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Abstract

Plants are continuously exposed to various biotic and abiotic factors that may 
trigger cascade reactions aimed at maintaining homeostasis. One of the most 
important components of plant protection from biotic factors is the synthe-
sis of antimicrobial peptides (AMPs). AMPs are a large group of peptides pres-
ent in insects, animals and plants. Plant innate immunity is provided by AMPs 
from different families that are categorized according to sequence similarity, 
the number and order of amino acid residues, and the tertiary structure of the 
mature peptide. AMPs may also participate in plant response to abiotic stress-
es such as high salinity, drought, high or low temperature, and heavy metals. 
In nitrogen-fixing nodules of some members of the Fabaceae family, AMP-like 
molecules named NCR peptides promote the differentiation of the symbiotic 
bacteria into bacteroids. Thus, AMPs are used by plants for fine tuning their 
responses to biotic and abiotic factors alike. 
Keywords: plants, antimicrobial peptides, abiotic factors, biotic factors, sym-
biosis, stress.

Introduction

Plants, as sessile organisms, have evolved an extensive arsenal of diverse and co-
ordinated systems of defense against, and resistance to, adverse environmental 
conditions. Environmental factors are usually split into two categories: abiotic 
(e.g., salinity, heavy metal contamination, freezing or heat-shock temperatures, 
drought) and biotic (other organisms, e.g., bacteria, fungi, insects, etc.). Plant re-
sponses to biotic and abiotic stress are variable and depend on the type of stress 
factor; moreover, a particular factor, e.g., non-optimal temperature, may invoke 
different responses. In turn, a response to different types of stress may have com-
mon elements, such as expression of particular genes and/or production of sec-
ondary messengers (Zhang and Sonnewald, 2017).

In general, plant response to either biotic or abiotic stress begins with the 
recognition of a stressor by specific receptors (Fig. 1). Then, the signal transduc-
tion cascades are activated, leading to substantial transcriptional changes that re-
sult in biosynthesis of stress-related proteins and/or secondary metabolites that 
protect plant cells and participate in subsequent reparation of the damage caused 
by stress. The most common and numerous group of stress-related proteins, char-
acteristic mainly for biotic stress response, are antimicrobial peptides (AMPs).

Under abiotic stress, at the first stage, a stressor is recognized by specific cel-
lular receptors. For example, in the case of drought, salinity and cold, activation of 
receptors — such as G-protein-coupled receptors (GPCRs), receptor-like protein 
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Fig. 1. A general scheme of plant cell responses to biotic and abiotic stress (adapted from Rejeb et al., 2014, with modifications).
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Table 1. Functions of the main families of cysteine-rich AMPs in biotic stress

Group 
of AMP

Amino acid 
composition Activity Mechanism of action Targets

Thionins Cationic peptides, 45–
48 aa in length; 6 or 
8 cysteine residues in 
conservative positions 
form 3 or 4 disulfide 
bonds.

Active against a broad spectrum 
of microorganisms, also insects 
(De Caleya et al., 1972; Kramer 
et al., 1979; Carrasco et al., 1981; 
Bohlmann et al., 1988) 

Interaction with electronega-
tive cell membranes, which may 
lead either to a leakage of water 
through the lipid bilayer or to the 
instability of the membrane (Stec 
et al., 2004; Stec, 2006; Oard, 
2011)

Phospholipase A2 (Vernon 
and Bell, 1992)
adenylate cyclase (Huang 
et al., 2008),
protein kinase C, calmodu-
lin, ribinucleotide reduc-
tase, β-glucoronidase
DNA and RNA (Diaz et 
al., 1992), DNA and RNA 
(Woynarowski and Kono-
pa, 1980; Li et al., 2002) 

Defen-
sins

Stable peptides, 45–
54 aa in length; con-
tain 8 or 10 conserved 
cysteine residues.

Antifungal activity, some show 
antibacterial activity (Terras et 
al., 1995; Fujimura et al., 2003; 
Stotz et al., 2009);
in experiments some defensins 
exhibit inhibitory activity against 
α-amylase, protease, HIV1 re-
verse transcriptase, as well as 
anti-cancer activity (Carvalho and 
Gomes, 2009, 2011).

Interaction with the target on the 
fungal membrane, which can be 
located on the cell wall and plas-
ma membrane (Sagaram et al., 
2011; De Coninck et al., 2013);
activation of the ROS response 
and apoptosis (Aerts et al., 2007, 
2011; Weerden et al., 2008), ef-
fects on the cell cycle (Lobo et 
al., 2007).

Glucosylceramides 
(GlcCer),
sphingolipids (M(IP)2C) 
(Sagaram et al., 2011; De 
Coninck et al., 2013)

Hevein-
like pep-
tides

Basic peptides of 
29–45 aa in length; 
contain 6, 8 or 10 con-
servative cysteines. 
Conserved glycines 
and aromatic amino 
acids in the hevein 
domain. 
Chitin-binding domain 
(SXFGY/SXYGY, where 
X is any amino acid 
residue). 

Antifungal activity, some show 
activity against chitin-containing 
and non-chitin-containing fungi 
alike (Koo et al., 1998).

Interaction with the fungal cel-
lular chitin that leads to the 
destruction of the fungal mem-
brane and leakage of cytoplasm 
content. (Koo et al., 1998, 2004).

The fungal cellular chitin 
(Van den Bergh et al., 
2004; Slavokhotova et al., 
2017).

Knot-
tins/cy-
clotides

Very short peptides, 
about 30 aa in length; 
with 6 cysteines at the 
C-terminus. Can be 
present in two forms: 
linear (cystine-knot 
peptides or knottins) 
and cyclic (cyclotide).

Active against fungi and bacteria, 
but in experiments also show 
anti-HIV, α-amylase, carboxy-
peptidase A or trypsin inhibitory 
activity (Polanowski et al., 1980; 
Gustafson et al., 1994; Van den 
Bergh et al., 2004; Ireland et al., 
2008; Campos et al., 2018).

Interaction with target cell mem-
branes. 
Cyclotides can aggregate in mul-
timeric structures for pore for-
mation, changes in ion flow and 
cell death (Ireland et al., 2008; 
Strömstedt et al., 2010). 

Lipid membranes (Svan-
gård et al., 2007; Burman 
et al., 2011). 

Hairpin-
ins

Peptides with 4 cys-
teine residues, with 
unique tertiary struc-
ture;
are enriched in Lys 
and Arg.

Antifungal and antibacterial ac-
tivity (Nolde et al., 2011; Sousa et 
al., 2016). )

Not well studied. Hairpinins ac-
cumulating inside the cell with-
out changes in membrane integ-
rity of spore or fungal hyphae;
may bind to a target on the cell 
wall or on the membrane of the 
fungus, after which it penetrates 
into the cells and accumulates 
in the vesicles and interacts with 
intracellular targets (Nolde et al., 
2011; Vasilchenko et al., 2016). 

No known targets on the 
cell wall or on the mem-
brane of the fungus,
may interact with intracel-
lular targets, such as DNA 
(Sousa et al., 2016). 

Lipid 
transfer 
proteins

70–90 aa in length; 
contain 8 conservative 
cysteines.

Active against fungi and some 
bacteria (Molina et al., 1993). 

Insertion into the microbial 
membrane.
Such integration leads to efflux 
of intracellular ions and, as a 
result, cell death (Selitrennikoff, 
2001). 

Fatty acids (C10–C14), 
phospholipids, prostaglan-
din B2, lyso-derivatives, 
and acyl-coenzyme A (Tam 
et al., 2015). 
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kinases (RLKs), histidine kinases and ion channels  — 
occurs, which leads to a change in the concentration of 
intracellular Ca2+ (Kacperska, 2004; Ward et al., 2009; 
Nongpiur et al., 2012; Ye et al., 2017). 

In addition, various secondary messengers, namely 
phytohormones (abscisic acid (ABA), gibberellic acid, 
jasmonic acid, etc.), reactive oxygen species (ROS), ino-
sitol phosphates, etc., are produced (Verma et al., 2013; 
Khan et al., 2018). 

Secondary messengers activate phosphoryla-
tion/dephosphorylation cascades that include CDPKs, 
CIPKs, MAP kinases, protein kinases and protein phos-
phatases, etc. (Khan et al., 2018). As a result of the sig-
nal transduction, a number of transcription factors are 
activated (Asai et al., 2002; Molina et al., 2008). Some of 
them are specific to a certain stress factor — for exam-
ple, the transcription factors DREB2A and DREB2B are 
induced during drought and salinity, and OsCDPK13 is 
only activated by cold (Abbasi et al., 2004; Nakashima 
et al., 2000) — while others are nonspecifically activated 
in response to various abiotic factors. The activated TFs 
then start/suppress transcription of genes whose prod-
ucts regulate the stress response, thus repairing the dam-
age caused by stress and increasing further resistance to 
a particular stress factor.

Plant response to biotic factors also begins with the 
recognition of a stressor. In the case of pathogenic mi-
croorganisms attacking a plant, the pathogen-associated 
molecular patterns (PAMPs) are recognized by plant 
membrane receptors, thereby triggering an immune re-
sponse in cells to prevent the infection from spreading 
(Bigeard et al., 2015; “Pathogen Associated Molecular 

Pattern  — an overview | ScienceDirect Topics”, n.d.). 
However, some pathogens are able to suppress this re-
sponse with special molecules, so-called effectors, and 
penetrate into the plant cell. During evolution, plants 
adapted to the existence of effectors by recognizing these 
molecules with intracellular receptors (Thomma et al., 
2011). After pathogen recognition, the plant activates 
the conserved MAPK cascade (e.g., MEKK1-MKK4/
MKK5-MPK3/MPK6  in Arabidopsis), which induces 
the activation of several specific TFs (AP2/ERF, WRKY, 
MYB, bZIP). The plant also activates diverse cross-
communicating signaling pathways in which salicylic 
acid (SA), jasmonic acid (JA), and ethylene (ET) play 
key roles (De Vos et al., 2005). All these signal trans-
duction pathways lead to the activation of biosynthesis 
of antimicrobial molecules such as secondary metabo-
lites (phytoanticipins and phytoalexins), pathogenesis-
related proteins (Karpun et al., 2015; Miller et al., 2017; 
“Pathogenesis-Related Protein  — an overview | Scien-
ceDirect Topics”, n.d.) and small antimicrobial peptides 
(AMPs) (Piasecka et al., 2015; Onaga and Wydra, 2016;). 
Finally, ROS can also be accumulated in infected plant 
cells, causing the death of these cells in the affected area 
to prevent the spread of infection (Karpun et al., 2015). 

Plant AMPs are small and very diverse peptides 
containing from 7 to 100 amino acids. They are divided 
into several main families (thionins, defensins, hevein-
like peptides, etc.) that contain conserved cysteine resi-
dues (Tab. 1). However, minor groups of AMPs were 
also found in plants, namely Gly-rich peptide (GRP), 
Gly-and-His-rich peptide shepherins, and a number of 
unclassified peptides with antimicrobial activity (Tam et 

Group 
of AMP

Amino acid 
composition Activity Mechanism of action Targets

Snakins Peptides with the larg-
est number of cyste-
ines of all the AMPs. All 
12 cysteines are locat-
ed on the C-terminus 
of the mature peptide.

Active against fungi, gram-posi-
tive and gram-negative bacteria 
(Segura et al., 1993; Berrocal-
Lobo et al., 2002; Daneshmand 
et al., 2013). 

Formation of pores in the mem-
branes of target cells. 
Due to their cationic charge, sna-
kins can penetrate through the 
negatively charged cell walls of 
bacteria or fungi, forming pores 
(Herbel et al., 2015; Herbel and 
Wink, 2016). 

Membrane of target cells 
(Herbel et al., 2015; Herbel 
and Wink, 2016).

NCR 
peptides

30–60 aa in length, 
have 4 or 6 cysteine 
residues in conserva-
tive positions.

In vivo — terminal differentiation 
of compatible rhizobial strain 
(change in morphology (size, 
shape, branching of bacteria), 
physiology (abolishment of 
division, inducing of nitrogen 
fixation), and genetics (poly-
ploidization of genetic material)) 
and elimination of incompatible 
strains.
In experimental conditions — an-
tibacterial and antifungal activity.

Temporary or constitutive pore 
formation in the cell membrane 
(Nagy et al., 2015). After that, 
some NCR peptides can pen-
etrate into the cells of a bacteria 
or fungus and interact with in-
tracellular targets (Farkas et al., 
2014). 

NCR247 is capable of 
interacting with FtsZ, ribo-
somal proteins, 
GroEL, pyruvate dehydro-
genase complex, transal-
dolase, DNA-directed RNA 
polymerase subunits β 
and β′, elongation factor 
Tu and G, and a Maf-like 
protein (Farkas et al., 
2014).
In bacteroids, NCR247 also 
binds subunits of the 
nitrogenase complex (Far-
kas et al., 2014).

End of Table 1
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al., 2015). AMPs constitute an integral part of plant im-
munity and play an important role in maintaining the 
homeostasis of plant cells. In addition, some of them 
are components of the plant response to abiotic envi-
ronmental factors. In this review, the current knowledge 
on the role of plant AMPs in plant responses to biotic 
and abiotic stress is summarized, with the intention to 
highlight the unique features of these antimicrobial mol-
ecules, including NCR (nodule-specific cysteine-rich) 
peptides that play a key role in legume–rhizobial sym-
biosis.

The structure of AMPs and its role in 
response to biotic stress

Plant AMPs are synthesized in the form of a precursor 
containing a signal sequence, which is cleaved upon 
maturation in the endoplasmic reticulum. After that, 
AMPs are transported to various cell compartments. 
Most AMPs are secreted into the extracellular space 
(apoplast), but for a number of AMPs, localization in 

the cell wall, plasma membrane, vacuole, cytoplasm and 
nucleus has been shown (Segura et al., 1993; Lay et al., 
2003; Oomen et al., 2011; García et al., 2012; Nahirñak 
et al., 2012; Slazak et al., 2016). 

There are several approaches to classification of 
AMPs. Some authors classify these peptides into families 
according to their similarity in primary, secondary and 
tertiary amino acid sequence. Furthermore, AMPs can 
be categorized based on the amino acid motifs. The larg-
est group of AMPs — cysteine-rich peptides — includes 
the main families of AMPs: thionins, defensins, knotins, 
hevein-like proteins, etc. Other groups include peptides 
that are enriched with other amino acids, for example, 
Gly-rich peptides (GRP) and Gly-and His-rich peptide 
shepherins (Tam et al., 2015). Enrichment in specific 
amino acids determines the function of AMPs and their 
biological role, mainly in defense against pathogens. 
Information about the function of the main families of 
plant AMPs is summarized in Table 1. 

Despite the fact that the main function of AMPs is 
protection against pathogens, some peptides are charac-

Table 2. Participation of cysteine-rich AMPs in abiotic stress response

AMP family AMP gene name Plant species Type of stress

Defensins TAD1 Triticum aestivum Low-temperature stress ( Koike et al., 2002; Gaudet 
et al., 2003). 

Gmdefensin Glycine max Drought stress (Stolf-Moreira et al., 2010).

CADEF1 Capsicum annuum L. Pathogen infection, wounding, high salinity and 
drought stresses (Do et al., 2004).

Ca-AFP Cicer arietinum in Arabidopsis thaliana Water-deficit stress (Kumar et al., 2019).

AhPDF1.1 Arabidopsis halleri Heavy metal stress (zinc) (Mirouze et al., 2006; Mith 
et al., 2015). 

CAL1 Oryza sativa Heavy metal stress (cadmium) (Luo et al., 2018).

AtPDF2.6 A. thaliana Heavy metal stress (cadmium) (Luo et al., 2019). 

Snakins/GASA proteins GASA4 A. thaliana and Zea mays Heat stress (Ko et al., 2007; Maruyama et al., 2014). 

FsGASA4 Fagus sylvatica in A. thaliana Salt, oxidative and heat stress (Alonso-Ramirez et 
al., 2009). 

GASA14 A. thaliana Abscisic acid and salt stress. Reduce ROS 
accumulation (Sun et al., 2013). 

Snakin -1 Solanum tuberosum Pathogen infection (Nahirñak et al., 2019). 

Hevein-like peptides WAMP-1a/b Triticum kiharae Fungal and salinity stress (Andreev et al., 2012).

Gamma-thionin Panax ginseng Stresses related with abscisic acid, for example 
water stress (Lee et al., 2011).

Lipid transfer proteins TaLt T. aestivum Cold stress (Gaudet et al., 2003).

LPT3 A. thaliana and Z. mays Drought, salt and low-temperature stress (Guo et 
al., 2013; Zou et al., 2013).

nsLTP1 S. tuberosum in transgenic plants Heat, drought and salt stresses (Gangadhar et al., 
2016). 
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terized by non-trivial functions, such as participation in 
response to abiotic factors and regulation of mutualistic 
(i.e., non-pathogenic) interactions between plants and 
microorganisms.

Participation of AMPs in abiotic stress 
mitigation

For most AMPs, participation in the response to abiotic 
stress is not a major, but an additional function. How-
ever, for some groups of AMPs, especially for defensins, 
such additional functions have been clearly demonstrat-
ed. Studies of various members of the defensin family 
have shown that they are involved in the response to 
stress associated with salt, drought, heavy metals and 
temperature (Tab. 2).

Indeed, salinity stress leads to increased expres-
sion of many protective genes, including defensins (Taji 
et al., 2004; Nishiyama et al., 2012; Sui et al., 2016), yet 
the specific role of these peptides in salinity stress is not 
known. Some defensins were shown to be induced un-
der low-temperature stress in winter wheat (Koike et al., 
2002; Gaudet et al., 2003) and under drought stress in 
soybeans (Stolf-Moreira et al., 2010). Expression of the 
defensin gene CADEF1 in Capsicum annuum plants was 
found to be induced not only by pathogen infection, but 
also by wounding, high salinity, drought stress, as well as 
by excessive treatment with exogenous plant hormones 
(Do et al., 2004). Also, recent studies have shown some 
defensins to be associated with resistance to heavy met-
als, namely zinc and cadmium (Mirouze et al., 2006; Luo 
et al., 2018, 2019).

The expression of AMP genes in transgenic plants 
may increase stress tolerance. For example, overex-
pression of the defensin gene AtPDF2.6  in Arabidopsis 
thaliana enhanced resistance to cadmium of transgenic 
plants (Luo et al., 2019). Similarly, the transgene expres-
sion of the Cicer arietinum defensin gene Ca-AFP in 
Arabidopsis led to increased drought tolerance via the 
regulation of superoxide dismutase, ascorbate peroxi-
dase, catalase and proline content (Kumar et al., 2019). 

Interestingly, the opposite reaction was observed 
in experiments with GASA 5: the overexpression of 
GASA5  increased the sensitivity of A. thaliana plants to 
heat stress, together with decreased expression of some 
genes encoding heat-shock proteins and elevated accu-
mulation of hydrogen peroxide (Zhang and Wang, 2011). 

In general, AMPs may act both as positive and 
negative regulators to abiotic stress responses associated 
with ROS, hormone and heat shock protein synthesis. 
However, the causal relationship between the presence 
of AMPs and abiotic stress reactions is not clear and may 
be indirect. AMPs acting as chelating molecules dem-
onstrate a simple case of heavy metal stress mitigation, 
but transgene expression experiments point towards the 

presence of regulatory feedbacks in plant cells that link 
the hormone level, transcription/translation processes 
and biosynthesis of secondary metabolites and other ac-
tive compounds. Undoubtedly, the induction of AMPs 
under abiotic stress conditions may indeed play an im-
portant role, but the details of their action are possibly 
different in different species, and for particular AMPs. 

AMPs in mutualistic plant–microbe 
symbiosis

Since AMPs have evolved as a component of plant–mi-
crobe interactions, it is not surprising that several groups 
of AMPs participate in mutualistic symbiotic relation-
ships of plants with bacteria or fungi. It is possible that 
several antifungal defensins and defensin-like peptides 
may participate in arbuscular mycorrhiza (AM) symbio-
sis, since their expression has been detected in mycor-
rhized roots (Liu et al., 2007); however, their direct effect 
on mycorrhization is questionable (Turrini et al., 2004). 
The role of AMPs is significantly more pronounced in 
legume–rhizobial and actinorhizal nitrogen-fixing sym-
bioses, in which new organs (root nodules) are formed.

AMPs in legume–rhizobial symbiosis

During establishment of legume–rhizobial symbiosis, 
the plant forms root nodules, the specific organs where 
bacteria are hosted inside the plant cells (Oldroyd, 2013). 
It is important for the plant to discriminate the mutu-
alistic bacteria from neutral (not useful for plant) or 
harmful (pathogenic) ones (Zipfel and Oldroyd, 2017). 
Observably, members of several classes of AMPs may 
participate in this discrimination. Indeed, it was shown 
that the expression of genes encoding defensins, defen-
sin-like peptides, and glycine-rich peptides (GRPs) is 
increased in nodule tissue of Medicago truncatula, the 
model object for studying legume–rhizobial symbiosis 
(Hanks et al., 2005; Mergaert et al., 2006; Guefrachi et 
al., 2014; Maróti et al., 2015; Kereszt et al., 2018). How-
ever, the percentage of defensin genes that are expressed 
in the root nodules is low: of about 63 defensin genes en-
coded in the M. truncatula genome only 8 are expressed 
during symbiosis.

About 15 years ago, a new protein family — Nodule-
Specific Cysteine-Rich Peptides (NCRs) — was discov-
ered (Mergaert et al., 2003; Alunni et al., 2007; Maróti 
and Kondorosi, 2014). This family was first described in 
M. truncatula; later they were identified in other IRLC 
legumes (Inverted Repeat-lacking clade) (Mergaert et 
al., 2006; Alunni et al., 2007). To date, the NCR gene 
family contains about 700 members in the M. truncatula 
genome and more than 600 members in Pisum sativum 
(Zorin et al., 2019). NCR peptides resemble defensins 
(so the NCR genes are considered to have arisen from 

https://www.zotero.org/google-docs/?8uveVw
https://www.zotero.org/google-docs/?EcSr8h
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the ancestral defensin genes (Maróti et al., 2015), but 
they are shorter than defensins (30–60  amino acids) 
and have 4 or 6 cysteine residues in conservative posi-
tions (instead of 8 or 10 cysteines present in defensins) 
(Tab. 1). The expression of NCR genes is extremely spe-
cific to nodules (Guefrachi et al., 2014), implying that 
they have a specific role in legume–rhizobial symbiosis. 
Indeed, recently it has been demonstrated that NCR 
peptides in M. truncatula govern the terminal (i.e., irre-
versible) differentiation of nodule bacteria into a symbi-
otic form called bacteroids (Van de Velde et al., 2010). 
Bacteroids are 10 times larger than free-living rhizobial 
cells, contain up to 24C genome copies of DNA, have 
permeabilized cell membranes, and possess an ability to 
fix atmospheric nitrogen (Mergaert et al., 2006; Van de 
Velde et al., 2010; Farkas et al., 2014; Alunni and Gou-
rion, 2016).

Interestingly, NCR peptides can kill bacteria that 
are not compatible with the plant, thus demonstrating 
antimicrobial activity (in fact, the irreversible differen-
tiation of bacteroids may also be viewed as the result of 
antimicrobial activity, since bacteroids lose the ability 
to procreate). On the other hand, mutations in specific 
NCR genes also lead to preliminary elimination of bac-
teria in nodule cells, so another role of NCRs may be 
maintenance of bacteria inside the nodule cells (Wang et 
al., 2017, 2018; Yang et al., 2017). 

In experiments, NCR peptides also showed variable 
antimicrobial activities against bacteria and fungi (Van 
de Velde et al., 2010; Ördögh et al., 2014; Nagy et al., 
2015; Farkas et al., 2017, 2018); thus, they can be con-
sidered potential antibiotics. When considering NCR 
peptides as components of antibiotic preparations it is 
important to remember that the defining feature of NCR 
peptides is not to cause lysis of bacterial cells, but to start 
the change in their morphology, physiology and genet-
ics, and their antibiotic activity is inconsistent (Farkas et 
al., 2018).

The family of NCR-like peptides was discovered in 
other legume plants, Aeschynomene spp. (about 80 mem-
bers in A. evenia) and C. arietinum (15 members) (Cz-
ernic et al., 2015; Montiel et al., 2015). The nodules of 
Aeschynomene species contain polyploid and elongated 
bacteroids, but less differentiated in comparison to that 
of M. truncatula (Czernic et al., 2015). Apparently, NCR-
like peptides of Aeschynomene may perform the same 
function as in Medicago, but their number is an order 
of magnitude lower than in M. truncatula. They are re-
ferred to as NCR-like genes on the basis of low similarity 
of nucleotide and amino acid sequences with the NCR 
peptides of the IRLC legumes.

Besides NCR peptides, other AMPs may have an 
impact on establishment of legume–rhizobial symbiosis. 
It was demonstrated that during penetration of Sino-
rhizobium meliloti into M. truncatula roots, the expres-

sion level of the lipid transfer protein MtN5 is increased 
in plant roots. It is assumed that MtN5  modulates the 
perception or molecular activity of rhizobial signal mol-
ecules (Pii et al., 2009, p. 200, 2012). In symbiosis of As-
tragalus sinicus (Chinese milk vetch) with Mesorhizobi-
um huakuii 7653R, a lipid transfer protein AsE246 is ap-
parently involved in the transport of lipids synthesized 
by the plant to the symbiotic compartments (Lei et al., 
2014). 

AMPs in actinorhizal symbiosis

Actinorhizal symbiosis is formed between actinobacte-
ria Frankia sp. and dicotyledon trees (Boonkerd, 1998; 
Pawlowski and Sirrenberg, 2003). The best-known ex-
ample of this symbiosis is the association of Frankia 
with Alnus sp. that results in the formation of nodules 
containing actinobacteria on the tree roots. During the 
screening of Expressed Sequence Tags (ESTs) from the 
nodule database of A. glutinosa, 15  defensin-like tran-
scripts have been identified as nodule-specific. One of 
them, Ag5, encodes a peptide that is similar in structure 
to the A3 class of defensins, and is able to interact with 
the Frankia cell membrane in a way similar to defensins. 
In experiments, addition of the peptide led to permea-
bilization of the bacterial membrane and slowing down 
of cell respiration, while the level of nitrogen fixation 
remained stable and even increased. It was also shown 
that the content of several amino acids increased in the 
supernatant of Ag5-treated cells, which may indicate the 
participation of this peptide in the metabolite exchange 
between partners (Carro et al., 2015). In another plant 
able to participate in actinorhizal symbiosis, Datisca 
glomerata, two transcripts highly expressed in nodules, 
DgDEF1 and DgDEF2, also similar to class 3 defensins, 
were identified. Interestingly, the two peptides were clas-
sified as a separate subfamily based on a unique amino 
acid pattern at their C-terminal region. This fact indi-
cates that these peptides might play a role specific to ac-
tinorhizal symbioses. (Demina et al., 2013). 

Evolution of AMPs

Despite the discovery of more than a thousand sequenc-
es encoding AMPs in plants, their origin and evolution 
remain unclear. Defensin-like proteins with similar se-
quences, structures, and functions were found in the 
plant, fungal and animal kingdoms, indicating their 
ancient origin (Hughes, 1999; Aerts et al., 2008); thus, 
the emergence of antimicrobial molecules in eukaryotes 
can be roughly dated to one billion years ago (Mygind et 
al., 2005; Zhu, 2008). One theory postulates that the de-
fensin-like AMPs found in myxobacteria Anaeromyxo-
bacter dehalogenans and Stigmatella aurantiaca might 
have served as the progenitors to all the AMPs found in 
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eukaryotes (Zhu, 2007). There is also a hypothesis about 
the independent origin of (some groups of) plant AMPs, 
which probably occurred before the plants assumed a 
terrestrial lifestyle.

It is assumed that the ancestral defense genes in 
plants were subjected to alternating multiple duplication 
events (resulting from unequal crossing over and/or ret-
roposition) and directional (positive) selection (Hughes, 
2008; Magadum et al., 2013). This evolution pattern may 
be possible due to special features of these genes (for 
example, high tolerance to changes in the copy number 
in the genome, functional redundancy (multiple genes 
serve a similar function) or location of the genes in be-
tween similar transposons). Thus, the gene sequence du-
plications, the mutual exchange of gene regions (mainly 
cysteine-containing), and the subsequent positive selec-
tion led to the emergence of new specialized families of 
AMPs in plants (Tiffin and Moeller, 2006). Some evolved 
AMP families are taxon-specific, such as the NCR pep-
tides of legumes belonging to inverted-repeat lacking 
clade (IRLC), which points towards their recent appear-
ance and quick evolution (Mergaert et al., 2003; Montiel 
et al., 2015). The rapid evolution rate of plant AMPs is 
also evidenced by the low sequence similarity percent-
age of mature peptides, which is consistent with their 
main function — being the best weapon in the arms race 
with rapidly evolving microorganisms.

Conclusion

Biotic and abiotic stresses are the major factors that af-
fect crop yields. In light of this, AMPs are an important 
object for study, because they participate in the fine-
tuning of plant responses to biotic and abiotic factors. 
AMPs not only provide defense against pathogens, but 
are also involved in plant response to abiotic factors. 
The activation of AMPs under any type of stress may 
serve to enhance its primary function, i.e., protection 
against pathogens: since abiotic stress increases the risk 
of pathogen attack, preventive activation of the immune 
system can increase plant resistance. On the other hand, 
a number of AMPs have more specific effects, such as 
providing resistance to heavy metals due to their ability 
to chelate metal ions, or regulating the development of 
symbiosis, especially the formation of symbiotic nodules 
in the case of legume–rhizobial and actinorhizal symbi-
oses. Hence, further study of the molecular mechanisms 
of the participation of AMPs in biotic and abiotic inter-
actions is important for achieving the goal of developing 
crops tolerant to multiple stresses.
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