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Abstract

The tonoplast is an intracellular membrane, important for numerous functions 
of the vacuoles in plant cells. Transport, signaling, enzymatic activity and other 
processes of the tonoplast are the focus of a wide spectrum of studies. Multiple 
advanced analyses demand highly purified vacuoles or vesicles of the tonoplast 
membrane fraction. Since 1960 several approaches have been developed for 
such purification, but new goals and new model objects require adjustment of 
already existing techniques. The presented investigation aimed to compare two 
methods of tonoplast membrane fraction purification from tobacco suspen-
sion cell culture BY-2 (Nicotiana tabacum L., cv Bright Yellow) based on sucrose 
and sucrose/sorbitol gradients. The functional activity of obtained purified to-
noplast fractions was measured by the hydrolytic activity of vacuolar H+-ATPase 
and H+-PPase.
Keywords: tonoplast, vesicle fraction, purification, V-ATPase, H+-PPase.

Introduction

The tonoplast is an endogenous membrane surrounding the central vacuole which 
fulfills a crucial role in the biochemistry and physiology of a plant cell. It partici-
pates in the generation and maintenance of cell turgor. It is involved in elongation 
growth as well as different processes of autophagy and even cell death (Hatsugai et 
al., 2015; Kruger and Schumacher, 2018). Vacuoles vary significantly in number 
and size due to the cell type and developmental stage (Zhang, Hicks and Raikhel, 
2014). Vacuoles participate in nutrition storage, detoxification, adaptation to salt 
stress and pathogen attack (Martinoia et al., 2007; Trentmann and Haferkamp, 
2013). The origin of the plant cell central vacuole is still debated (Kruger and 
Schumacher, 2018). It might originate from the ER (Endoplasmic reticulum) sub-
domains and/or the trans-Golgi network (Mesquita, 1969; Marty, 1978). Central 
vacuole biogenesis is closely linked to actin-myosin cytoskeleton reorganization 
and is regulated by 1NAA (1-naphthylacetic acid), a synthetic auxin analogue; 
this indicates a possible mechanism involved in the elongation growth, triggered 
by auxin (Scheuring et al., 2016). 

The tonoplast is enriched by different transporters. Special attention is always 
paid to tonoplast proton pumps. H+-ATPase and H+-PPase are known to use the 
energy of macroergic bonds for generation of the proton gradient important for 
secondary active transport of different ions and compounds (Dettmer et al., 2006; 
Schumacher, 2006). The direction of transport is important to provide pH and 
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Ca2+ cytosolic homeostasis and to equalize the osmotic 
potential between the vacuole and cytosol.

Investigation of tonoplast morphology and cross-
interaction between the tonoplast and other intracellu-
lar membranes might be visualized with freeze-etching 
electron microscopy and 3D high-voltage electron mi-
croscopy. Tonoplast biochemical composition alteration 
during development or stress adaptation requires mo
dern systemic approaches like proteomics (Trentmann 
and Haferkamp, 2013). Thus, correct vacuole prepara-
tion and the procedure of tonoplast membrane fraction 
enrichment acquire a special importance. 

One of the first methods to obtain vacuoles by os-
motic lysis from protoplasts was developed in the 1960s 
(Cocking, 1960). It was adjusted for vacuole preparation 
from different plant tissues and plant species (Gregory 
and Cocking, 1966; Wagner and Siegelman, 1975). Re-
cently the method was corrected for gathering vacuoles 
from Arabidopsis leaves (Trentmann and Haferkamp, 
2013). But some observations narrow the application of 
this method. The first one concerns the use of enzymes 
for protoplast isolation. The procedure requires three to 
five hours to digest the cell wall, so it is hardly applicable 
for the investigation of fast cell responses triggered by 
light signals, stress factors, etc. Another approach to ob-
tain a reasonable yield of protoplasts is gentle mechani-
cal disruption of the tissue (Leigh and Branton, 1976; 
Salyaev et al., 1981). Thin slicing is suitable for different 
plant tissues, including very robust ones such as a stor-
age beetroot of Beta vulgaris. Further vacuole purifica-
tion after osmotic lysis of protoplasts is usually provided 
by a gradient of sorbitol, ficoll, KCl, metrizamide, etc. 
The stability and viability of vacuoles depend signifi-
cantly on the gradient nature and pH level. However, 
these substances used for osmotic lysis might cause al-
teration in the tonoplast enzyme activity and even loss 
of peripheral proteins. Hence, the purity of the vacuoles 
and tonoplast fraction obtained is high and can be used 
for further highly specific proteome analysis (Trent-
mann and Haferkamp, 2013).

Nevertheless, for the investigation of functional ac-
tivity of the tonoplast, especially for the analysis of the 
activity of its enzymes and transporters, another method 
of purification was used widely. Tonoplast vesicles from 
homogenized plant tissues are purified by ultracentrifu-
gation in a density gradient. According to a number of 
studies, membrane fractions enriched with tonoplast are 
supposed to be located between 14 % and 26 % sucrose 
layers (Leonard and Vanderwoude, 1976; Tankelyun et 
al, 1986; Briskin, Leonard and Hodges,1987; Larsson, 
Widell and Kjellbom, 1987; Tankelyun, 1998; Shakhova 
and Tankelyun, 2008). This method of purification was 
used to detect activity of different enzymes including 
tonoplast H+-ATPase and proton PP-ase (Mettler and 
Leonard, 1979; Dupont, Bennett and Spanswick, 1982; 

Churchill and Sze, 1983). The sucrose-gradient centrifu-
gation is not ideal to obtain a fraction free of endomem-
brane contamination, and thus it consistently was re-
placed by another approach. The problem was solved by 
the method of purification based on the sorbitol/sucrose 
gradient centrifugation (Maeshima and Yoshida, 1989; 
Maeshima, 2000). 

Taken together, purified tonoplast/vacuole could be 
obtained by a few methods suitable for a wide spectrum 
of model objects represented by different plant organs 
and tissues. But still the method type has to be tested 
for each plant material and might require some adjust-
ments. For example, in cells of suspension culture, be-
cause of the continuous shaking, the mechanical proper-
ties of the cell wall might differ from those of plant cells 
of native tissues; in this case the application of enzymatic 
or slicing methods would be rather questionable. The 
presented investigation is aimed to compare two meth-
ods of tonoplast membrane fraction purification from 
tobacco suspension cell culture based on sucrose and 
sucrose/sorbitol gradients. 

Material and methods

Plant material. Etiolated suspension tobacco cell cul-
ture BY-2 (Nicotiana tabacum L. cv. Bright Yellow) was 
used for tonoplast isolation. Initially this culture was ob-
tained from tobacco leaf mesophyll cells and cultivated 
in modified Murashige-Skoog (MS) salt medium (Mu-
rashige and Skoog, 1962), containing 30 g l−1 (0.09 M) 
sucrose and 0.2mg l−1 2,4-dichlorophenoxyacetic media 
(Kobayashi, Niino and Kobayashi, 2006). BY-2 cells in 
suspension show synchronized development and grow 
relatively slowly (18  days is the full life cycle), which 
makes this line attractive for different type of studies 
(Hasezawa, 1983; Nagata, Nemoto and Hasezawa, 1992; 
Nagata and Kumagai, 1999; Zazimalova, Petrášek and 
Morris 2003; Nagata, Hasezawa and Inze, 2004; Petrášek 
and Zazimalova, 2006). BY-2 suspension was cultivated 
in liquid media on an orbital shaker (110 rpm) at 25 °С 
in the darkness. Cells were transferred to fresh medium 
every 18  days. For tonoplast isolation 14-day-old cells 
were used at the stage of elongation growth (Petrášek 
and Zazimalova, 2006). 

Sucrose-density gradient (SDG) method. This 
method was previously developed for maize coleoptiles 
(Tankelyun, 1998; Shakhova and Tankelyun, 2008). The 
main scheme for tonoplast enrichment is shown in Fig-
ure 1. All steps were conducted at 4 °С. We grinded 30 g 
of cells in a homogenizator Wisd23  HG-15D (5  min, 
10,000 rpm) in 30 mL of SDG-I medium (0.4 М Sucrose, 
50  mM Tris/МES pH 7.8, 5  mM Na2EDTA, 0.03  M 
ascorbic acid, 2.5 mM DTT). We added 20 mL of SDG-
1 medium to the homogenate and performed two-step 
centrifugation: 100 g for 5 min and 4200 g for 10 min 
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(MPW-350R centrifuge). The sediment, containing un-
broken cells, nuclei, mitochondria and plastids, was dis-
carded. The supernatant of accumulated cell membranes 
was centrifuged at 100,000g for 45 min (ultracentrifuge 
Beckman Avanti J-30I). The obtained sediment, consist-
ing of total microsomal fraction (TMF), was resuspend-

ed in medium SDG-II (0.2 М sucrose 5 mM Tris-Mes pH 
7.2, 1 mM Na2EDТА, 1 mM DTT) in a Potter-Elvehjem 
homogenizator. For the gradient, 14 % and 26 % sucrose 
solutions prepared in 1 mM Tris-Mes buffer рН 7.2 were 
gently layered and then 1 mL of resuspended TMF was 
added on the top. After centrifugation (100,000g for 2 h) 

Fig. 1. The scheme of tonoplast isolation via the sucrose density gradient (SDG) method.

Fig. 2. The scheme of tonoplast isolation via the sucrose-sorbitol system (SSS) method.



BIOLOGICAL COMMUNICATIONS, vol. 65, issue 2, April–June, 2020 | https://doi.org/10.21638/spbu03.2020.204	 181

PL
A

N
T 

SC
IE

N
CE

the targeted tonoplast-enriched fraction (TEF) was col-
lected on the border of the sucrose solutions. Next, the 
TEF was resuspended in medium SDG-II and centri-
fuged again at 100,000g for 60 min. The obtained sedi-
ment contained the purified TEF. The purified TEF was 
suspended in medium SDG-II and stored at –80 °С.

Sucrose-sorbitol system (SSS) method. Initially 
the SSS method was developed by Maeshima and Yo-
shida (1989) for mung bean hypocotyl tissues. In this 
investigation it was adjusted for tobacco cell suspen-
sion culture. The scheme of tonoplast-enrichment 
vesicle fraction purification by the sucrose-sorbitol 
method is shown in Figure 2. All steps were carried out 
at 4 °С. Cells (30  g) were grinded with a homogenizer 
Wisd23 HG-15D (5 min, 10,000 rpm) in 30 mL of me-
dium SSS-I (0.25 М Sorbitol, 50 mM Tris/МES pH 7.5, 
1 mM EGTA, 2 mM DTT, 1 % (W/V) PVP, 0.2 % (W/V) 
BSA). The homogenate was centrifuged 10 min at 7000g 
(MPW-350R centrifuge). The sediment was discarded 
and the supernatant was centrifuged at 100,000g for 
45  min (ultracentrifuge Beckman Avanti J-30I). The 
sediment, containing TMF, was collected in medium 
SSS-II (0.5 М sucrose, 20 mM Tris/МES рН 7.5, 1 mM 
EGTA, 2 mM MgCl2, 2 mM DTT) and transferred to a 
Potter-Elvehjem homogenizer. Resuspended TMF was 
applied on the top of sorbitol medium SSS-III (0.25 М 
sorbitol, 20 mM Tris/МES pH 7.5, 1 mM EGTA, 2 mM 
MgCl2, 2 mM DTT). This sucrose-sorbitol system was 
centrifuged at 100,000g for 60 min. The vesicle fraction 
enriched by tonoplast (TEF) was collected at the border 
between sucrose and sorbitol. It was then diluted with 
medium SSS-III and centrifuged at 100,000g for 45 min. 
The sediment was resuspended in SSS-III and frozen at 
–80 °С until further analysis. 

Protein Determination. For a quantitative protein 
assay M. Bradford’s (1976) micromethod was employed. 
This method is based on specific sorption of Coomassie 
brilliant blue G-250 dye by proteins. A protein sample 
was added to a solution of the dye in phosphoric acid 
and ethanol. Extinction was measured at 595 nm on a 
Spekol-1300  spectrophotometer (Analytic Jena). For 
a calibration curve we used the ovalbumin solution in 
150 mM sucrose and 10 mM Tris–MES pH 7.2. 

ATPase and PPase assays. The hydrolytic activity 
of membrane Н+-АТPase or H+-pyrophosphatase was 
measured by the level of inorganic phosphorus (Pi) re-
sulting from enzymatic hydrolysis of ATP or inorganic 
pyrophosphate (PPi), respectively. Hydrolytic activity 
was tested at the appropriate optimal pH: 6.0 for plasma 
membrane ATPase; 7.2  for tonoplast Н+-АТPase and 
Н+-pyrophosphatase (Briskin, 1991).

A hydrolytic reaction was started by adding 25 µL 
of membrane fraction to 125  µl of a reaction mixture 
containing 90  mM Tris-Mes, 15  mM АТP or sodium 
pyrophosphate, 0.25 М КСl, 15 mM МgCl2. Eppendorf 

microtubes with the reaction mixture were incubated 
for 30 min at 37° С in a water thermoshaker. For nonen-
zyme ATP hydrolysis, test reaction mixture without KCl 
and MgCl2 was used. К+ and Мg2+ ions are mandatory 
for membrane H+-ATPase activity. The hydrolytic reac-
tion was stopped by adding 50 µl of 20 % trichloracetic 
acid and cooling in an ice bath. 

Inorganic phosphorus in the reaction mixture was 
determined spectrophotometrically (Lindeman, 1958). 
The method is based on the formation of the phospho-
molybdic acid complex, which becomes colored by a re-
ducer (SnCl2). Staining developed for 30 min and was 
measured at 750 nm on Spekol-1300.

Inhibitor analysis. For the determination of pos-
sible contamination of the tonoplast vesicle fraction 
with plasma membrane, further inhibitors were used: 
Na3VO4 (sodium orthovanadate) — a specific inhibitor 
of H+-ATPase plasmalemma (pH 6.0) — and bafilomy-
cin — an inhibitor of tonoplast H+-ATPase (pH 7.2). 

Statistics. All experiments were done in at least 
three biological and three analytic replicates. Standard 
deviation was calculated using the STDEV function in 
the package STDEV. S (Std Dev, Standard Deviation). 
Statistical significance was calculated using GraphPad 
Prism 7 software. Average values and error of mean are 
shown in the diagrams. Significance of the differences 
was calculated with ANOVA (One-way analysis of vari-
ance). Statistically significant differences (P≤0.05) are 
marked as*; Values of P≤0.01 of statistical significance 
are marked as**.

Results and discussion

The results of modern proteome analysis revealed the 
importance of the vacuole/tonoplast isolation, which 
affects the quality and quantity of identified proteins 
(Trentmann and Haferkamp, 2013). It is no less impor-
tant to obtain a highly purified fraction for the analysis 
of tonoplast activity.

Two methods developed for tonoplast purification 
were compared in this investigation. The first one is 
based on tonoplast vesicle separation from other plant 
cell membranes according to their density. According 
to literature data this parameter varies as follows: tono-
plast, 1.10–1.12 g/cm3, Golgi membranes, 1.12–1.15 g/
cm3, rough endoplasmic reticulum, 1.15–1.17  g/cm3, 
thylakoids, 1.16–1.18  g/cm3, plasma membrane, 1.14–
1.17 g/cm3, and mitochondrial membranes, 1.18–1.20 g/
cm3 (Leonard and Vanderwoude, 1976; Briskin, Leonard 
and Hodges, 1987; Larsson, Widell and Kjellbom, 1987). 

After grinding, tobacco cell homogenate was freed 
of unbroken cells, nuclei, mitochondria and plastids by 
low speed centrifugation (Fig.  1). The collected super-
natant was used to sediment total microsomal fraction. 
The tonoplast was separated from the TMF with the 
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sucrose gradient on the border between 14 % and 26 % 
sucrose solutions. The TEF was concentrated by ultra-
centrifugation and used for further analysis.

Alternatively, tobacco cells were homogenized and 
prepared as shown in Figure 2  until TMF. In this ap-
proach the microsomal fraction was separated via the 
sucrose/sorbitol system. The tonoplast vesicles accumu-
lated on the border between sorbitol and sucrose layers. 
As in the SDG method, the tonoplast fraction was sedi-
mented by ultracentrifugation and used for comparison.

Firstly, both SDG and SSS tonoplast fractions were 
used for a protein assay. As shown in Figure 3 the SSS 
method gave 55 % greater protein accumulation. This 

higher protein yield positively characterized the su-
crose/sorbitol system. 

Further analysis focused on the quality of tono-
plast fractions, i.e., the degree of purification. Fraction 
quality was estimated by inhibitor analysis, based on 
the activity of marker enzymes. The plasma membrane 
usually is the main contaminant of a tonoplast fraction. 
The marker enzyme of the plasma membrane is P-type 
Н+-ATPase with optimum pH 6.0, inhibited by vanadate 
(Na3VO4). Vanadate ions selectively bind in the active 
center with a carboxylic group of aspartic acid residue 
instead of phosphorus (Boldyrev, 1990; Wach, Ahlers 
and Gräber, 1990). Vacuolar V-type H+-ATPase is con-

Fig. 3. The amount of proteins in tonoplast-enriched fractions obtained by SDG and SSS 
methods.

Fig. 4. Effects of pH and inhibitors on ATPase activity of total microsomal fractions obtained as 
parts of SDG and SSS methods.
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sidered a marker enzyme of the tonoplast. The multi-
subunit protein complex has optimum pH of 7.2. The 
selective inhibitor of a V-type tonoplast H+-ATPase is 
bafilomycin (Ohkuma et al., 1993). In case of implica-
tion of both enzymes for fraction characterization, the 
determination of Pi accumulation as a result of ATPase 
activity at different pH and with the presence of inhibi-
tors would indicate a possible contamination of the to-
noplast fraction. 

Initially H+-ATPase activity was tested in total mi-
crosomes obtained from tobacco cells, and it later was 

used for purification. Figure 4 presented data on a hy-
drolytic assay of TMF. In collected microsomal mem-
branes P-type and V-type H+-ATPase activities were 
detected. Vanadate and bafilomycin were effective at in-
hibiting Pi release. Mean values were similar in both of 
the schemes used. 

The hydrolytic activity of the tonoplast fractions ob-
tained by the two different methods was quite similar, at 
about 40 moles Pi per mg of protein in 1 h (Fig. 5). Vana
date decreased the ATPase activity of SDG-obtained 
TEF by 29.6 % (pH 6.0) and 27.8 % (pH 7.2) (Fig. 5). SSS-

Fig. 5. Effects of pH and inhibitors on ATPase activity of tonoplast-enriched fractions obtained by 
SDG and SSS methods.

Fig. 6. Effects of pH and inhibitors on ATPase activity of vesicles obtained from working solution 
using two different methods of tonoplast enrichment. The SDG method used 14 % and 26 % su-
crose solution. The SSS method used 0.25M sorbitol and 0.5M sucrose solution.
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obtained TEF was almost half as sensitive to vanadate: 
by 15.5 % and 16.1 % at pH 6.0 and 7.2, respectively, but 
differences were not statistically significant. This proves 
that plasma membrane contamination in TEF obtained 
via the SSS method is minor. Bafilomycin, known as a 
highly selective inhibitor of V-type H+-ATPases, de-
creased fraction hydrolytic activity by 21 % in SDG-TEF 
and by 74.3 % in SSS-TEF. Thus after sucrose/sorbitol 
purification, the vesicle fraction was highly enriched 
with tonoplast. 

Subsequent analysis concerned detection of residu-
al H+-ATPase activity in sucrose solutions with the SDG 
method and sucrose/sorbitol media with the SSS meth-
od after gathering the tonoplast fraction. Presented data 
(Fig.  6) revealed that sucrose/sorbitol media were free 
of any membrane contamination, which would demon-
strate H+-ATPase activity. The same absence of activity 
was estimated for the 14 % sucrose solution. Accumula-
tion of Pi was detected only in the 26 % sucrose layer. 
Application of vanadate and bafilomycin caused inhibi-
tion. Thus this part of the gradient is characterized by 
leftovers of plasmalemma and tonoplast. According to 
obtained data, the sucrose/sorbitol scheme is optimal to 
decrease the loss of tonoplast.

An additional enzyme that could be suggested as 
a marker for tonoplast is H+-pyrophosphatase. Deter-
mination of its activity is presented in Figure  7. TEFs 
showed maximal activity, but it was higher with the SSS 
method. The sucrose gradient approach was character-
ized by half amplitude activity in the 26 % sucrose layer, 
which was shown to be contaminated by plasma mem-

brane and tonoplast, according to the hydrolytic test 
(Fig. 6). 

Conclusion

Obtained data indicated that the sucrose/sorbitol me
thod is preferable for purification of the tonoplast frac-
tion from tobacco suspension cell culture. This method 
turned out to be better in terms of the vacuolar mem-
brane fraction quality, and less time-consuming as well. 
The tonoplast vesicle fraction was suitable for the inves-
tigation of the activity of both vacuolar proton pumps: 
H+-ATPase and H+-pyrophosphatase. Marker enzymes 
revealed sensitivity to specific inhibitors and optimum 
pH value. 
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