., and Diederichsen, A. 2015. Towards a 
better monitoring of seed ageing under ex situ seed 
conservation. Conservative Physiology 3:cov026. https://
doi.org/10.1093/conphys/cov026

Gadgil, H. S., Bondarenko, P. V., Treuheit, M. J., and Ren, D. 
2007. Screening and sequencing of glycated proteins by 
neutral loss scan LC/MS/MS method. Analytical Chemistry 
79:5991–5999. https://doi.org/10.1021/ac070619k

Gallardo, K., Kurt, C., Thompson, R., and Ochatt, S. 2018. In 
vitro culture of immature M. truncatula grains under 
conditions prmitting embryo development comparable 
to that observed in vivo. Plant Science 170:1052–1058. 
https://doi.org/10.1016/j.plantsci.2005.12.021

Gallardo, K., Le, S. C., Vandekerckhove, J., Thompson, R. D., 
and Burstin, J. 2003. Proteomics of Medicago truncatula 
seed development establishes the time frame of diverse 
metabolic processes related to reserve accumulation. 
Plant Physiology 133:664–682. https://doi.org/10.1104/
pp.103.025254

Ghassemi-Golezani, K. and Mazloomi-Oskooyi, R. 2008. Effect 
of water supply on seed quality development in com-
mon bean (Phaseolus vulgarisvar). Journal of Plant Produ-
tion 2:117–124. https://doi.org/10.22069/IJPP.2012.604

Gillet, L. C., Leitner, A., and Aebersold, R. 2016. Mass spec-
trometry applied to bottom-up proteomics: entering 
the high-throughput era for hypothesis testing. An-
nual Reviews of Analytical Chemistry (Palo Alto, Califor-
nia) 9:449–472. https://doi.org/10.1146/annurev-an-
chem-071015-041535

Goff, S. A. and Salmeron, J. M. 2004. Back to the future of cere-
als. Genomic studies of the world’s major grain crops, to-
gether with a technology called marker-assisted breed-
ing, could yield a new green revolution. Scientific Ameri-
can 291:42–49. PMID: 15298118

Gong, C. Y., Li, Q., Yu, H. T., Wang, Z., and Wang, T. 2012. Pro-
teomics insight into the biological safety of transgenic 
modification of rice as compared with conventional ge-
netic breeding and spontaneous genotypic variation. 
Journal of Proteome Research 11:3019–3029. https://doi.
org/10.1021/pr300148w

Greifenhagen, U., Frolov, A., and Hoffmann, R. 2015. Oxidative 
degradation of N-fructosylamine-substituted peptides 
in heated aqueous systems. Amino Acids 47:1065–1076. 
https://doi.org/10.1007/s00726-015-1940-2

Greifenhagen, U., Frolov, A., Bluher, M., and Hoffmann, R. 
2016a. Plasma proteins modified by Advanced Glycation 
End products (AGEs) reveal site-specific susceptibilities 
to glycemic control in patients with Type 2  diabetes. 

https://doi.org/10.1002/elps.200800530
https://doi.org/10.1002/elps.200800530
https://doi.org/10.1021/ac9810516
https://doi.org/10.1093/jxb/ers307
https://doi.org/10.1093/jxb/ers307
https://doi.org/10.1017/S0960258511000419
https://doi.org/10.1017/S0960258511000419
https://www.seedtest.org/
https://www.seedtest.org/
https://doi.org/10.1016/j.fitote.2005.11.008
https://doi.org/10.1016/j.fitote.2005.11.008
https://doi.org/10.1016/j.ijbiomac.2008.10.001
http://www.fao.org/worldfoodsituation
http://www.fao.org/worldfoodsituation
https://doi.org/10.1186/s12866-015-0550-1
https://doi.org/10.1186/s12866-015-0550-1
https://doi.org/10.1002/jms.1758
http://www.fao.org
https://doi.org/10.1196/annals.1433.060
https://doi.org/10.1007/s00216-010-3810-9
https://doi.org/10.1016/j.jplph.2016.09.013
https://doi.org/10.1071/FP16378
https://doi.org/10.1002/jms.1117
https://doi.org/10.1021/jf4050183
https://doi.org/10.1002/psc.739
https://doi.org/10.1002/psc.739
https://doi.org/10.1002/psc.901
https://doi.org/10.1002/psc.901
https://doi.org/10.1093/conphys/cov026
https://doi.org/10.1093/conphys/cov026
https://doi.org/10.1021/ac070619k
https://doi.org/10.1016/j.plantsci.2005.12.021
https://doi.org/10.1104/pp.103.025254
https://doi.org/10.1104/pp.103.025254
https://doi.org/10.22069/IJPP.2012.604
https://doi.org/10.1146/annurev-anchem-071015-041535
https://doi.org/10.1146/annurev-anchem-071015-041535
https://doi.org/10.1021/pr300148w
https://doi.org/10.1021/pr300148w
https://doi.org/10.1007/s00726-015-1940-2


BIOLOGICAL COMMUNICATIONS, vol. 63, issue 1, January–March, 2018 | https://doi.org/10.21638/spbu03.2018.106 55

PL
A

N
T 

SC
IE

N
CE

Journal of Biological Chemistry 291:9610–9616. https://
doi.org/10.1074/jbc.M115.702860

Greifenhagen, U., Frolov, A., Bluher, M., and Hoffmann, R. 
2016b. Site-specific analysis of advanced glycation end 
products in plasma proteins of type 2 diabetes mellitus 
patients. Analytical and Bioanalytical Chemistry 408:5557–
5566. https://doi.org/10.1007/s00216-016-9651-4

Greifenhagen, U., Nguyen, V. D., Moschner, J., Giannis, A., Fro-
lov, A., and Hoffmann, R. 2014. Sensitive and site-specific 
identification of carboxymethylated and carboxyeth-
ylated peptides in tryptic digests of proteins and hu-
man plasma. Journal of Proteome Research 14:768–777. 
https://doi.org/10.1021/pr500799m

Gruber, P. and Hofmann, T. 2005. Chemoselective synthe-
sis of peptides containing major advanced glycation 
end-products of lysine and arginine. Journal of Peptide 
Research 66:111–124. https://doi.org/10.1111/j.1399-
3011.2005.00279.x

Guerrier, N. and Gavaletto, M. 2018. Cereal proteins. Second 
edition: 223–244.

Guo, G. and Li, N. 2011. Relative and accurate measurement 
of protein abundance using 15N stable isotope label-
ing in Arabidopsis (SILIA). Phytochemistry 72:1028–1039. 
https://doi.org/10.1016/j.phytochem.2011.01.007

Gupta, M., Bhaskar, P. B., Sriram, S., and Wang, P. H. 2017. 
Integration of omics approaches to understand oil/pro-
tein content during seed development in oilseed crops. 
Plant Cell Reports 36:637–652. https://doi.org/10.1007/
s00299-016-2064-1

Gupta, R., Min, C. W., Kim, S. W., Wang, Y., Agrawal, G. K., 
Rakwal, R., Kim, S. G., Lee, B. W., Ko, J. M., Baek, I. Y., 
Bae, D. W., and Kim, S. T. 2015. Comparative investiga-
tion of seed coats of brown- versus yellow-colored soy-
bean seeds using an integrated proteomics and metab-
olomics approach. Proteomics 15:1706–1716. https://doi.
org/10.1002/pmic.201400453

Gygi, S. P., Corthals, G L, Zhang, Y, Rochon, Y, and Aebersold, 
R. 2000. Evaluation of two-dimensional gel electrophore-
sis-based proteome analysis technology. Processings of 
North Atlantic Academy of Science, U. S. A. 97:9390–9395. 
https://doi.org/10.1073/pnas.160270797

Hampton, J. H. and TeKrony, D. 1995. ISTA. Handbook of Vig-
or Test Methods. By the ISTA Germination Committee 
https://www.seedtest.org/

Han, C., Yin, X., He, D., and Yang, P. 2013. Analysis of pro-
teome profile in germinating soybean seed, and its com-
parison with rice showing the styles of reserves mobili-
zation in different crops. PLoS One. 8:e56947. https://doi.
org/10.1371/journal.pone.0056947

Heyer, R., Schallert, K., Zoun, R., Becher, B., Saake, G., and Ben-
ndorf, D. 2017. Challenges and perspectives of metapro-
teomic data analysis. Journal of Biotechnology 261:24–36. 
https://doi.org/10.1016/j.jbiotec.2017.06.1201

Heyns, K. and Noack, H. 1962. Die Umsetzung von D-Fructose 
mit L-Lysine und L-Arginin und deren Beziehung zu nich-
tenzymatischen Bräunungsreaktionen. Chemische Berich-
te 95:720–727. https://doi.org/10.1002/cber.19620950323

Hodge, J. E. 1955. The Amadori rearrangement. Advances 
of Carbohydrate Chemistry 10:169–205. https://doi.
org/10.1016/S0096-5332(08)60392-6

Horvat, S. and Jakas, A. 2004. Peptide and amino acid glycation: 
new insights into the Maillard reaction. Journal of Peptide 
Science 10:119–137. https://doi.org/10.1002/psc.519

Hummel, M., Wigger, T., and Brockmeyer, J. 2015. Character-
ization of mustard 2S albumin allergens by bottom-up, 
middle-down, and top-down proteomics: a consensus 
set of isoforms of Sin a 1. Journal of Proteome Research 
14:1547–1556. https://doi.org/10.1021/pr5012262

I. C. E. Committees, 2015. World agricultural supply and de-
mand estimates. https://www.usda.gov

Isaacson, T., Damasceno, C. M., Saravanan, R. S., He, Y., Cat-
ala, C., Saladie, M., and Rose, J. K. 2006. Sample extrac-
tion techniques for enhanced proteomic analysis of 
plant tissues. Nature Protocols 1:769–774. https://doi.
org/10.1038/nprot.2006.102

Jagadeeshaprasad, M. G., Batkulwar, K. B., Meshram, N. N., 
Tiwari, S., Korwar, A. M., Unnikrishnan, A. G., and 
Kulkarni, M. J. 2016. Targeted quantification of N-
1-(carboxymethyl) valine and N-1-(carboxyethyl) valine 
peptides of beta-hemoglobin for better diagnostics in di-
abetes. Clinical Proteomics 13:7. https://doi.org/10.1186/
s12014-016-9108-y

Jamwal, R., Barlock, B. J., Adusumalli, S., Ogasawara, K., Si-
mons, B. L., and Akhlaghi, F. 2017. Multiplex and label-
free relative quantification approach for studying pro-
tein abundance of drug metabolizing enzymes in human 
liver microsomes using SWATH-MS. Journal of Proteome 
Researh 16:4134–4143. https://doi.org/10.1021/acs.
jproteome.7b00505

Jensen, K. N., Jessen, F., and Jorgensen, B. M. 2008. Multivari-
ate data analysis of two-dimensional gel electrophore-
sis protein patterns from few samples. Journal of Pro-
teome Research 7:1288–1296. https://doi.org/10.1021/
pr700800s

Jimenez-Lopez, J. C., Foley, R. C., Brear, E., Clarke, V. C., Lima-
Cabello, E., Florido, J. F., Singh, K. B., Alche, J. D., and Smith, 
P. M. C. 2018. Characterization of narrow-leaf lupin (Lupi-
nus angustifolius L.) recombinant major allergen IgE-bind-
ing proteins and the natural beta-conglutin counterparts 
in sweet lupin seed species. Food Chemistry 244:60–70. 
https://doi.org/10.1016/j.foodchem.2017.10.015

Kalli, A., Smith, G. T., Sweredoski, M. J., and Hess, S. 2013. Eval-
uation and optimization of mass spectrometric settings 
during data-dependent acquisition mode: focus on LTQ-
Orbitrap mass analyzers. Journal of Proteome Research 
12:3071–3086. https://doi.org/10.1021/pr3011588

Kaspar-Schoenefeld, S., Merx, K., Jozefowicz, A. M., Hart-
mann,  A., Seiffert, U., Weschke, W., Matros, A., and 
Mock, H. P. 2016. Label-free proteome profiling reveals 
developmental-dependent patterns in young barley 
grains. Journal of Proteomics 143:106–121. https://doi.
org/10.1016/j.jprot.2016.04.007

Kim, Y. J., Wang, Y., Gupta, R., Kim, S. W., Min, C. W., Kim, Y. C., 
Park, K. H., Agrawal, G. K., Rakwal, R., Choung, M. G., 
Kang, K. Y., and Kim, S. T. 2015. Protamine sulfate 
precipitation method depletes abundant plant seed-
storage proteins: A case study on legume plants. 
Proteomics 15:1760–1764. https://doi.org/10.1002/
pmic.201400488

Kocher, T., Pichler, P, Swart, R, and Mechtler, K. 2012. Anal-
ysis of protein mixtures from whole-cell extracts by 
single-run nanoLC-MS/MS using ultralong gradients. 
Nature Protocols 7:882–890. https://doi.org/10.1038/
nprot.2012.036

Kocsy, G. 2015. Die or survive? Redox changes as seed viabili-
ty markers. Plant Cell Environment 38:1008–1010. https://
doi.org/10.1111/pce.12515

Krokhin, O. V., Ens, W., and Standing, K. G. 2005. MALDI QqTOF 
MS combined with off-line HPLC for characterization of 
protein primary structure and post-translational modifi-
cations. Journal of Biomolecular Technology 16:429–440.

Lafiandra, D., Masi, S., Sissons, M., Dornez, E., Delour, J. A., 
Ourtin, M., and Aboni, M. F. 2012. Kernel components of 
technological value. Second edition:85–124. 

Landry, E. J., Fuchs, S. J., and Hu, J. 2016. Carbohydrate com-
position of mature and immature faba bean seeds. Jour-

https://doi.org/10.1074/jbc.M115.702860
https://doi.org/10.1074/jbc.M115.702860
https://doi.org/10.1007/s00216-016-9651-4
https://doi.org/10.1021/pr500799m
https://doi.org/10.1111/j.1399-3011.2005.00279.x
https://doi.org/10.1111/j.1399-3011.2005.00279.x
https://doi.org/10.1016/j.phytochem.2011.01.007
https://doi.org/10.1007/s00299-016-2064-1
https://doi.org/10.1007/s00299-016-2064-1
https://doi.org/10.1002/pmic.201400453
https://doi.org/10.1002/pmic.201400453
https://doi.org/10.1073/pnas.160270797
https://www.seedtest.org/
https://doi.org/10.1371/journal.pone.0056947
https://doi.org/10.1371/journal.pone.0056947
https://doi.org/10.1016/j.jbiotec.2017.06.1201
https://doi.org/10.1002/cber.19620950323
https://doi.org/10.1002/psc.519
https://doi.org/10.1021/pr5012262
https://www.usda.gov
https://doi.org/10.1038/nprot.2006.102
https://doi.org/10.1038/nprot.2006.102
https://doi.org/10.1186/s12014-016-9108-y
https://doi.org/10.1186/s12014-016-9108-y
https://doi.org/10.1021/acs.jproteome.7b00505
https://doi.org/10.1021/acs.jproteome.7b00505
https://doi.org/10.1021/pr700800s
https://doi.org/10.1021/pr700800s
https://doi.org/10.1016/j.foodchem.2017.10.015
https://doi.org/10.1021/pr3011588
https://doi.org/10.1016/j.jprot.2016.04.007
https://doi.org/10.1016/j.jprot.2016.04.007
https://doi.org/10.1038/nprot.2012.036
https://doi.org/10.1038/nprot.2012.036
https://doi.org/10.1111/pce.12515
https://doi.org/10.1111/pce.12515


56 BIOLOGICAL  COMMUNICATIONS,  vol. 63,  issue 1,  January–March,  2018 | https://doi.org/10.21638/spbu03.2018.106

nal of Food Component Analysis 50:55–60. https://doi.
org/10.1016/j.jfca.2016.05.010

Larance, M. and Lamond, A. I. 2015. Multidimensional pro-
teomics for cell biology. Nature Review in Molecular Cell 
Biology 16:269–280. https://doi.org/10.1038/nrm3970

Li, Q. F., Xiong, M., Xu, P., Huang, L. C., Zhang, C. Q., and 
Liu, Q. Q. 2016. Dissection of brassinosteroid-regulated 
proteins in rice embryos during germination by quanti-
tative proteomics. Scientific Reports 6:34583. https://doi.
org/10.1038/srep34583

Liu, J., Hua, W., Yang, H., Guo, T., Sun, X., Wang, X., Liu, G., and 
Wang, H. 2014. Effects of specific organs on seed oil ac-
cumulation in Brassica napus L. Plant Science 227:60–68. 
https://doi.org/10.1016/j.plantsci.2014.06.017

Lombardo, V. A., Osorio, S., Borsani, J., Lauxmann, M. A., 
Bustamante, C. A., Budde, C. O., Andreo, C. S., Lara, M. V., 
Fernie, A. R., and Drincovich, M. F. 2011. Metabolic profil-
ing during peach fruit development and ripening reveals 
the metabolic networks that underpin each develop-
mental stage. Plant Physiology 157:1696–1710. https://
doi.org/10.1104/pp.111.186064

Majovsky, P., Naumann, C., Lee, C. W., Lassowskat, I., Tru-
jillo, M., Dissmeyer, N., and Hoehenwarter, W. 2014. 
Targeted proteomics analysis of protein degradation in 
plant signaling on an LTQ-Orbitrap mass spectrometer. 
Journal of Proteome Research 13:4246–4258. https://doi.
org/10.1021/pr500164j

Marengo, E., Robotti, E., Antonucci, F., Cecconi, D., Campos-
trini, N., and Righetti, P. G. 2005. Numerical approaches 
for quantitative analysis of two-dimensional maps: a 
review of commercial software and home-made sys-
tems. Proteomics 5:654–666. https://doi.org/10.1002/
pmic.200401015

May, P., Christian, N., Ebenhoh, O., Weckwerth, W., and Wal-
ther, D. 2011. Integration of proteomic and metabolo-
mic profiling as well as metabolic modeling for the func-
tional analysis of metabolic networks. Methods of Moleu-
lar Biology 694:341–363. https://doi.org/10.1007/978-1-
60761-977-2_21

McDonald, M. B. 1998. Seed quality assessment. Seed Sci-
ence Research 8:265–275. https://doi.org/10.1017/
S0960258500004165 

Messina, M. J. 1999. Legumes and soybeans: overview of their 
nutritional profiles and health effects. American Journal 
of Clinical Nutrition 70:439–450. https://doi.org/10.1093/
ajcn/70.3.439s

Milic, I., Hoffmann, R., and Fedorova, M. 2013. Simultaneous 
detection of low and high molecular weight carbonylated 
compounds derived from lipid peroxidation by electro-
spray ionization-tandem mass spectrometry. Analytical 
Chemistry 85:156–162. https://doi.org/10.1021/ac302356z

Milkovska-Stamenova, S. and Hoffmann, R. 2016. Identification 
and quantification of bovine protein lactosylation sites in 
different milk products. Jounal of Proteomics 134:112–126. 
https://doi.org/10.1016/j.jprot.2015.07.021

Miller, J. K., Herman, E. M., Jahn, M., and Bradford, K. J. 2010. 
Strategic research, education and policy goals for seed 
science and crop improvement. Plant Science 179:645–
652. https://doi.org/10.1016/j.plantsci.2010.08.006

Min, C. W., Lee, S. H., Cheon, Y. E., Han, W. Y., Ko, J. M., 
Kang,  H. W., Kim, Y. C., Agrawal, G. K., Rakwal, R., Gup-
ta, R., and Kim, S. T. 2017. In-depth proteomic analysis 
of Glycine max seeds during controlled deterioration 
treatment reveals a shift in seed metabolism. Journal 
of Proteomics 169:125–135. https://doi.org/10.1016/j.
jprot.2017.06.022

Mochida, K. and Shinozaki, K. 2011. Advances in omics and 
bioinformatics tools for systems analyses of plant func-

tions. Plant Cell Physiology 52:2017–2038. https://doi.
org/10.1093/pcp/pcr153

Mortz, E., O’Connor, P. B., Roepstorff, P., Kelleher, N. L., 
Wood, T. D., McLafferty, F. W., and Mann, M. 1996. Se-
quence tag identification of intact proteins by match-
ing tanden mass spectral data against sequence data 
bases. Processings of Northatlantic Academy of Sci-
ence, U. S. A. 93:8264-8267. https://doi.org/10.1073/
pnas.93.16.8264

Murad, M. M. and Rech, E. L. 2012. NanoUPL-MSE pro-
teomic data assessment of soybean seeds using the 
Uniprot database. BMC Biotehnology 12:82. https://doi.
org/10.1186/1472-6750-12-82

Murthy, U. M., Kumar, P. P, and Sun, W. Q. 2003. Mechanisms 
of seed ageing under different storage conditions for Vi-
gna radiata (L.) Wilczek: lipid peroxidation, sugar hydro-
lysis, Maillard reactions and their relationship to glass 
state transition. Journal of Experimental Botany 54:1057–
1067. https://doi.org/10.1093/jxb/erg092

Nagel, M., Kranner, I., Neumann, K., Rolletschek, H., 
Seal, C. E., Colville, L., Fernandez-Marin, B., and Borner, 
A. 2015. Genome-wide association mapping and bio-
chemical markers reveal that seed ageing and longev-
ity are intricately affected by genetic background and 
developmental and environmental conditions in bar-
ley. Plant Cell Environment 38:1011–1022. https://doi.
org/10.1111/pce.12474

Nedumaran, S., Abinaya, P., Jyosthnaa, P., Shraavya, B., Par-
thasarathy, R., and Bantilan, C. 2015. Grain legumes pro-
duction, consumption and trade trends in developing 
countries. Working paper series No 60. ICRISAT Research 
program, markets, institutions and polities. https://oar.
icrisat.org/id/eprint/8991

Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. 1988. Im-
proved staining of proteins in polyacrylamide gels in-
cluding isoelectric focusing gels with clear background 
at nanogram sensitivity using Coomassie Brilliant Blue 
G-250 and R-250. Electrophoresis 9:255–262. https://doi.
org/10.1002/elps.1150090603

Palma, J. M., Corpas, F. J., and del Rio, L. A. 2011. Proteomics 
as an approach to the understanding of the molecular 
physiology of fruit development and ripening. Journal 
of Proteomics 74:1230–1243. https://doi.org/10.1016/j.
jprot.2011.04.010

Paudel, G., Bilova, T., Schmidt, R., Greifenhagen, U., Berg-
er,  R., Tarakhovskaya, E., Stöckhardt, S., Balcke, G. U., 
Humbek, K., Brandt, W., Sinz, A., Vogt, T., Birkemeyer, C., 
Wessjohann, L., and Frolov, A. 2016. Osmotic stress is ac-
companied by protein glycation in Arabidopsis thaliana. 
Journal of Experimental Botany 67:6283–6295. https://doi.
org/10.1093/jxb/erw395

Pereira Lima, J. J., Buitink, J., Lalanne, D., Rossi, R. F., Pelleti-
er, S., da Silva, E. A. A., and Leprince, O. 2017. Molecular 
characterization of the acquisition of longevity during 
seed maturation in soybean. PLoS One 12:e0180282. 
https://doi.org/10.1371/journal.pone.0180282

Rabilloud, T. and Lelong, C. 2011. Two-dimensional gel electro-
phoresis in proteomics: a tutorial. Journal of Proteomics 
74:1829–1841. https://doi.org/10.1016/j.jprot.2011.05.040

Rabilloud, T., Chevallet, M., Luche, S., and Lelong, C. 2010. 
Two-dimensional gel electrophoresis in proteomics: 
past, present and future. Journal of Proteomics 73:2064–
2077. https://doi.org/10.1016/j.jprot.2010.05.016

Rajjou, L., Lovigny, Y., Groot, S. P., Belghazi, M., Job, C., and 
Job, D. 2008. Proteome-wide characterization of seed 
aging in Arabidopsis: a comparison between artificial 
and natural aging protocols. Plant Physiology 148:620–
641. https://doi.org/10.1104/pp.108.123141

https://doi.org/10.1016/j.jfca.2016.05.010
https://doi.org/10.1016/j.jfca.2016.05.010
https://doi.org/10.1038/nrm3970
https://doi.org/10.1038/srep34583
https://doi.org/10.1038/srep34583
https://doi.org/10.1016/j.plantsci.2014.06.017
https://doi.org/10.1104/pp.111.186064
https://doi.org/10.1104/pp.111.186064
https://doi.org/10.1021/pr500164j
https://doi.org/10.1021/pr500164j
https://doi.org/10.1002/pmic.200401015
https://doi.org/10.1002/pmic.200401015
https://doi.org/10.1007/978-1-60761-977-2_21
https://doi.org/10.1007/978-1-60761-977-2_21
https://doi.org/10.1017/S0960258500004165
https://doi.org/10.1017/S0960258500004165
https://doi.org/10.1021/ac302356z
https://doi.org/10.1016/j.jprot.2015.07.021
https://doi.org/10.1016/j.plantsci.2010.08.006
https://doi.org/10.1016/j.jprot.2017.06.022
https://doi.org/10.1016/j.jprot.2017.06.022
https://doi.org/10.1093/pcp/pcr153
https://doi.org/10.1093/pcp/pcr153
https://doi.org/10.1186/1472-6750-12-82
https://doi.org/10.1186/1472-6750-12-82
https://doi.org/10.1093/jxb/erg092
https://doi.org/10.1111/pce.12474
https://doi.org/10.1111/pce.12474
http://oar.icrisat.org/id/eprint/8991
http://oar.icrisat.org/id/eprint/8991
https://doi.org/10.1002/elps.1150090603
https://doi.org/10.1002/elps.1150090603
https://doi.org/10.1016/j.jprot.2011.04.010
https://doi.org/10.1016/j.jprot.2011.04.010
https://doi.org/10.1093/jxb/erw395
https://doi.org/10.1093/jxb/erw395
https://doi.org/10.1371/journal.pone.0180282
https://doi.org/10.1016/j.jprot.2011.05.040
https://doi.org/10.1016/j.jprot.2010.05.016
https://doi.org/10.1104/pp.108.123141


BIOLOGICAL COMMUNICATIONS, vol. 63, issue 1, January–March, 2018 | https://doi.org/10.21638/spbu03.2018.106 57

PL
A

N
T 

SC
IE

N
CE

Rathi, D., Gayen, D., Gayali, S., Chakraborty, S., and 
Chakraborty, N. 2016. Legume proteomics: progress, 
prospects, and challenges. Proteomics 16:310–327. 
https://doi.org/10.1002/pmic.201500257

Sano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-
Poll,  A., and Seo, M. 2016. Staying alive: Molecular as-
pects of seed longevity. Plant Cell Physiology 57:660–674. 
https://doi.org/10.1093/pcp/pcv186

Scheltema, R. A., Hauschild, J. P., Lange, O., Hornburg, D., Den-
isov, E., Damoc, E., Kuehn, A., Makarov, A., and Mann, M. 
2014. The Q Exactive HF, a Benchtop mass spectrometer 
with a pre-filter, high-performance quadrupole and an 
ultra-high-field Orbitrap analyzer. Molecular and Cellular 
Proteomics 13:3698–3708. https://doi.org/10.1074/mcp.
M114.043489 

Schmidt, R., Böhme, D., Singer, D., and Frolov, A. 2015. Specific 
tandem mass spectrometric detection of AGE-modified 
arginine residues in peptides. Journal of Mass Spectrom-
etry 50:613–624. https://doi.org/10.1002/jms.3569

Smolikova, G. N. 2014. Application of the method of acceler-
ated aging to evaluate the stress tolerance of seeds. Bio-
logical Communications [s.l.] 2:82–93.

Smolikova, G. N. and Medvedev, S S. 2016. Photosynthe-
sis in the seeds of Chloroembryophytes. Russian Jour-
nal Plant Physiology 63:1–12. https://doi.org/10.1134/
S1021443715060163

Smolikova, G. N., Shavarda, A. L., Alekseichuk, I. V., Chantze-
va,  V. V., and Medvedev, S. S. 2016. The metabolomic 
approach to the assessment of cultivar specificity of 
Brassica napus. Russian Journal Genetic: Applied Research 
6:78–83. https://doi.org/10.1134/S2079059716010147

Smolikova, G., Dolgikh, E., Vikhnina, M., Frolov, A., and Medve-
dev, S. 2017a. Genetic and hormonal regulation of chlo-
rophyll degradation during maturation of seeds with 
green embryos. International Journal of Molecular Science 
18:E1993. https://doi.org/10.3390/ijms18091993

Smolikova, G., Kreslavski, V., Shiroglazova, O., Frolov, A., and 
Medvedev, S. 2017b. Photochemical activity changes 
accompanying the embriogenesis of pea (Pisum sa-
tivum) with yellow and green cotyledons. Functional 
Plant Biology 45(2):228–235. https://doi.org/10.1071/
FP16379

Soboleva, A., Modzei, M., Didio, A., Plociennik, H., Kijewska, H., 
Grishina, T., Karonova, T., Bilova, T., Stefanov, V., Stefa-
novicz, P., and Frolov, A. 2017. Quantification of prospec-
tive type 2 diabetes mellitus biomarkers by stable iso-
tope dilution with bi-labeled standard glycated peptides. 
Analytical Methods 9:409–418. https://doi.org/10.1039/
C6AY02483A

Soboleva, A., Schmidt, R., Vikhnina, M., Grishina, T., and Fro-
lov, A. 2017. Maillard proteomics: Opening new pages. 
International Journal of Molecular Science 18: E2677. 
https://doi.org/10.3390/ijms18122677

Spiller, S., Frolov, A., and Hoffmann, R. 2017. Quantification 
of specific glycation sites in human serum albumin as 
prospective type 2 diabetes mellitus biomarkers. Protein 
and Peptide Letters 24:887–896 https://doi.org/10.2174/0
929866524666170202124120

Spiller, S., Li, Y., Bluher, M., Welch, L., and Hoffmann, R. 2017. 
Glycated lysine-141  in haptoglobin improves the di-
agnostic accuracy for type 2  diabetes mellitus in com-
bination with glycated hemoglobin HbA1c and fasting 
plasma glucose. Clinial Proteomics 14:10. https://doi.
org/10.1186/s12014-017-9145-1

Strelec, I., Ugarcic-Hardi, Z, and Hlevnjak, M. 2008. Accumula-
tion of Amadori and Maillard products in wheat seeds 
aged under different storage conditions. Croatica Chemi-
ca Acta 81:131–137. https://hrcak.srce.hr/23436

Suma, A., Sreenivasan, K., Singh, A. K., and Radhamani, J. 2013. 
Role of relative humidity in processing and storage of 
seeds and assessment of variability in storage behaviour 
in Brassica spp. and Eruca sativa. Scientific World Journal 
2013:504141. https://doi.org/10.1155/2013/504141

Takac, T., Samajova, O., and Samaj, J. 2017. Integrating cell 
biology and proteomic approaches in plants. Jounal 
of Proteomics 169:165–175. https://doi.org/10.1016/j.
jprot.2017.04.020

Tan, B. C., Lim, Y. S., and Lau, S. E. 2017. Proteomics in commer-
cial crops: an overview. Journal of Proteomics 169:176–
188. https://doi.org/10.1016/j.jprot.2017.05.018

Taylor, P. J. 2005. Matrix effects: the Achilles heel of quan-
titative high-performance liquid chromatography-
electrospray-tandem mass spectrometry. Clinical Bio-
chemistry 38:328–334. https://doi.org/10.1016/j.clinbio-
chem.2004.11.007

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Gei-
ger, T., Mann, M., and Cox, J. 2016. The Perseus compu-
tational platform for comprehensive analysis of (prote)
omics data. Nature Methods 13:731–740. https://doi.
org/10.1038/nmeth.3901

Unlu, M., Morgan, M. E., and Minden, J. S. 1997. Difference 
gel electrophoresis: a single gel method for detecting 
changes in protein extracts. Electrophoresis 18:2071–
2077. https://doi.org/10.1002/elps.1150181133

Vissers, J. P., Chervet, J. P., and Salzmann, J. P. 1996. Sodium 
dodecyl sulphate removal from tryptic digest samples 
for on-line capillary liquid chromatography/electro-
spray mass spectrometry. Journal of Mass Spectrom-
etry 31:1021–1027. https://doi.org/10.1002/(SICI)1096-
9888(199609)31:9<1021::AID-JMS384>3.0.CO;2-G

Vistoli, G., De, M. D., Cipak, A., Zarkovic, N., Carini, M., and 
Aldini, G. 2013. Advanced glycoxidation and lipoxida-
tion end products (AGEs and ALEs): an overview of 
their mechanisms of formation. Free Radical Research 
47 Suppl 1:3–27. https://doi.org/10.3109/10715762.201
3.815348

Waas, M., Bhattacharya, S., Chuppa, S., Wu, X., Jensen, D. R., 
Omasits, U., Wollscheid, B., Volkman, B. F., Noon, K. R., 
and Gundry, R. L. 2014. Combine and conquer: surfac-
tants, solvents, and chaotropes for robust mass spec-
trometry based analyses of membrane proteins. Ana-
lytical Chemistry 86:1551–1559. https://doi.org/10.1021/
ac403185a

Walters, C., Ballesteros, D., and Vertucci, V. 2010. Struc-
tural mechanics of seed deterioration: Standing the 
test of time. Plant Science 179:565–573. https://doi.
org/10.1016/j.plantsci.2010.06.016

Wang, L., Fu, J., Li, M., Fragner, L., Weckwerth, W., and 
Yang,  P. 2016. Metabolomic and proteomic profiles 
reveal the dynamics of primary metabolism during 
seed development of lotus (Nelumbo nucifera). Fron-
tiers in Plant Science 7:750  https://doi.org/10.3389/
fpls.2016.00750

Weisser, H., Nahnsen, S., Grossmann, J., Nilse, L., Quandt, A., 
Brauer, H., Sturm, M., Kenar, E., Kohlbacher, O., Aeber-
sold, R., and Malmstrom, L. 2013. An automated pipeline 
for high-throughput label-free quantitative proteomics. 
Journal of Proteome Research 12:1628–1644. https://doi.
org/10.1021/pr300992u

Wettlaufer, S. H. and Leopold, A. C. 1991. Relevance of 
Amadori and Maillard products to seed deterioration. 
Plant Physiology 97:165–169. https://doi.org/10.1104/
pp.97.1.165

Wilm, M. 2009. Quantitative proteomics in biological research. 
Proteomics 9:4590–4605. https://doi.org/10.1002/
pmic.200900299

https://doi.org/10.1002/pmic.201500257
https://doi.org/10.1093/pcp/pcv186
https://doi.org/10.1074/mcp.M114.043489
https://doi.org/10.1074/mcp.M114.043489
https://doi.org/10.1002/jms.3569
http://dx.doi.org/10.1134/S1021443715060163
http://dx.doi.org/10.1134/S1021443715060163
https://doi.org/10.1134/S2079059716010147
https://doi.org/10.3390/ijms18091993
http://dx.doi.org/10.1071/FP16379
http://dx.doi.org/10.1071/FP16379
https://doi.org/10.1039/C6AY02483A
https://doi.org/10.1039/C6AY02483A
https://doi.org/10.3390/ijms18122677
https://doi.org/10.2174/0929866524666170202124120
https://doi.org/10.2174/0929866524666170202124120
https://doi.org/10.1186/s12014-017-9145-1
https://doi.org/10.1186/s12014-017-9145-1
https://hrcak.srce.hr/23436
http://dx.doi.org/10.1155/2013/504141
https://doi.org/10.1016/j.jprot.2017.04.020
https://doi.org/10.1016/j.jprot.2017.04.020
https://doi.org/10.1016/j.jprot.2017.05.018
https://doi.org/10.1016/j.clinbiochem.2004.11.007
https://doi.org/10.1016/j.clinbiochem.2004.11.007
https://doi.org/10.1038/nmeth.3901
https://doi.org/10.1038/nmeth.3901
https://doi.org/10.1002/elps.1150181133
https://doi.org/10.1002/(SICI)1096-9888(199609)31:9%3c1021::AID-JMS384%3e3.0.CO;2-G
https://doi.org/10.1002/(SICI)1096-9888(199609)31:9%3c1021::AID-JMS384%3e3.0.CO;2-G
https://doi.org/10.3109/10715762.2013.815348
https://doi.org/10.3109/10715762.2013.815348
https://doi.org/10.1021/ac403185a
https://doi.org/10.1021/ac403185a
https://doi.org/10.1016/j.plantsci.2010.06.016
https://doi.org/10.1016/j.plantsci.2010.06.016
https://doi.org/10.3389/fpls.2016.00750
https://doi.org/10.3389/fpls.2016.00750
https://doi.org/10.1021/pr300992u
https://doi.org/10.1021/pr300992u
https://doi.org/10.1104/pp.97.1.165
https://doi.org/10.1104/pp.97.1.165
https://doi.org/10.1002/pmic.200900299
https://doi.org/10.1002/pmic.200900299


58 BIOLOGICAL  COMMUNICATIONS,  vol. 63,  issue 1,  January–March,  2018 | https://doi.org/10.21638/spbu03.2018.106

Wolff, S. P. and Dean, R. T. 1987. Glucose autoxidation and 
protein modification. The potential role of ‘autoxidative 
glycosylation’ in diabetes. Biochemical Journal 245:243–
250. https://doi.org/10.1042/bj2450243

Yao, X. 2011. Derivatization or not: a choice in quantitative 
proteomics. Analytical Chemistry 83:4427–4439. https://
doi.org/10.1021/ac200925p

Yoshida, H., Tomiyama, Y., Yoshida, N., Shibata, K., and 
Mizushina, Y. 2010. Regiospecific profiles of fatty ac-
ids in triacylglycerols and phospholipids from adzuki 
beans (Vigna angularis). Nutrients 2:49–59. https://doi.
org/10.3390/nu20100049 

Zhang, Q., Frolov, A., Tang, N., Hoffmann, R., van de Goor, T., 
Metz, T. O., and Smith, R. D. 2007. Application of electron 
transfer dissociation mass spectrometry in analyses of 

non-enzymatically glycated peptides. Rapid Communi-
cations in Mass Spectrometry 21:661–666. https://doi.
org/10.1002/rcm.2884

Zhang, Y., Fonslow, B. R., Shan, B., Baek, M. C., and Yates, J. R., 
III. 2013. Protein analysis by shotgun/bottom-up pro-
teomics. Chemical Reviews 113:2343–2394. https://doi.
org/10.1021/cr3003533

Zhou, G., Li, H., DeCamps, D., Chen, S., Shu, H., Gong, Y., 
Flaig,  M., Gillespie, J. W., Hu, N., Taylor, P. R., Emmert-
Buk, M. R., Liotta, L. A., Petrioin, E. F., and Zhao, Y. 2002. 
2D differential in-gel eletrophoresis for the identifia-
tion of esophageal sans ell aner-speifi protein mark-
ers. Molecular Cell Proteomics 1:117–123. https://doi.
org/10.1074/mcp.M100015-MCP200

https://doi.org/10.1021/ac200925p
https://doi.org/10.1021/ac200925p
https://doi.org/10.3390/nu20100049
https://doi.org/10.3390/nu20100049
https://doi.org/10.1002/rcm.2884
https://doi.org/10.1002/rcm.2884
https://doi.org/10.1074/mcp.M100015-MCP200
https://doi.org/10.1074/mcp.M100015-MCP200

