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Abstract

The midbrain dopaminergic neurons of the substantia nigra and the ventral 
tegmental area play vital roles in the regulation of voluntary movement, emo-
tion and reward in humans. These neurons are highly metabolic and are under 
constant oxidative stress. The dopaminergic neurons form extensive synaptic 
projections to the striatum. When these neurons start dying or when their syn-
aptic connections fail, humans develop Parkinson´s disease. This disease is ac-
companied by the accumulation of toxic α-synuclein-containing protein aggre-
gates in nigrostriatal processes. Synucleins accumulate in a majority of healthy 
nerve terminals in the central nervous system, but what causes the formation 
of pathological synuclein aggregates is unclear. Recent studies point out that 
the interface between membrane trafficking in the nerve terminal and the au-
tophagy–lysosomal pathway is the site for the aggregate assembly. An urgent 
goal is to find therapeutic targets at early stages of the disease when neurons 
are still functional.
Keywords: synapse, synaptic proteins, atophagy-lysosomal pathway, develop-
mental transcription factors, Parkinson´s disease.

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized 
by the loss of nigrostriatal neurons, which results in a triad of classical symptoms, 
such as resting tremor, rigidity and hypokinesia; these symptoms are followed by 
alterations in gait and balance and additional disturbances (Lotharius and Brun-
din, 2002; Cookson and Bandmann, 2010; Schulz-Schaeffer, 2012; Olanow and 
Brundin, 2013; Papandreou and Tavernarakis, 2017). Parkinson´s disease is one 
of the most common neurodegenerative diseases. According to official statistics 
the estimate of the number of patients with PD in 2016 in Russia was approxi-
mately 210.000  people (Razdorskaya, Voskresenskaya, and Yudina, 2016). The 
disease resulted in about 103,000 deaths worldwide in 2013 (Parkinson’s disease, 
2018). Currently there is no medication that can effectively stop the disease onset 
and progression. 

Among the first neurodegenerative changes that occur in PD in the brain 
is a loss of dopaminergic nerve terminals in the striatum, accompanied by the 
accumulation of α-synuclein-containing protein aggregates in nigrostriatal pro-
cesses known as Lewy neuritis (Lotharius and Brundin, 2002; Braak et al., 2003; 
Hansen and Li, 2012). The appearance of the inclusions in nerve terminals in 
PD is followed by retrograde degeneration, further accumulation of Lewy bodies 
in cells in substantia nigra (SN), and finally cell death (Lotharius and Brundin, 
2002; Cookson and Bandmann, 2010; Schulz-Schaeffer, 2012; Olanow and Brun-
din, 2013). 

Citation: Sopova, E., Korenkova, O., 
and Shupliakov, O. 2017. Malfunctions 
in synaptic membrane trafficking in 
early pathology of Parkinson´s disease: 
New molecular clues. Bio. Comm. 62(4): 
272–277. https://doi.org/10.21638/11701/
spbu03.2017.406

Author’s information: Elena Sopova; 
Olga Korenkova; Oleg Shupliakov, Ph.D., 
orcid.org/0000-0001-5352-6848

Manuscript Editor: Mikhail Kostylev, 
Department of Neurology, Yale University, 
USA;

Received: January 28, 2018; 

Revised: April 19, 2018; 

Accepted: April 20, 2018; 

Copyright: © 2017 Sopova  et al. This is 
an open-access article distributed under 
the terms of the License Agreement with 
Saint Petersburg State University, which 
permits to the authors an unrestricted 
distribution and self-archiving free of 
charge.

Funding: This work was supported by 
the Russian Science Foundation (Grant 
No. 16-15-10273), the Swedish Medical 
Research Council (Grant No. VR-M №1501), 
and Parkinsonfonden.

Competing interests: The author has 
declared that no competing interests exist.

mailto:oshupliakov@yandex.ru


BIOLOGICAL COMMUNICATIONS, vol. 62, issue 4, October–December, 2017 | https://doi.org/10.21638/11701/spbu03.2017.406 273

N
EU

RO
SC

IE
N

CE

It has been suggested that the death of neurons in 
SN involves dopamine-dependent oxidative stress; over 
the last decade much of the research on PD has focused 
on cellular stress, which has been proposed as a can-
didate mechanism leading to degeneration of neurons 
(Lotharius and Brundin, 2002; Cookson and Band mann, 
2010; Guzman et al., 2010; Schulz-Schaeffer, 2012; Ola-
now and Brundin, 2013). Recent studies, however, have 
provided evidence that other molecular and cellular 
mechanisms may be involved. Identification of PD-re-
lated mutations in the PARK2 gene, which encodes the 
E3 ubiquitin ligase, parkin, and PARK5, which encodes 
the deubiquitination enzyme Ubiquitin carboxy-termi-
nal hydrolase L1, shifted attention from the pathological 
consequences of misfolded synuclein to the malfuctions 
in the ubiquitin proteosome system and autophagy–lys-
osome pathway. It has been reported, for example, that 
parkin might affect α-synuclein function by participat-
ing in the ubiquitination of the α-synuclein interacting 
proteins: synphilin 1  (Chung et al., 2001; Engelender, 
2008), CDCrel1 also referred to as septin 5 (Zhang et al., 
2000), and septin 4 (Shehadeh et al., 2009), which might 
cause reduced degradation of these proteins. Support-
ing this, numerous additional proteins — e.g., ubiquitin, 
proteosome subunits, heat-shock proteins, and neuro-
filaments  — were reported in Lewy bodies (Lotharius 
and Brundin, 2002; Luk et al., 2012). Mutations in genes 
such as DJ1, ATP13A2  and PINK have implicated mi-
tochondrial dysfunctions in disease progression (Cook-
son and Bandmann, 2010). All these studies shifted the 
scientific focus from synaptic functions to the cell body 
and mitochondrial stress pathways as the central aspect 
of the pathogenesis for some time. 

Several recent publications have brought the spot-
light back to presynaptic terminals (Esposito, Ana Clara 
and Verstreken, 2012; Heutink and Verhage, 2012; Matta 
et al., 2012). It has been proposed that α-synuclein ag-
gregates derive from perturbations of the normal func-
tions of synucleins in synaptic membrane trafficking 
(Burre, Sharma and Sudhof, 2012). Consistent with 
the membrane-associated function of synucleins in 
nerve terminals, transgenic mice overexpressing human 
α-synuclein displayed alterations of the internal synaptic 
membrane morphology (Boassa et al., 2013). Synapses 
studied in 3D using electron microscopy were enlarged, 
contained endosome-like structures and numerous tu-
bulovesicle structures, and in many cases were filled 
with membrane-bound organelles.

α-synuclein belongs to the synuclein protein family 
(α, β, γ), which is only expressed in vertebrate species. α- 
and β-synucleins are highly homologous and enriched 
in nerve terminals (Maroteaux, Campanelli and Scheller, 
1988; Cookson and Bandmann, 2010). Native cell-de-
rived α-synuclein is a tetramer in solution, and this form 
has greater lipid-binding capacity than recombinantly 

expressed monomers (Bartels, Choi and Selkoe, 2011). 
Multiplications of the gene locus encoding α-synuclein, 
SINCA (synuclein, alpha nonA4 component of amyloid 
precursor), or mutations in the gene cause rare familial 
dominant PD, while single nucleotide polymorphisms 
in the SINCA gene have been identified to be associated 
with sporadic PD. α-synuclein forms oligomers referred 
to as protofibrils that can seed in a nucleation-dependent 
manner to form the amyloid fibrils. Amyloid fibrils have 
been found in vivo in α-synuclein-containing protein 
aggregates (referred to as Lewy bodies) in nigrostriatal 
processes and neurons in PD (Lotharius and Brundin, 
2002; Olanow and Brundin, 2013). 

Naturally, α-synuclein is one of the prime targets in 
the search for treatments for PD (Rivero-Rios, Madero-
Perez, Fernandez and Hilfiker, 2016; Moors et al., 2017). 
Peptide-protein conjugate vaccines, designed to elicit 
neutralizing selective antibodies against α-synuclein, are 
currently in clinical trials for acute treatments of the dis-
ease (Mandler et al., 2014). It should be taken into con-
sideration, however, that α-synuclein is involved in the 
modulation of synaptic transmission (Scott et al., 2010; 
Scott and Roy, 2012; Vargas et al.m 2014). It is therefore 
important to know the exact physiological functions of 
this protein in healthy nerve terminals and how it may 
contribute to the onset and progression of PD pathol-
ogy before such antibodies are broadly used in clinical 
practice. 

Synucleins are accumulated in contacts established 
by synapses of different modalities in the central ner-
vous system (CNS). A number of roles for α-synuclein 
in the synaptic vesicle (SV) cycle have been proposed. 
It has been shown that α-synuclein restricts the lateral 
mobility of synaptic vesicles between synaptic boutons 
along the axon (Staras et al., 2010; Scott and Roy, 2012). 
Small increments in α-synyclein levels lead to suppres-
sion of the exo-endocytic cycle (Scott et al., 2010; Scott 
and Roy, 2012). Endocytosis is inhibited in synuclein α, 
β, γ-triple KO mice, and physiological kinetic studies al-
lowed suggesting that synuclein contributes to the pro-
gression of early stages of SV endocytosis (Vargas et al., 
2014). Lipid-binding properties of α-synuclein and its 
ability to interact with the endocytic adaptor AP180 are 
consistent with such function. 

Protein–protein interaction studies have also pre-
dicted a role for synuclein in SV clustering after endo-
cytosis (Wang et al., 2014). Synucleins localize to the SV 
pool (Wang et al., 2014) and colocalize with SV-associ-
ated phosphoproteins, synapsins (Woods et al., 2007). 
Synapsin I has a well-established function in organizing 
SV in clusters. α-synuclein and synapsin I both contain 
an amphiphatic lipid packing sensor-motif (ALPS-mo-
tif), which binds to curved membranes (Krabben et al., 
2011). It cannot be excluded that both proteins contrib-
ute to proper SV organization at the synaptic active zone. 
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It has been demonstrated that α-synuclein multimers 
cluster SV and restrict their motility in vitro, consistent 
with localization of the protein in synapses (Maroteaux 
et al., 1988; Cookson and Bandmann, 2010). How these 
synaptic functions are linked to the α-synuclein amyloid 
formation is unclear; however, recent data clearly show 
that formation of α-synuclein aggregates in nerve termi-
nals may take place. 

Synuclein aggregates were observed in mice with a 
mutation in the essential regulator of the fusion machin-
ery Munc18–1  linked to epileptic encephalopathy and 
PD in humans. Munc18–1 binds to the SNARE recep-
tor syntaxin-1A, which serves as a molecular chaperone 
for α-synuclein. The mutant protein coaggregates with 
α-synuclein (Chai et al., 2016), further suggesting that 
malfunctions in the SV cycle proteins may initiate PD-
related pathology (Fig. 1). 

Recently, mutations in two SV uncoating factors, 
auxilin and synaptojanin-1, were found to cause early-
onset PD. Auxilin is recruited to the clathrin coats due 
to the action of the endocytic polyinositolphosphatase, 
synaptojanin1, which is brought to clathrin-coated pits 
by the key endocytic adaptor endophilin. Recent genetic 
rescue experiments in mice with a PD-related mutation 
R258Q in synaptojanin1 did not report any accumula-
tion of protein aggregates at synapses but observed ab-
normal accumulation of membrane vesicles and folds in 
mDA, suggesting that other defects in membrane traf-
ficking may also underlay early PD pathology (Boassa et 
al., 2013; Cao et al., 2017).

The family of proteins, endophilin A1, A2  and 
A3 (also referred to as endophilin 1, 2 and 3) is a subset 
of the protein superfamily containing Bin/Amphiphysin/
RVS (BAR) domains, which are known to be responsible 
for sensing and generating membrane curvature, and for 
recruiting the relevant endocytic factors from the cyto-
sol to the membrane (Saheki and De Camilli, 2012). En-
dophilin recruits the phosphatase synaptojanin 1 to the 
necks of the budding vesicle prior to fission by the GT-
Pase dynamin, which also interacts with endophilin, but 
can act independently of it (Gad et al., 2000; Milosevic et 
al., 2011). Endophilin 1 also interacts with the synaptic 
scaffolding protein Intersectin 1, which coordinates the 
synaptic vesicle cycle and membrane trafficking events 
outside synapses (Pechstein et al., 2015).

Endophilin is linked to PD and neurodegenera-
tion. It is altered in the cortex of PD patients, and it 
interacts with two hallmark PD proteins, the E3 ubiq-
uitin ligase parkin and the leucine-rich repeat kinase 
LRRK2, the most commonly disrupted gene in familial 
PD (Murdoch et al., 2016; Soukup et al., 2016; Soukup 
and Verstreken, 2017). Unbiased proteomic screening of 
brain proteins in mice lacking all three synuclein genes 
revealed a prominent increase in endophilin 1  levels 
(Burre et al., 2013). Mouse endophilin triple knockout 

(TKO) has a distinct morphological and cellular phe-
notype characterized by impaired SV recycling, dimin-
ished autophagy/altered protein homeostasis, increased 
apoptosis and gliosis, neurodegeneration, motor impair-
ments and reduced lifespan. A partial loss of endophilin 
in mice also results in neurodegeneration, ataxia and 
early lethality (Milosevic et al., 2011; Cao, Milosevic, 
Giovedi and De Camilli, 2014; Murdoch et al., 2016).

Several recent studies linked endophilin and its 
endocytic binding partner synaptojanin to the matu-
ration of autophagosomes in the synapse (Murdoch et 
al., 2016; Soukup et al., 2016; Soukup and Verstreken, 
2017), which expanded its role far beyond the SV recy-
cling and synaptic compartment, and allowed linking it 
to pathological neurodegenerative conditions, including 
PD, in accordance with the complex phenotype of the 
endophilin TKO (Fig. 1). Endophilin 1 localizes on au-
tophagosomal membranes and is critical for the matura-
tion of synaptic autophagosomes (Murdoch et al., 2016; 
Soukup et al., 2016).

The autophagy–lysosomal pathway (ALP) is be-
lieved to be the main route for the intracellular degra-
dation of α-synuclein. Chaperone-mediated autoph-
agy has been linked to clearance of α-synuclein. It has 
been shown that the protein interacts with the heat 
shock cognate 70  (Hrs70), which in turn binds to the 
lysosomal transmembrane protein Lamp2a and facili-
tates subsequent lysosomal degradation. α-synuclein 
mutants bind to Lamp2 with higher affinity and block 
the process of α-synuclein degradation (Cuervo et al., 
2004). Block of the vacuolar protein-sorting complex 
Vps34-Beclin1  stops autophagosome formation, which 
may result in α-synuclein accumulation. α-synuclein-
containing aggregates may also form at later ALP stages 
(Rivero-Rios et al., 2016; Moors et al., 2017). Mutations 
in LRRK2, an autophagy regulator kinase interferes with 
clearance of α-synuclein accumulation from autophago-
somes. Mutations in PINK1 and parkin perturb proper 
autophagic clearance of defunct mitochondria, causing 
a buildup of these organelles and resulting in failure to 
properly meet metabolic demands. Mutant lysosomal 
enzyme glucocerebrosidase (GBA) and ATP13A2  de-
crease lysosomal degradative capacity. In all named mu-
tations, an increase in α-synuclein toxicity is observed, 
causing α-synuclein-mediated autophagic impairment 
and cellular pathology (Rivero-Rios et al., 2016; Moors 
et al., 2017). 

Control of the ALP pathway is executed by tran-
scription factors. For example, conditional knockout 
(cKO) of Lmx1b has been associated with perturbations 
in the ALP (Laguna et al., 2015). Lmx1b is involved in 
postmitotic neuronal regulation of ALP proteins Be-
clin1, Lamp1–2, p62, cathepsin D and LC3BI-II. It in-
fluences expression of transcription factor EB (TEEB), 
a critical regulator of genes involved in lysosomal bio-
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genesis, and Nurr1, which down-regulates expression 
of proteins involved in dopamine transmission. Con-
ditional targeting of Lmx1b in mice leads to dramatic 
changes in axonal bouton membrane organization, dis-
ruption of synaptic morphology, swelling, protein ag-
gregation and reduction in the number of active zones 
in dopaminergic nerve terminals in striatum. This sug-
gests that dysfunctional interactions between ALP and 
synaptic membrane trafficking, observed in the animal 
model, may be involved in PD pathology in humans. 
Supporting this, postmortem human brain tissue analy-
ses revealed a significant reduction of Lmx1b in samples 
from PD brains (Laguna et al., 2015). It remains un-
clear exactly how ALP is related to the synuclein cycle 
and membrane trafficking events in synapses. Further 
elucidation of molecular steps leading to the formation 
of synuclein aggregates in synapses will define the role 
of autophagy–lysosomal pathway in elimination of the 
amyloid aggregates.

In conclusion, several recent studies strongly indi-
cate that the elucidation of synaptic membrane traffick-
ing mechanisms linked to PD will lead to identification 
of novel therapeutic targets at early stages of the disease 
when many dopaminergic neurons are still functional. 
In combination with development of new “drug discov-
ery” model systems — for example, differentiated dopa-
minergic neurons with functional synapses from human 

induced pluripotent stem (iPS) cells  — these studies 
will lead to selection of medicines for the treatment of 
Parkinson´s disease.
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