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Abstract

The plant cytoskeleton is a highly dynamic system that consists of two com-
ponents: microfilaments and microtubules. Actin microfilaments are essential 
for polar growth, cytoplasmic streaming, directing polar growth, anchoring the 
nucleus, gravity sensing, signalling pathway integration and a number of oth-
er functions. Actin morphology and dynamics are orchestrated by a variety of 
small actin binding proteins, and some of them have become a source of actin 
interaction domains widely used as markers for microfilaments in fusions with 
fluorescent reporter proteins. However, older techniques are still employed for 
actin visualization. In this short review, we will focus on the diversity of fluores-
cent reporter fusions for F-actin and on approaches and existing free software 
for the analysis of cytoskeleton organization, mainly in Arabidopsis.
Keywords: cytoskeleton, actin, microfilament, plants, cell biology, visualization, 
microscopy, fluorescent protein, fluorescent dye.

Introduction

Every plant cell includes a number of different organelles, such as a nucleus, an 
endoplasmic reticulum, ribosomes, a Golgi apparatus, plastids, mitochondria, 
etc. However, these are not simply contained in the cellular envelope but are 
suspended in a network of fine filamentous structures — the cytoskeleton. The 
plant cytoskeleton consists of two main components, both built from protein 
polymers: microfilaments built from actin, and microtubules built from tubulin. 
The existence of intermediate filaments in plants is doubtful except for nuclear 
lamins, which exist but have sequences distinct from their animal analogues 
(Menzel, 1993). Microtubules (MTs) and microfilaments (MFs) are among the 
key elements of cytoarchitecture that define polarity in the plant cell (Medvedev, 
2012) and direct the development of plant cell shape (Mathur, 2004; Klyachko, 
2004). Microtubules and microfilaments feature intrinsic polarity since these are 
built from polymers of asymmetrical protein momomers. Although the very term 
‘cytoskeleton’ suggests a rigid and stable thing, in reality the plant cytoskeleton is 
equal to the animal one in its dynamics (Steinborn, 2002; Paradez, Wright, and 
Ehrhardt, 2006). Both MTs and MFs are highly dynamic in  vivo and are con-
stantly rebuilt and rearranged. Furthermore, microtubule and microfilament sub-
sets of the cytoskeleton mutually interact (Shevchenko, Kalinina, and Kordyum, 
2007; Sampathkumar et al., 2011). However, functions of MTs and MFs differ in 
plant cells — MTs are involved in the formation of the mitotic spindle, cell shape 
establishment on par with MFs, and cell wall organization (Steinborn et al., 2002; 
Paradez, Wright, and Ehrhardt, 2006; Gutierrez et al., 2009; Sampathkumar et al., 
2011). The actin microfilament network is essential for polar growth and intra-
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cellular communication: MFs mediate vesicle transport, 
cytoplasmic streaming, extension growth, anchoring of 
the nucleus, orientation of the cell division plane, gravity 
sensing, signalling of pathway integration, defense sig-
nalling, etc. (Baluška et al., 2001; Ketelaar et al., 2002; 
Klyachko, 2004; Bannigan and Baskin, 2005; Blancaflor, 
Wang, and Motes, 2006; Morita, 2010; Yoo et al., 2012; 
Blancaflor, 2013; Janda, Matoušková, Burketová, and Va-
lentová, 2014). The actin cytoskeleton could be consid-
ered as a finer and more dynamic structure than MTs. In 
this review we will focus on MF organization, visualiza-
tion approaches and the analysis of its organization.

Actin cytoskeleton organization

Microfilaments are ≈  7–8  nm thick (Egelman, 1985; 
Holmes, Popp, Gebhard, and Kabsch, 1990) and are built 
from dimers of actin, which is found in the cytoplasm 
in two states, globular G-actin and polymeric F-actin, 
concentrations of which are in dynamic equilibrium. 
Microfilament is found in a steady state, at which the 
dissociation of G-actin from the “–” end and G-actin at-
tachment to the “+” end are balanced (Staiger, Gibbon, 
Kovar, and Zonia, 1997; Blanchoin et al., 2010).

The actin cytoskeleton organization is vital for the 
establishment of cell shape, and its disruption leads to 
an irregular trichome shape, curvy root hairs, epider-
mal cell shape anomalies and an irregular shape of the 
hypocotyl. MFs carry the cytoplasmic strands and are 
responsible for cyclosis (Valster et al., 1997; Ketelaar et 
al., 2002). In the stele, root hairs and trichomes, actin 
microfilaments are assembled into thick bundles orient-
ed along the cell’s long axis. Thin actin microfilaments 
end next to the membranes and make contact with or-
ganelles (Ketelaar and Emons, 2001). Apical meristem 
cells lack thick bundles; their nuclei are located in the 
centre and are surrounded with a dense network of thin 
actin microfilaments. In the epiderm, a developed thin 
actin network underlies the plasma membrane (Ma-
thur,  J., Mathur, N., Kernebeck, and Hülskamp, 2003). 
Similarly, in root cap statocytes, the actin cytoskeleton 
lacks a developed fine MF network and is composed of 
short F-actin strands found near the plasma membrane 
or around organelles (Baluška and Hasenstein, 1997). 
The Arabidopsis genome consists of 10  genes of actin, 
and the majority of vegetative cells express ACT2 (Mea-
gher and Fechheimer, 2003). However, various types of 
actin organization and its dynamics rely on a number of 
actin-binding proteins.

Actin microfilament branching at the angle of 70° 
is facilitated by the ARP2/3 complex. It is essential for 
the development of trichome shape and epidermal cell 
lobes (Mathur, 2005). In these cells, the ARPC2 compo-
nent of ARP2/3 mediates the interaction with microtu-
bules (Havelková et al., 2015). Actin polymerizes into 

long MFs due to the formins (AtFH1) activity. Group I of 
these actin-binding proteins also enables actin cytoskele-
ton interaction with the plasma membrane and extracel-
lular signals (Deeks et al., 2005). Fimbrins (AtFIM) car-
ry two actin-binding domains (ABD1 and ABD2), and 
each of them contains an EF-hand Ca2+-binding motif. 
Therefore, fimbrins are capable of MF cross-linking and 
inhibit their Ca2+-independent polymerization regulated 
by profilins (Higaki, Sano, and Hasezawa, 2007). Based 
on the second actin-binding domain of fimbrin (fABD2), 
various GFP fusions were developed to enable actin cy-
toskeleton in vivo visualization (Voigt et al., 2005). Vilins 
belong to the gelsolin family of actin-interacting proteins 
and facilitate actin bundling into thick bundles (Klahre et 
al., 2000). Profilins are small (12–15 kDa) proteins that 
prevent the spontaneous polymerization of actin (Valster 
et al., 1997). Actin-depolymerizing factors (ADF) are 
also small (15–20 kDa) proteins that are active in com-
plex with actin-interacting protein 1, severe MFs and 
further facilitate actin depolymerisation by making free 
ends in MFs (Ketelaar et al., 2004; Ketelaar, Anthony, 
and Hussey, 2004). Myosins are various motor proteins 
that enable organelle movement along the actin cytoskel-
eton and are essential for vesicular transport, assembly 
of transvacuolar actin cable, plasmodesmata pore adjust-
ment, chloroplast positioning, and interaction between 
MTs and MFs (Šamaj, Peters, Volkmann, and Baluška, 
2000; Meagher and Fecheimer, 2003; Grebe et al., 2003; 
Šamaj, Peters, Volkmann, and Baluška, 2006). Small 
GTP-binding proteins (GTPases) are also involved in 
the regulation of MF morphology in control of vesicular 
transport, polar growth and the development of complex 
cell morphology (Valster et al., 2000; Li et al., 2001; Ver-
noud et al., 2003; Berken et al., 2005; Li, Xu, J., Xu, Z., 
and Xue, 2005) as well as in reproduction development 
(Kawashima et al., 2014). ROPs convert external signals 
to the microfilament branching state by interaction with 
ARP2/3 (Klyachko, 2004; Xu and Scheres, 2005; Hussey, 
Ketelaar, and Deeks, 2006; Nagawa et al., 2012).

Rapid and dynamic rearrangement of the actin cy-
toskeleton is required for a number of cellular processes, 
e.g., gravitropism (Morita, 2010). For instance, SGR9 
(SHOOT GRAVITROPISM 9) E3  ligase mediates the 
interaction of F-actin with amyloplasts (Nakamura et al., 
2011). Vesicles carrying auxin efflux carriers of the PIN 
family are retargeted in a polar manner to a specific side 
of the cell membrane (Boutté et al., 2006). In this pro-
cess of retrograde endocytosis, GNOM (ADP-ribosyla-
tion factor — guanine nucleotide exchange factor) acts 
specifically at the assembly of vesicles containing PIN1 
(Geldner et al., 2004), and GNL1 (GNOM-LIKE1) con-
trols the trafficking of PIN2 (Kleine-Vehn et al., 2008). 
Both GNOM and GNL1 control auxin polar transport 
and at the same time are auxin-dependent (Dhonukshe 
et al., 2008; Nick, Han, and An, 2009).
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Clearly, various proteins interact with actin and 
modulate its morphology, dynamics and interaction 
with cell organelles and compartments. Therefore, mo-
lecular probes allowing the visualization of actin MFs, 
especially in  vivo, and software tools facilitating the 
analysis of cytoskeleton organization, are required for a 
complete understanding of complex development pat-
terns and responses to external stimuli.

Actin cytoskeleton visualization

Historically, the first methods used to visualize the ac-
tin cytoskeleton in plants under an optical microscope 
were staining of plant tissues with fluorescently la-
belled actin-binding phallotoxins after chemical fixation 
(Parthasarathy, Perdue, Witztum, and Alvernaz, 1985; 
Kakimoto and Shibaoka, 1987; Traas et al., 1987), and 
direct microinjection of such probes into cells (Cleary, 
1995). In contrast to microtubules, which may be visu-
alized by injection of fluorescently labelled tubulin, the 
applications of G-actin chemically derivatized in the 
same manner were not successful. However, a natural 
bicyclic hexapeptide phalloidin (Fig. 1A) from poison-
ous mushroom Amanita  phalloides is capable of bind-
ing to actin — with a higher affinity to F-actin than to 
G-actin (Cooper, 1987). Therefore, upon addition to the 
cytoplasm, phalloidin selectively binds to actin MFs. 
A fluorescent dye such as rhodamine (Fig.  1B) or flu-
orescein (Fig. 1C), chemically bound to phalloidin, al-
lows for fluorescent imaging of actin microfilaments in 
the cell in vivo or after chemical fixation (Fig. 2A). The 
choice between rhodamine and fluorescein (commonly 
fluorescein isothiocyanate, FITC) in a particular exper-
iment is based on the fluorophores’ excitation/emission 
properties: 540/565 nm for rhodamine phalloidin, and 
496/516 nm for fluorescein phalloidin (Johnson, 2010); 
the set of available lasers for confocal imaging or fil-
ters for fluorescence imaging; as well as possible fluo-
rescence cross-talk between fluorescent F-actin probe 
and autofluorescence of endogenous cellular structures 
such as the secondary cell wall. Importantly, phalloidin 
affects the G-/F-actin dynamic equilibrium (Dancker, 
Löw, Hasselbach, and Wieland, 1975). Its binding to 
F-actin stabilizes microfilaments and promotes G-ac-
tin polymerization, followed by the depletion of the 
G-actin pool. Therefore, when using phalloidin conju-
gates with fluorophores, it is important to keep its con-
centration in the staining solution minimal (or at least 
below the threshold level), otherwise the visualization 
itself may introduce artefacts to MF organization and/
or induce the formation of F-actin filaments of abnor-
mal length. Since microinjection is not possible for tis-
sues with small and numerous cells, a chemical fixation 
step (with formaldehyde and/or paraformaldehyde) is 
commonly added prior to staining to prevent phalloi-

din-induced actin polymerization or actin cytoskeleton 
rearrangement resulting from the staining process. Typ-
ically, the sample preparation for MF phalloidin-based 
visualization includes chemical fixation, permeabiliza-
tion of membranes with a detergent, and staining with 
rhodamine-phalloidin, for example (Van Gestel, Le, and 
Verbelen, 2001). Rhodamine-phalloidin is advantageous 
for labelling the actin cytoskeleton in plants where ge-
netic transformation is hard or impossible, despite the 
rather long staining procedure it requires. For plant spe-
cies in which genetic transformation is hard or unreli-
able, this method of actin MF visualization is still the 
only choice: actin has been visualized in lily pollen tubes 
(Hörmanseder, Obermeyer, and Foissner, 2005), tomato 
(Humbert et al., 2015), wheat (Khokhlova and Makaro-
va, 2006) and other species.

Fig. 1. Chemical structures of phalloidin and fluorescent labels com-
monly used for F-actin visualization. A. Phalloidin from Amanita phal-
loides. B. Rhodamine. C. Fluorescein.
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Immunofluorescence labelling of the actin cytoskel-
eton became an appropriate technique for studying MFs 
in plant tissues or organs that are too thick or too large 
in diameter to be observed under a fluorescent or con-
focal microscope due to emission and fluorescence light 
absorption (Śniegowska-Świerk, Dubas, and Rapacz, 
2015; Dyachok et al., 2016). In immunofluorescence la-
belling methodology, primary anti-actin antibodies are 
responsible for the specificity of binding, and second-
ary antibodies conjugated with fluorescent dye provide 
effective visualisation in  situ. The procedure requires 
several additional steps, including obtaining tissue sec-
tions, cell wall digestion, permeabilization, incubation 
with primary antibodies, incubation with secondary 
antibodies, washing and mounting. Consecutively, the 
procedure of immunolabelling is complicated and may 
introduce artefacts as well, but for a number of plant ob-
jects it serves as the only option available. For an over-
view and a detailed protocol of visualization with im-
munofluorescence, please refer to the excellent paper by 
Dyachok and colleagues (Dyachok et al., 2016).

Any chemical fixative requires several minutes 
to penetrate the cells and react with protein polymers 
and halt the dynamic cytoskeleton. To overcome this 
problem, a cryofixation was developed (Lovy-Wheeler, 
Wilsen, Baskin, and Hepler, 2005). In this method, a 
plant specimen is first rapidly frozen in liquid gas such 
as propane (at –180°C), then freeze-substituted in dry 
acetone containing anhydrous glutaraldehyde, followed 
by further rehydratation and immunolabelling. In lily 
pollen tubes, this approach revealed a fringe of thin ac-
tin microfilaments near the pollen tube apex followed 
by numerous MFs in the pollen tube shank. The apical 
fringe of actin was otherwise destroyed by convention-
al chemical fixation methods (Lovy-Wheeler, Wilsen, 
Baskin, and Hepler, 2005). Then, using this image of 
the actin cytoskeleton organization as a reference, paper 
authors adjusted the chemical fixation method to room 
temperature to keep these pollen tube actin structures 
intact.

In plants where genetic transformation is well es-
tablished or transient transformation is possible, a real 
breakthrough in in  vivo cytoskeleton imaging started 
with the introduction of genetically encoded fusions of 
fluorescent proteins with natural actin-binding proteins 
from eukaryotic cells. A chimeric fusion protein com-
posed of GFP (Green fluorescent protein) or its deriv-
atives such as CFP (Cyan-), YFP (Yellow-), mOrange, 
mCherry, etc., fused with a whole actin-binding protein 
or its specific actin-binding domain, is constitutively 
expressed in transgenic plants, thus allowing direct vis-
ualization under a fluorescent or laser scanning confo-
cal microscope without any general sample preparation 
steps (Kost, Spielhofer, and Chua, 1998; Schenkel et al., 
2008; Dyachok et al., 2014). In GFP-mTn construct, 

Fig. 2. Actin visualization in Arabidopsis root elongation zone. A. Stain-
ing with rhodamine-phalloidin. B. GFP-fABD2 reporter. C. Lifeact-Ve-
nus reporter. Scale bar: A, 50 μm; B,C: 20 μm.
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the C-terminal actin-binding domain of mouse talin is 
responsible for the association of the probe with actin 
filaments (Kost, Spielhofer, and Chua, 1998). Unlike 
the full-length talin, its actin-binding protein does not 
trigger G-actin nucleation and was considered a robust 
marker tool. Indeed, colocalization of GFP-mTn-la-
belled actin with MFs labelled by rhodamine-phalloidin 
showed significant overlap in transiently transformed 
tobacco BY-2  cells (Kost, Spielhofer, and Chua, 1998). 
The introduction of GFP-mTn was encouraging. Its sig-
nal was stable and bright, thus facilitating live observa-
tion of actin organization and dynamics in transformed 
cells. Tobacco pollen tubes transiently transformed 
with GFP-mTn revealed fine microfilaments in tube 
shank, and these pollen tubes featured the same growth 
rate and morphology as the control. However, it was 
demonstrated later that in transgenic GFP-mTn Arabi-
dopsis lines, GFP-mTalin caused aberration in root hair 
growth (growth termination, swelling or thickening) 
and competed with ADF for the binding sites on MFs, 
thus inhibiting physiological depolymerisation of F-ac-
tin by ADF (Ketelaar, Anthony, and Hussey, 2004). The 
GFP-FABD2 construct was created to provide an alter-
native to GFP-mTn. In GFP-FABD2, GFP’s C-terminus 
was fused to the second (C-terminal) F-actin binding 
domain of fimbrin, an actin-binding protein native to 
Arabidopsis (Sheahan, Staiger, Rose, and McCurdy, 2004; 
Voigt et al., 2005). This construct was active in different 
cell types of Arabidopsis ranging from root cap columella 
cells, rhizoderm to epidermal cells (Fig. 2B), mesophyll 
cells and trichomes, thus allowing research to overcome 
the limitations of full-length fimbrin fusions to GFP 
(Voitg et al., 2005). Double GFP — FABD2 fusion pro-
tein — GFP-FABD2-GFP — features an even stronger 
signal for actin cytoskeleton visualization (Wang, Yoo, 
and Blancaflor, 2008). A distinct actin-binding peptide 
sequence from yeast — ABP140 (Actin-binding peptide 
140) — is another potent marker for actin cytoskeleton 
visualization. The essential part of ABP140, a peptide 
containing the first 17  amino acid residues, called Li-
feact, is sufficient to replicate the F-actin affinity of the 
full-length ABP140 (Riedl et al., 2008). Lifeact fusions to 
GFP and, later, to Venus — an improved version of YFP 
with enhanced brightness and stability — which makes 
it possible to reveal fast F-actin dynamics in Arabidopsis 
(Fig. 2C) and Marchantia polymorpha moss in vivo (Era 
et al., 2009).

Since all GFP fusions developed to visualize actin 
in vivo are based on F-actin binding or interacting pro-
teins, one could suspect that they somehow affect the 
normal physiology of actin microfilaments. Simply, the 
surface of an actin microfilament is finite, as well as the 
number of binding sites on it; therefore, if at least some of 
them are occupied by an effectively binding and consti-
tutively expressed fluorescent protein fusion, the poten-

tial for interactions of actin with its native cytoplasmic 
binding proteins becomes limited. In addition to that, 
GFP and its derivatives are capable of generating ROS 
under continuous light. For instance, drawbacks of GFP-
mTn application were already mentioned above. Similar-
ly, other actin-binding fluorescent protein fusions were 
shown to imply some developmental or physiological al-
terations in their carrying plant. The GFP-FABD2-GFP 
fusion construct is bright and capable, but its use caused 
altered embryonal development, shorter and abnormally 
positioned root hairs and shorter branches in trichomes 
(Wang, Yoo, and Blancaflor, 2008). Lifeact-Venus was 
widely used for live F-actin observations, and it was 
generally believed to be safe for the dynamics of actin 
polymerization and depolymerisation (van der Honing, 
van Bezouwen, Emons, and Ketelaar, 2011). Surprising-
ly, Lifeact-Venus was recently demonstrated to interfere 
with nuclear actin (Du, Fan, Chen, and Feng, 2015). 
Also, Lifeact-Venus was found to delay actin bundles re-
location and to reduce the cytoplasmic strand reorgan-
ization rate in epidermal cells of Arabidopsis (van der 
Honing, 2011), and, supporting this, in the same study 
Lifeact was shown to exchange more rapidly from actin 
MFs than FABD2. Dyachok et al. studied various protein 
fusion-based F-actin reporters for their potential impact 
on Arabidopsis development and morphology (2014). 
Their study showed that in general, FABD2-based fu-
sions were less likely to cause abnormal F-actin bundling, 
which mTn-fusions were prone to do. Interestingly, the 
substitution of a strong constitutive 35S promoter with 
UBQ10 promoter for GFP-FABD2-GFP probe prevent-
ed loss of fluorescence in the subsequent generations of 
transgenic plants and helped to avoid growth inhibitory 
effects of 35S constructs. The expression level of mark-
er fusion proteins appears to be very important for the 
correct development of polarly growing cells that have a 
shape highly dependent on the actin cytoskeleton, such 
as pollen tubes or root hairs. High expression levels of 
GFP-talin or GFP-fimbrin in tobacco pollen tubes led 
to the formation of abnormal transverse cortical hoops 
of actin, moving rings of F-actin or its large aggregates 
(Wilsen et al., 2006). Our own data show that, for in-
stance, GFP-FABD2  Arabidopsis plants exhibit slightly 
slower root growth pace but faster gravitropic bending 
development. Their metabolite profiles also differ from 
the background ecotype and accumulate higher levels of 
amino acids while being deficient in fatty acids, monoa-
cyl glycerols and monosaccharides (unpublished data). 
Therefore, before making conclusions based on fusion 
fluorescent reporter protein visualization, related phys-
iological parameters should be carefully considered and 
compared with results obtained by alternative reporters.

In addition to the actin cytoskeleton visualiza-
tion techniques discussed above, a new and promising 
approach has recently emerged. Silicone-containing 
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rhodamine derivatives such as SiR-methyl and SiR-car-
boxyl are bright, biocompatible and highly permeable 
(Lukinavičius et al., 2013). These fluorescent dyes may 
be easily conjugated with a marker protein or protein of 
interest, and since their emission spectra lies in near-in-
frared, they are excellent for super-resolution micros-
copy techniques. Later, SiR-actin and SiR-tubulin were 
generated and demonstrated to be effective in animal 
fibroblasts (Lukinavičius et al., 2014). However, no at-
tempt has yet been made to apply these labels to plant 
systems.

Analysis of actin cytoskeleton organization

Given that the actin cytoskeleton plays a vital role in a 
number of physiological and developmental processes 
at the cellular level, it is important to qualitatively and 
quantitatively analyse and describe its organization. This 
includes the abundance of MFs, their preferential local-
ization within the cell, length and angular distribution, 
thickness or diameter of bundles, branching, the pres-
ence and the number of contacts with the plasma mem-
brane, etc. In a very simple approach, microfilaments 
are detected manually ‘by eye’ based on a fluorescence 
or confocal image and counted to provide quantitative 
data. Software filters such as threshold level in ImageJ 
(Schneider, Rasband, and Eliceiri, 2012) may provide aid 
in automated detection of microfilaments. Similarly, the 
thickness or diameter of actin cables could be measured 
indirectly in pixels based on a confocal image, and then 
converted to physical units, e.g., micrometers. This sim-
ple approach is robust yet time-consuming and is still 
employed (Zhang, Colyvas, Patrick, and Offler, 2017). 
However, sharp confocal images of a reasonable logi-
cal size are required for this approach. Predominantly 
longitudinal microfilaments found in root stele are not 
straight, however, and for their curvature assessment a 
simple index of curvature was suggested (Pozhvanov, 
Suslov, and Medvedev, 2013). This metric assumes that 
a curved microfilament will intersect a virtual longitu-
dinal line grid more often than a straight one. However, 
the number of total intersections with longitudinal lines 
has to be normalized by the overall microfilament abun-
dance in the cell, which is given by the number of inter-
sections with a grid of transversal, or radial lines (Fig. 3):

	
icurv. = Σj nradial

Σi naxial

	
(1)

In the living cell, the actin cytoskeleton is dynamic; 
it undergoes rearrangement to adjust to current cellular 
activity. Using fluorescent protein fusions to actin-bind-
ing proteins, MFs are trackable in real time. Captured 
time-course fluorescence images can be analysed fur-
ther to quantify the actin cytoskeleton dynamics. This 

type of analysis is commonly performed by automated 
pixel-to-pixel comparison of numerical fluorescence 
levels, fx,y. If the given microfilament remains stable 
over time between two sequential key frames, its posi-
tion in the digital image is the same, hence there is no 
significant shift in the level of signal: fx,y(t2)–fx,y(t1)=0. 
If a microfilament moves over time, the signal is lost at 
its initial position: fx,y(t2)–fx,y(t1)<0. Conversely, in case 
of a microfilament de novo assembly, a signal appears 
in previously dark pixels: fx,y(t2)–fx,y(t1)>0. The overall 
statistics of fluorescence shift gives an overview picture 
of actin dynamics within the cell (Nick, Han, and An, 
2009).

To quantify the angular distribution, length and 
density of fibrillary structures such as MFs or MTs, a free 
dedicated software tool called Microfilament Analyzer 
(MFA) was developed (Jacques et al., 2013). Its analysis 
workflow is based on the concept of ‘rotating polarisa-
tor’. Virtual lines at a specific angle are projected on the 
image, and the luminosity (fluorescence signal) of ad-
jacent pixels is compared along these lines. When the 
number of sequential pixels with brightness exceeding 
the threshold level reaches the minimal required length, 

Fig. 3. Calculation of curvature index (icurv.) for axially oriented micro-
filaments in root stele (wild-type Aranidopsis root stained with rho-
damine-phalloidin). The number of actin microfilament intersections 
with axial grid lines is normalized by the number of intersections with 
radial grid lines (density of microfilaments).



BIOLOGICAL COMMUNICATIONS, vol. 63, issue 1, January–March, 2018 | https://doi.org/10.21638/spbu03.2018.107	 65

PL
A

N
T 

SC
IE

N
CE

Fig. 4. Actin cytoskeleton analysis in Microfilament Analyzer software tool (Jacques et al., 2013). A. Analysis 
workflow: load z-stack file, adjust contrast for detection, apply settings for automatic filament detection, dis-
play analysis results. B. Image of Lifeact-Venus line of Arabidopsis thaliana loaded for analysis. C. Manual se-
lecton of cell boundaries. D. Automatically detected microfilaments are highlighted in yellow. Inset: enlarged 
view of filaments detected in cells 5–6. E. Analysis results: microfilament angular distribution in a given cell.
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these count as a segment of microfilament of a specific 
length and orientation. After the detection of microfila-
ments oriented at a specific angle is completed, the virtual 
grid is rotated in a given angular step, and the detection 
process repeats (Fig. 4). MFA allows for the adjustment 
of image contrast, manual or automated cell boundary 
detection (based on image mask or other fluorescence 
channel, i.e., propidium iodide), and minimal length 
of MFs; their minimal thickness, threshold value and 
angular step are also adjustable parameters in the reso-
lution of an image being analysed. The output of MFA 
is full statistics of MF angular distribution, number of 
filaments per cell, length of each detected filament, and 
the detection of predominant MF orientation angles. 
These statistics may be further classified or analysed to 
give numerical features of cytoskeleton rearrangement 
under stress or environmental response (Pozhvanov, Su-
slov, and Medvedev, 2016). The drawbacks of the current 
MFA version are its inability to batch process image and 
its operating system restriction (PC only).

An approach similar to MFA was introduced by 
Matouškova et al. (2014)  to analyse actin cytoskeleton 
involvement in salicylate signalling. Confocal images 
were batch processed in ImageJ using a set of image 
masks of a given angular sector as low pass FFT filter for 
the detection of filamentous structures within the image 
(Matouškova et al., 2014, S1). The resulting images were 
converted to binary and subjected to particle analysis, 
resulting in statistics of length and number of filaments 
of a given angle.

Currently, a wide range of approaches and tools 
are available for various analyses of cytoskeleton or-
ganization and dynamics, and a number of new open 
source software will possibly emerge in the near future 
to describe and quantify the complex actin cytoskeleton 
features such as branching and interactions with actin-
binding proteins or membranes.

Conclusions

The plant cytoskeleton is a dynamic system that is in-
volved in various processes, ranging from cell house-
keeping and division to complex responses to environ-
mental stimuli. Over the past two decades, a number 
of visualization tools have been developed that literally 
cover the visible spectrum for fluorescence colour and 
allow us to reveal in  vivo the structure and dynam-
ics of the cytoskeleton using fluorescence and confocal 
microscopy. Since fluorescent protein fusion reporters 
utilize actin binding domains in their marker part, cor-
responding transgenic lines should be carefully checked 
for developmental and/or morphological anomalies. For 
plant objects unsuitable for transformation, other vi-
sualization methodology still exists, including staining 
with phalloidin-coupled dyes or immunofluorescence 

labelling. A number of software tools and approaches 
to quantify the cytoskeleton organization have been de-
veloped that allow for characterization of cytoskeleton 
rearrangements.
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