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Abstract

Osteogenic transformation as a result of cellular plasticity could be both benefi-
cial, in the case of bone formation, and hazardous, in the case of vascular cal-
cification. Mechanisms driving vascular calcification remain poorly understood, 
while calcification of the vessels is one of the leading causes of morbidity and 
mortality. In particular, calcification of the aortic valve is a serious complica-
tion requiring surgical intervention. The mechanisms behind aortic valve calci-
fication and the origin of cells driving osteogenic transformation of the aortic 
valve remain questionable. A circulating stem cell theory supports the view that 
pathologic calcification could originate not only from valve cells, but also from 
other sources. The aim of this study was to estimate the osteogenic potential of 
adipose tissue-derived mesenchymal stem cells (MSCs) from people with calcifi-
cation of the aortic valve versus MSCs from healthy people; further, to compare 
the capacity of osteogenic differentiation between MSCs and valve interstitial 
cells (VICs) from healthy donors and patients with severe calcification of the 
aortic valve. MSCs and VICs were isolated from either healthy donors or from 
patients with aortic valve calcification. The cells were immunophenotyped for 
conventional MSC markers by flow cytometry. Osteogenic differentiation was 
induced by addition of specific osteogenic inductors to the culture medium. 
Osteogenic differentiation was assessed by alizarin red staining and by estima-
tion of RUNX2 expression by qPCR. The MSCs of healthy donors were capable of 
efficient osteogenic differentiation, while MSCs of the patients with aortic valve 
calcification were not capable of osteogenic differentiation. We conclude that 
there is no correlation between the capacity of adipose MSCs to osteogenically 
transform and calcification of the aortic valve. Most likely, peripheral MSCs of 
adipose origin could not be a source of aortic valve calcification.
Keywords: stem cells, calcification of aortic valve, osteogenic differentiation.

Introduction

The formation of bone tissue and pathological calcification of the tissues of the 
heart and vessels have similar signs. The trigger mechanisms that lead to abnormal 
calcification of the heart and vessels remain largely unexplored. Vascular calcifica-
tion is a frequent cardiovascular complication accompanying aging and various 
pathologies (Demer and Tintut, 2014). The mechanisms involved in the pathogen-
esis of vascular calcification remain largely unknown, and no therapy is currently 
available to prevent and reverse calcification. Previously, vascular calcification was 
considered to be a passive process; however, recent evidence suggests that it is an 
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actively and tightly regulated process related to bone for-
mation through deposition of minerals in the extracellu-
lar matrix by osteoblast-like cells (Boström, 2016).

The origins of osteoblastic cells in the cardiovascular 
system are controversial and remain to be defined. It has 
been proposed that osteogenic cells in the media layer 
may be transdifferentiated from medial smooth muscle 
cells in situ (Speer et al., 2009). Other studies have dem-
onstrated that mesenchymal-derived progenitor cells in 
the vessel wall could be involved in vascular calcifica-
tion (Tintut et al., 2003; Farrington-Rock et al., 2004).

It is widely accepted that mesenchymal stem cells 
(MSCs), including bone marrow- derived MSCs and 
adipose tissue-derived MSCs, have the ability to differ-
entiate into many cell types and in particular into os-
teoblastic and chondrogenic lineages (Zuk et al., 2001). 
Both human and animal studies have demonstrated that 
MSCs can be mobilized into blood circulation (Fernan-
dez et al., 1997; Huss et al., 2000; Zvaifler et al., 2000; 
Kuznetsov et al., 2001; Rochefort et al., 2006; Otsuru et 
al., 2007). It has been proposed that the migration of re-
mote MSCs from their original niche with subsequent 
activation toward osteoblastic cells at the diseased ves-
sels also plays a role in the vascular calcification pro-
cess (Wang et al., 2014). The so-called “circulating cell 
theory” suggested that bone marrow-derived circulat-
ing stem cells/osteoprogenitors home to diseased ar-
teries and contribute to vascular calcification (Pal and 
Golledge, 2010).

Calcific aortic valve disease (CAVD) is a frequent 
heart valve disease, and currently there is no medical 
treatment to stop the disorder. The main feature of the 
disease is progressive mineralization of valvular tissue. 
To some extent, both mineralization of the aortic valve 
and vessel calcification share similarities with bone os-
sification (Mathieu, Boulanger, and Bouchareb, 2014). 

The aortic valve consists of valve interstitial cells 
(VICs) and valve endothelial cells. It has been suggested 
that VICs are the main functional units in the valve that 
undergo mineralization (Rutkovskiy et al., 2017) and 
are able to express the genes that are associated with an 
osteogenic phenotype (Rabkin-Aikawa, Farber, Aikawa, 
and Schoen, 2004). The origin of the cells that promote 
calcification of the valve are to be determined (Leszc-
zynska and Murphy, 2018); in particular peripheral 
MSCs have been discussed as candidate cells to promote 
valve calcification (Liu and Xu, 2016).

We have recently shown that VICs of patients with 
CAVD are more susceptible to proosteogenic induction 
and more readily undergo osteogenic differentiation 
compared to VICs from normal healthy valves (Kostina 
et al., 2018). We hypothesized that MSCs of the patients 
might also be more prone to osteogenic transformation 
and might reflect the same susceptibility as the VICs of 
the patients in comparison to healthy valves. Therefore, 

in this work we sought to determine if MSCs of adipose 
tissue of patients with severe aortic valve calcification 
have the ability to readily differentiate into osteogenic 
lineage. We show here that adipose tissue-derived MSCs 
of patients with CAVD, in contrast to VICs, have quite a 
low ability to osteogenically transform.

Materials and Methods

The clinical research protocol was approved by the lo-
cal Ethics Committee of the Almazov Federal Medical 
Research Centre and was in accordance with the prin-
ciple of the Declaration of Helsinki. All patients gave in-
formed consent. 

ISOLATION OF PRIMARY CULTURES

VICs from the patients with calcific aortic disease were 
isolated from explanted aortic valves in the course of 
surgical intervention (age 52–68, n=9), and MSCs from 
the same patients were isolated from subcutaneous adi-
pose tissue (age 52–68, n=6). Control VICs were isolated 
from healthy valves obtained from organ transplant do-
nors (age 32–48, n=9), and all had tricuspid morphol-
ogy. Control MSCs were isolated from subcutaneous 
adipose tissue of healthy volunteer donors (age 27–45, 
n=6) by previously described methods (Malashicheva 
et al., 2015). After explantation of the valve, the leaflets 
were washed in 1x PBS and incubated for 10 minutes at 
37°C in 0.2% collagenase solution (Collagenase, Type IV, 
Worthington Biochemical Corporation, USA). The valve 
was vortexed for one minute to remove valve endothe-
lial cells. To isolate VICs, the remaining valve tissue was 
incubated with 0.2% collagenase solution for 24 hours at 
37°C. Then, the tissue was pipetted repeatedly to break 
up the tissue mass and spun at 300 g for five minutes. 
The pellet containing VICs was resuspended in DMEM 
supplemented with 15% FBS, 2mM L-glutamine and 
100units/ml penicillin/streptomycin, and plated onto 
a T-75 flask. Primary cells were used between passages 
two and five were used for all experiments. All cultures 
were maintained in humidified 5% CO2 at 37°C.

OSTEOGENIC DIFFERENTIATION

The osteogenic potential of VICs and MSCs was tested 
by treatment with osteogenic medium (DMEM supple-
mented with 15% FBS (HyClone), 2 mM L-glutamine, 
100 units/ml penicillin/streptomycin, 50 mg/m ascorbic 
acid, 0.1  uM dexamethasone and 100  mM b–glycero-
phosphate) for 21 days. The expression osteogenic mark-
er RUNX2 was measured by qPCR (see below). Calcium 
deposits resulting from osteogenic differentiation were 
revealed by Alizarin Red staining. Cells were washed 
with PBS, fixed in 70% ethanol for 60 min, washed twice 
with distillated water and stained using Alizarin Red so-
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lution (Sigma). The images of calcium phosphate depo-
sition were analyzed for the ratio of differentiated and 
undifferentiated cell areas with MosaiX software (Carl 
Zeiss microsystems, Germany).

qPCR, RNA

RNA from cultured cells was isolated using ExtractRNA 
(Eurogene, Russia). Total RNA (1 μg) was reverse tran-
scribed with MMLV RT kit (Eurogen, Russia). Real-time 
PCR was performed with 1 μL cDNA and SYBRGreen 
PCRMastermix (Eurogen, Russia) in the Light Cycler 
system using specific forward and reverse primers for 
target genes. The thermocycling conditions were as fol-
lows: 95°C for five minutes, followed by 45 cycles at 95°C 
for 15 seconds and 60°C for one minute. A final heating 
step of 65°C to 95°C was performed to obtain melting 
curves of the final PCR products. Corresponding gene 
expression level was normalized to GAPDH from the 
same samples. Changes in target gene expression levels 
were calculated as fold differences using the comparative 
ΔΔCT method. RUNX2  primer sequences were as fol-
lows: forward TGGATCACCTGAAAATGCTG; reverse 
CGAAATCCCAACTCCGATA 

FLOW CYTOMETRY ANALYSIS

The immunophenotype of cells was evaluated by 
flow cytometry analysis performed on GuavaEasy-
Cyte8  (Milipore, USA). Cells were resuspended in 
100 µL of PBS containing 1% of bovine serum albumin 
(Sigma-Aldrich, Saint Louis, MO, USA), incubated for 
20  min at 20°C in the dark with the following mono-
clonal antibodies (Ab): anti-CD146 PE (Beckman Coul-
ter, USA, A07483), anti-CD166 PE (Beckman Coulter, 
USA, A22361), anti-CD105 APC (R&D Systems, USA, 
FAB1097A-100), anti-PDGFRβ APC (BD Pharmin-
gen, USA, FAB1263A), anti-CD31 PE (Beckman Coul-
ter, USA, IM2409), anti-CD34  APC (Beckman Coul-
ter, USA, IM2472U), anti-CD90 PE (Beckman Coulter, 
USA, IM1840U), anti-CD45  APC (Beckman Coulter, 
USA, IM2473). Unstained cells were used as a negative 
control. A threshold was set to a forward-scatter (FSC) 
parameter to exclude cell debris. The SSC (side-scatter) 
and FSC settings were done with logarithmic amplifica-
tion scale as well as for fluorescence channels and dot 
plot analysis. Analysis was performed on all samples un-
til 10,000 target events had occurred. Data was analyzed 
using Kaluza 2.0 software (Beckman Coulter).

STATISTICS

Statistical analysis of qPCR data was conducted using 
GraphPad Prism (GraphPad Software) and R software 
(version 2.12.0; R software Foundation for Statistical 
Computing, Vienna, Austria). Data graphed with error 

bars represent standard error of the mean. The non-
parametric Mann-Whitney test was used to determine 
the significant difference if P<0.05. For all quantitative 
analyses presented, a minimum of three independent 
replicates were performed in terms of the individual ex-
periment.

Results

VICs from the patients with aortic valve calcification 
demonstrated the ability to readily differentiate into os-
teogenic lineage, while VICs from healthy aortic valves 
were not prone to osteogenic differentiation into an 
osteogenic-like state (Kostina et al., 2018). We hypoth-
esized that this might also be a property of other stem 
cells of the patients. To test this, we isolated MSCs from 
adipose tissue of the patients with severe aortic valve 
calcification. VICs were isolated from the valves of the 
same patients. As control we used adipose tissue-derived 
MSCs and VICs derived from healthy donors.

We first immunophenotyped MSCs and VICs from 
the patients and healthy donors with conventional MSC 
markers (Zuk et al., 2001; Dmitrieva et al., 2015). We did 
not observe significant differences either between the 
two types of cells or between the patients and healthy 
donors (Fig. 1).

Next we compared pairs MSC–VIC obtained from 
the same patients for their ability to acquire an osteogen-
ic-like phenotype; we then compared them to MSCs and 
VICs of healthy donors, correspondingly (Fig. 2). The 
MSCs from the patients completely lacked the ability to 
osteogenically differentiate, while control MSCs demon-
strated positive Alizarin Red staining. At the same time, 
VICs from calcified aortic valves showed significantly 
stronger osteogenic differentiation in comparison to the 
VICs from healthy donors by alizarin red staining.

Then we compared expression of RUNX2, a basic 
osteogenic marker, before and after 21 day of induction 
of osteogenic differentiation (Fig. 3). We observed sig-
nificant elevation of RUNX2 after the induction of dif-
ferentiation only in the MSCs of healthy donors and in 
the VICs.

Thus, the plasticity and sensitivity to osteogenic 
stimulation was attributed exclusively to the VICs of the 
patients with aortic valve calcification, but not to their 
MSCs.

Discussion

In this study we estimated the osteogenic potential of 
adipose tissue-derived mesenchymal stem cells (MSCs) 
in people with calcification of the aortic valve versus 
MSCs from healthy people. We show that, in spite of the 
strong ability of aortic valve interstitial cells (VICs) from 
the patients with severe aortic valve calcification to un-
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Fig. 1. Phenotype of adipose mesenchymal stem cells (MSCs) and aortic valve interstitial cells (VICs) derived from healthy donors (C) and from 
the patients with aortic valve calcification (CAVD). Red histograms represent isotype controls; green histograms represent corresponding stain-
ings.

Fig. 2. Comparison of sensitivity to osteogenic stimuli between nor-
mal valve interstitial cells (C VIC), VICs from calcified aortic valves (VIC 
CAVD), normal MSCs (C MSC) and MSCs from patients with calcifica-
tion of aortic valve (MSC CAVD) by Alizarin Red staining. The cells were 
cultured in osteogenic medium for 21 days and then stained with Aliz-
arin Red. The upper dot plot represents estimation of differentiation 
by counting positive areas using specific software. The groups were 
compared using the Mann-Whitney non-parametric test; the line rep-
resents the median. The lower panel represents a typical picture of 
osteogenic differentiation after Alizarin Red staining, with the stron-
gest positive staining for the VICs of the patients.

Fig. 3. Comparison of sensitivity to osteogenic stimuli between nor-
mal valve interstitial cells (C VIC), VICs from calcified aortic valves (VIC 
CAVD), normal MSCs (C MSC) and MSCs from patients with calcifica-
tion of the aortic valve (MSC CAVD) by expression of osteogenic mark-
er RUNX2. The cells were cultured in osteogenic medium for 21 days 
and RUNX2 expression level was estimated by qPCR: “nondif” — be-
fore the induction of differentiation, “dif” 21  day after induction of 
differentiation. The groups were compared using the Mann-Whitney 
non-parametric test; the line represents the median. Asterisks indi-
cate the significant differences (p<0.05) of RUNX2 mRNA content be-
tween undifferentiated and differentiated cells for a given group.
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dergo osteogenic differentiation, the MSCs of the same 
patients lack the capacity of osteogenic differentiation. 
At the same time, VICs of aortic valves from healthy do-
nors had significantly less ability to osteogenically trans-
form compared to the VICs of the patients. MSCs from 
healthy donors were able to osteogenically differentiate. 

The difference between VICs from healthy and cal-
cified valves in their differentiation capacity was recently 
shown by our group (Kostina et al., 2018) and reflects the 
diseased state of the valve. Surprisingly, the osteogenic 
potential of adipose MSC did not correlate with the calci-
fication of the aortic valve. It has been previously reported 
that the osteogenic potential of MSC drops significantly 
with age and with cardiovascular pathology as well (Dmi-
trieva et al., 2015). In this study, the group of patients with 
CAVD was indeed older then the control groups for both 
VICs and MSCs. To our knowledge there have been no 
studies considering different cells from the same CAVD 
patients and analyzing their osteogenic potential.

The “circulating stem cell theory” proposed that 
vessel calcification and in particular valve calcifica-
tion might be mediated by circulating MSCs of various 
origin (Kuznetsov et al., 2001; Pal and Golledge, 2010; 
Boström, Rajamannan, and Towler, 2011; Gössl et al., 
2012; Nomura et al., 2013; Furukawa, 2014; Boström, 
2016). Our data suggest that at least adipose MSCs could 
hardly be such mediators as they completely lack the 
ability of osteogenic differentiation in CAVD patients.

VICs are considered to have some characteristics 
of stemness and plasticity as they could differentiate 
into chondrogenic, osteogenic and myogenic lineages 
(Rutkovskiy et al., 2017). This plasticity most likely is at-
tributed to the embryological origin of these cells and 
reflects the tissue specificity of the aortic valve. The sig-
nals that contribute to the osteogenic transformation of 
the valve cells obviously do not initiate calcification in 
adipose MSCs of the patients with aortic valve calcifica-
tion. This issue of tissue specificity should be taken into 
account when modeling a disease with stem cells of mes-
enchymal origin. 
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