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Abstract

Allotetraploid cotton Gossypium hirsutum L. is not only an important crop, but 
also a model organism used to study such processes as polyploidization, plant 
genome evolution and the influence of polyploidy on gene expression. The 
present article provides a review of studies devoted to the taxonomy of the 
genus Gossypium, the evolution of the genomes of its representatives (including 
45 diploid and 7 allotetraploid species), and the functional divergence of dupli-
cated copies of the same genes in allotetraploid species. The discussion con-
cerns the areas of individual species’ origin, as well as the reasons of the high 
variation in genome size (from ~880 Mb to ~2400 Mb), which was influenced 
by both full-genome duplications and the spread of mobile genetic elements. 
The data support the fact that the expression of genes in allotetraploid cotton 
changes as a result of polyploidization, and that one of the two subgenomes 
dominates in the formation of one or another trait. The considered data shed 
light on the features of the evolution of plant genes and genomes.
Keywords: Allopolyploid genome, cotton, evolution, functional divergence, 
gene duplication, Gossypium, homoeologous genes, mobile genetic elements.

1. Genus Gossypium L.

Cotton (genus Gossypium L.) belongs to the tribe Gossypieae Alef., which com-
prises nine genera (Fryxell, 1968, 1978; Phuphathanaphong, 2006). Five genera 
include a small number of species; they are monotypic and are characterized by 
narrow distribution areas: Cephalohibiscus Ulbr. (one species; New Guinea, Solo-
mon Islands), Gossypioides Skovst. ex J. B. Hutch. (two species; East Africa, Mada-
gascar), Kokia Lewton (six species; Hawaii), Lebronnecia Fosberg (one species; 
Marquesas Islands) and Thepparatia Phuph. (one species; northern Thailand). 
The other four genera are larger and represent groups with moderately wide geo-
graphical ranges: Cienfuegosia Cav. (25 species; neotropical realm, part of Africa), 
Hampea Schltdl. (21 species; neotropical realm), Thespesia Sol. ex Corrêa (17 spe-
cies; tropics) and the largest and most widespread genus Gossypium L. (52 spe-
cies). These representatives grow in the tropical and subtropical regions of the Old 
and New Worlds (Fig. 1) (Fryxell, Craven and Stewart, 1992; Wendel et al., 2009).

Despite wide distribution and morphological diversity, the genus Gossypium 
represents a single phylogenetic group (Fryxell et al., 1992; Wendel and Gro-
ver, 2015). The closest relatives of cotton are the Hawaiian endemic genus Kokia 
and the Afro-Madagascan genus Gossypioides (Seelanan, Schnabel and Wen-
del, 1997). Their divergence occurred during the Miocene 10–15 million years 
ago (MYA) with the subsequent spread of Gossypium over almost all continents 
(Fig. 2) (Wendel et al., 2009; Wendel and Grover, 2015).

As the genus Gossypium was undergoing its formation (5–10  MYA) and 
spreading to various environments, the genome of Gossypium was undergoing 
significant changes and rearrangements (Fig. 2) (Hendrix and Stewart, 2005). It 
is reflected in such phenotypic features as the type of ontogenesis, plant life-form, 
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corolla color, leaf shape, seed shape, distribution mode, 
etc. According to the generally accepted system by 
P. A. Fryxell (1992), supplemented by newly described 
species, the genus Gossypium includes 45 diploid (2n = 
2x  = 26) and 7  allotetraploid (2n  = 4x  = 52) species 
(Tab. 1) (Fryxell, 1992; Fryxell et al., 1992; Grover et al., 
2014; Yu et al., 2014; Gallagher et al., 2017). The main 
centers of genus diversity are the arid areas of Australia, 
Africa, Arabia, the Indian subcontinent, the Galapagos 
and Hawaiian Islands, and Central and South Americas 
(Fig. 1) (Fryxell et al., 1992; Wendel et al., 2009). 

Based on the analysis of morphological features, the 
nature of distribution areas, cytogenetic and molecular 
genetic data and the relative fertility of interspecific 
hybrids, cotton species fall into eight genomic groups 
(A–G and K) united into four subgenera; one of these 
groups is represented by AD allotetraploid representa-
tives (Tab.  1) (Webber, 1938; Endrizzi, Turcotte and 
Kohel, 1985; Fryxell, 1992; Wendel and Grover, 2015). 
The three subgenera that include diploid species have 
separate distribution areas, namely Africa/Arabia (A, 
B, E and F genomes), Australia (C, G and K genomes) 
and America (D genome) (Fig. 1, Tab. 1) (Wendel and 
Cronn, 2003). The monophyletic origin of the allotet-
raploid group (AD genome) in the regions of the New 
World is associated with the spread of the A genome do-
nor, related to G. arboreum L. or G. herbaceum L., from 
Africa or Asia over long distances to the New World, and 
subsequent hybridization (about 1–1.5  MYA) with the 

American representative of the D genomic group, ge-
netically close to G. raimondii Ulbr. (Fig.  1) (Skovsted, 
1933, 1934; Lemeshev, 1991; Wendel and Albert, 1992; 
Wendel and Cronn, 2003; Paterson et al., 2012; Lu et al., 
2018).

1.1. Diploid species of the genus Gossypium

Subgenus Gossypium Tod. (A, B, E, F). According to the 
last taxonomic interpretation, the subgenus Gossypium 
Tod. includes 14 species from Africa and Arabia (Fryx-
ell, 1992). These species exhibit significant cytogenetic 
diversity that corresponds to the A, B, E, and F genomic 
groups (Tab.  1, Fig.  2) (Seelanan et al., 1997; Wendel 
and Albert, 1992). It is supposed that such a variation 
in genomes compared to the relative uniformity of cot-
ton found in the New World (see below) may indicate 
the African origin of the genus Gossypium (Wendel and 
Grover, 2015). 

To date, the most well-studied is the A genomic 
group, which includes two cultivated cotton species — 
G. herbaceum L. and G. arboreum L. (Wendel, Olson 
and Stewart, 1989). The B genomic group is represented 
by four African species, while the F genomic group is 
represented by only one species — G. longicalyx Hutch. 
and Lee (Tab. 1). Its cytogenetic and morphological dif-
ferences from other Gossypium members are probably 
explained by its geographical isolation (Fryxell, 1971; 
Vollesen, 1987; Wendel and Grover, 2015). 

Fig. 1. Distribution of the genus Gossypium. Yellow indicates the distribution of the Gossypium subgenus representatives (A, B, E, F genomes); 
green — subgenus Sturtia representatives (C, G, K genomes); purple — subgenus Houzingenia representatives (D genome); blue — subgenus 
Karpas representatives (AD genome). Photos of G. arboreum (AA), G. raimondii (DD) and G. hirsutum (AADD) cotton samples from the herbarium 
collection of the N. I. Vavilov All-Russian Institute of Plant Genetic Resources.
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The E genome encompasses three well-studied spe-
cies and five poorly studied species (the so-called G. so-
malense complex) (Tab.  1) (Vollesen, 1987; Golubets, 
1991). Of these species, only G. somalense has been stud-
ied cytogenetically; other species of the group have been 
described from several herbarium specimens, and there-
fore their individuality is doubtful (Tab. 1). The problem 
is that the distribution area of these species is located in 
the Horn of Africa, where it is not possible to organize 
collecting missions. 

Regarding G. trifurcatum Vollesen, which also 
grows in Somalia and has been described only from an 
herbarium specimen, its taxonomic status is unclear. 
Fryxell (1992) separated this species into an individual 
Serrata section. This species may belong to both B and E 
genomes (Tab. 1) (Wendel and Grover, 2015). 

Subgenus Sturtia (R. Br.) Tod. (C, G, K). The Aus-
tralian subgenus Sturtia (R. Br.) Tod. includes three 
genomic groups (C, G and K) represented by 4, 3 and 
11  diploid cotton species, respectively (Fig.  2, Tab.  1) 
(Fryxell, 1978; Wendel et al., 2009; Tiwari, Zhang and 
Stewart, 2014; Wendel and Grover, 2015). The taxonomy 
of species in this group still needs to be refined (Podol-
naya, 1991). Nevertheless, their division into three ge-
nomic groups according to DNA sequence data (Seelan-
an et al., 1997) is consistent with their formal separation 
into the Sturtia (C genome), Hibiscoidea (G genome) 
and Grandicalyx (K genome) taxonomic sections (Fryx-
ell, 1978; Tiwari et al., 2014). 

Most species of the subgenus Sturtia are sympatric 
in their areas of distribution and occur exclusively in 
the northern region of Australia (Seelanan et al., 1999; 
Wendel, Stewart and Rettig, 1991). The species from the 
C and G genomic groups are available in many genetic 
resources collections around the world and have been 
thoroughly studied. Despite this, the tendency for hy-
bridization and genetic material introgression in the C 
genome species poses certain complications (Seelanan et 
al., 1999; Cronn and Wendel, 2003; Tiwari et al., 2014). 

The taxonomic status of the K genome representa-
tives is unclear due to insufficient knowledge (Fryxell, 
1978; Seelanan et al., 1997, 1999; Tiwari et al., 2014). In 
terms of the nature of the distribution area, as well as 
many morphological characters, including the seedlings 
structure, life-form and peculiarities of seed distribu-
tion, the species of the Grandicalyx section differ sharply 
from other representatives of the subgenus Sturtia. On 
this basis, suggestions are made to change the rank of 
the taxon (Podolnaya, 1991). However, representatives 
of this section are almost absent in collections, and it 
complicates the research (Campbell et al., 2010).

Subgenus Houzingenia Fryx. (D). The subgenus 
Houzingenia Fryx. is the best-studied group represented 
by thirteen D genomic diploids from the New World 
(Fig. 2, Tab. 1) (Seelanan et al., 1997; Ulloa, 2014; Wen-
del and Grover, 2015 Grover et al., 2018). These species 
have unusually small genomes for the genus Gossypium 
(Fig. 2) (Hendrix and Stewart, 2005). Not a single rep-

Fig. 2. A modern look at the phylogeny of the genus Gossypium. Genome sizes, number of whole-genome duplications (WGD) and genome divergence 
time (MYA — million years ago) are based on the works by Wendel and Cronn, 2003; Hendrix and Stewart, 2005; Wendel and Grover, 2015; Lu et al., 2018.
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resentative of this group is capable of producing textile 
fiber. 

The origin of the D genomic group is associated 
with the spread of a Gossypium ancestral form from Af-
rica over long distances about 5–10  MYA. Probably, it 
spread to western Mexico  — the center of D genomic 

diversity (Wendel and Grover, 2015). The appearance of 
endemic species in Peru (G. raimondii) and the Galapa-
gos Islands (G. klotzschianum) is associated with the lat-
er spread of the D genome ancestor to these territories, 
probably during the Pleistocene (Wendel and Percival, 
1990).

Table 1. Taxonomy of the genus Gossypium in accordance with CottonGen database (Yu et al., 2014).  
Cultivated cotton species are bolded in the table

Subgenus Genomic 
group Species Genome Geographical distribution

Gossypium Tod.

A G. herbaceum L.
G. arboreum L.

A1
A2

Africa, Asia
Asia

B

G. anomalum Wawr. and Peyer
G. triphyllum (Harv. and Sand.) Hochr.
G. capitis-viridis (Harv. and Sand.) Hochr.
G. trifurcatum Vollesen

B1
B2
B3
B*

Africa 
Africa 
Cape Verde Islands
Africa 

E

G. stocksii Mast. ex. Hook.
G. somalense (Gurke) Hutch.
G. areysianum (Defl.) Hutch.
G. incanum (Schwartz) Hillc.
G. benadirense Mattei
G. bricchettii (Ulbr.) Vollesen
G. vollesenii Fryx.

E1
E2
E3
E4
E*

E*

E*

Arabia
Arabia
Arabia
Arabia
Arabia
Arabia
Arabia

F G. longicalyx Hutch. and Lee F1 Arabia

Sturtia (R. Br.) Tod.

C 

G. sturtianum J. H. Willis
G. nandewarense (Derera) Fryx.
G. robinsonii F. Muell.
G. pilosum Fryxell

C1
C(1–n)

C2
С10

Australia
Australia
Australia
Australia

G 
G. bickii Prokh.
G. australe F. Muell.
G. nelsonii Fryxell

G1
G2 
G3 

Australia
Australia
Australia

K 

G. costulatum Tod.
G. populifolium (Benth.) Tod.
G. cunninghamii Tod.
G. pulchellum (C. A. Gardner) Fryxell
G. anapoides J. M. Stewart, Craven, Brubaker and Wendel
G. enthyle Fryxell et al.
G. exiguum Fryxell et al.
G. londonderriense Fryxell et al.
G. marchantii Fryxell et al.
G. nobile Fryxell et al.
G. rotundifolium Fryxell et al.

K1 
K2 
K3 
K4 
K6
K7
K8
K9
K10
K11
K12

Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia

Houzingenia Fryx. D

G. thurberi Tod.
G. armourianum Kearney
G. harknessii Brandegee
G. davidsonii Kellogg
G. klotzschianum Andersson
G. aridum (Rose and Standl.) Skovst.
G. raimondii Ulbr.
G. gossypioides (Ulbr.) Standl.
G. lobatum Gentry
G. trilobum (Moc. and Sess. ex DC.) Skov.
G. laxum L. Ll. Phillips
G. turneri Fryxell
G. schwendimanii Fryxell and S. D. Koch

D1
D(2–1)
D(2–2)
D(3–d)
D(3–k)

D4
D5
D6
D7
D8
D9
D10
D11

Mexico and Southwestern USA
Mexico
Mexico
Mexico
Galapagos Islands
Mexico
Peru
Mexico
Mexico
Mexico
Mexico
Mexico
Mexico

Karpas Raf. AD

G. hirsutum L. 
G. barbadense L. 
G. tomentosum Nutt. ex Seem.
G. mustelinum Miers ex G. Watt
G. darwinii G. Watt
G. ekmanianum Wittmack
G. stephensii J. Gallagher et al.

(AD)1
(AD)2
(AD)3
(AD)4
(AD)5
(AD)6
(AD)7

Southern Mexico
Northwestern Southern America
Hawaii
Brazil
Galapagos Islands
Dominican Republic
Wake Atoll, Pacific Ocean
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1.2. Polyploid species of the genus Gossypium

Subgenus Karpas Raf. (AD). The American polyploid 
species of cotton represent a monophyletic allotetra-
ploid group containing two genomes — the A genome 
from Africa or Asia, close to the existing G. herbaceum 
and G. arboreum, and the D genome, close to G. raimon-
dii (Fig. 1, 2) (Endrizzi et al., 1985; Small and Wendel, 
1999; Paterson et al., 2012). By now, seven species have 
been described (Tab. 1). Two of them, G. ekmanianum 
and G. stephensii, have been recently discovered as en-
demics of the Dominican Republic and Wake Atoll in 
the Pacific, respectively (Grover et al., 2014; Gallagher 
et al., 2017). Two other species, G. hirsutum and G. bar-
badense, are cultivated species of cotton and are of great 
commercial importance today (Fang, 2018).

Thus, representatives of the genus Gossypium, in-
cluding 45 diploids and 7 allotetraploids, fall into four 
subgenera: Gossypium (A, B, E, F genomes), Sturtia (C, 
G, K genomes), Houzingenia (D genome) and Karpas 
(AD genomes). The status of individual taxa in the genus 
Gossypium is still unclear, especially within the subgen-
era Gossypium and Sturtia. The study of representatives 
of these taxa is very difficult due to the inaccessibility of 
their growing areas, the poor representation of represen-
tatives in collections and the tendency to produce inter-
specific hybrids. This indicates the temporary nature of 
the majority of the taxonomy of Gossypium species.

2. The evolution of the cotton genome

The morphology of chromosomes is similar among the 
closely related species, and it is reflected in their ability 
to form interspecific hybrids that exhibit normal meiotic 
pairing of chromosomes and high fertility of F1 hybrids. 
The species of each of the genomic groups of the genus 
Gossypium have the same basic chromosome number 
(n  = 13), however, the DNA content in each genome 
varies significantly — from ~880 Mb (D genome; 2C = 
1.81 pg) to ~2400 Mb (K genome; 2C = 5.26 pg) (Fig. 2) 
(Hendrix and Stewart, 2005). It is believed that such a 
change in DNA content has been caused by the modifi-
cation of repetitive DNA sequences (Geever, Katterman 
and Endrizzi, 1989). Along with that, the variation of the 
amount of DNA in diploid species offers a good model 
system for studying the causes of the genome size varia-
tion.

2.1. Polyploidization

Polyploidization is an important process in plant spe-
ciation. It underlies the ample diversity of angiosperms 
(Alix, Gérard, Schwarzacher and Heslop-Harrison, 
2017). The assumption that diploid cotton is a paleo-
polyploid organism was first made about 90  years ago 

when studying the behavior of chromosomes in the 
metaphase of meiosis (Denham, 1924; Lawrence, 1931; 
Davie, 1933; Skovsted, 1933). It was later shown that 
multiple duplicated segments of chromosomes found 
in the genomes of diploid species of cotton demon-
strate that the ancestor of Gossypium underwent ancient 
polyploidization cycles with subsequent genome rear-
rangements and diploidization (Brubaker, Paterson and 
Wendel, 1999; Cronn, Zhao, Paterson and Wendel, 1996; 
Paterson, 2009; Paterson et al., 2012; Jiao and Paterson, 
2014; Renny-Byfield et al., 2014; Renny-Byfield, Gong, 
Gallagher and Wendel, 2015; Rong et al., 2010). In addi-
tion to three acts of genome duplication that occurred in 
the ancestor of all flowering plants, the diploid ancestor 
of cotton underwent an additional five to six duplica-
tions shortly after divergence from the ancestor of Theo-
broma cacao L. about 60 MYA (Fig. 2) (Bowers, Chap-
man, Rong and Paterson, 2003; Paterson et al., 2012; 
Renny-Byfield et al., 2015). Thus, modern cottons are at 
least paleooctaploids.

2.2. Mobile genetic elements

An increase in the number of mobile genetic elements 
(MGEs) along with polyploidization is probably one of 
the main factors determining the size of the plant ge-
nome (San Miguel and Bennetzen, 1998; Zhao et al., 
1998; Bennetzen, Ma and Devos, 2005; Hawkins et al., 
2006; Ozkan et al., 2010). The comparative analysis of 
Gossypium genomes with T. cacao and Arabidopsis thali-
ana (L.) Heynh. showed that the genomes of Gossypium 
species contain a higher number of MGEs (Wu et al., 
2017). This may indicate that in addition to the full-ge-
nome duplication, a change in the genome size in the 
genus Gossypium is associated with the abundance of 
MGEs, in particular, Long Terminal Repeat (LTR) ret-
rotransposons (Wu et al., 2017).

Based on the comparative analysis of the nucleotide 
sequences in the genomes of diploid species G. raimon-
dii (D5 genome, 885 Mb) and G. arboreum (A2 genome, 
1746 Mb), as well as of the allotetraploid species G. hir-
sutum ((AD)1 genome, 2173 Mb) (Paterson et al., 2012; 
Wang et al., 2012; Page et al., 2013; Kim, 2015; Li et al., 
2015), it was found that the fraction of MGEs in the 
genomes of G. arboreum, G. raimondii and G. hirsutum 
is 57.09 %, 67.64 % and 67.36 %, respectively (Dillehay, 
Rossen, Andres and Williams, 2007; Wang et al., 2012). 
Moreover, A and AD genomes carry a significantly larg-
er number of LTR retrotransposons than the D genome 
(Tab.  2). It was shown that the LTR-Copia sequences 
had been accumulating at a higher rate in the Gossy-
pium species with the smallest genome (G. raimondii), 
while the LTR-Gypsy sequences are common in the spe-
cies with larger genomes (Hawkins et al., 2006; Page et 
al., 2013). At the same time, it was found that one LTR-
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Gypsy group, GORGE3 (Gossypium retrotransposable 
gypsy-like element), had undergone mass distribution 
in large cotton genomes to become the main reason for 
their size change (Hawkins et al., 2006).

MGEs and the fiber-forming ability. The most valu-
able feature of a number of species in the Gossypium ge-
nus is the ability to form unicellular fibers (trichomes) 
of different size on the seed surface (Kim, 2015). In 
cultivated species, these fibers are used for spinning. 
Among the different types of cotton capable of forming 
fiber, there are significant differences in its properties, 
since the two genomes, A and D, in the genus Gossypium 
make an unequal contribution to the development of fi-
ber (see below) (Paterson et al., 2012; Xu et al., 2015). 
Thus, the allotetraploid G. hirsutum produces fibers lon-
ger than 3  cm, and the diploid G. arboreum produces 
1.3–1.5 cm long fibers (Li et al., 2015). However, there 
are more fiber quality-related sites in the D subgenome 
in G. hirsutum than in the A subgenome, despite the fact 
that the relative of the D genome progenitor G. raimon-
dii does not produce spinning fiber (Jiang, Wright, El-
Zik and Paterson, 1998).

Over the past two decades, many genes that are in-
volved in the regulation of growth and development of 
cotton fibers have been revealed (Shi et al., 2006; Wu et al., 
2006; Taliercio and Boykin, 2007; Wu et al., 2007; Wang 
et al., 2010; Zhang et al., 2010; Walford, Wu, Llewellyn 
and Dennis, 2011; Kim, 2015). Along with that, it turned 
out that a large number of MGEs in Gossypium genomes 
are located close (within 5 kbp) to the fiber development 
genes, which allows supposing that these genetic ele-
ments could contribute to this process (Wang et al., 2012; 
Li et al., 2014, 2015; Kun Wang, Huang and Zhu, 2016; 
Wu et al., 2017). For example, the promoter region of the 
gene encoding GhMYB25 transcription factor, which is 
necessary for fiber development, has shown the LTR-
Copia retrotransposon insertion (3928 bp) only in the 
D subgenome (Fig. 3). That positively correlates with a 
higher expression of the D genome homoeolog in G. hir-
sutum (Zhang et al., 2010; Walford et al., 2011; Wang et 
al., 2016). A similar mutation was noted for the ethylene 

response factor (ERF) gene involved in the development 
of trichomes: the LINE retrotransposon insertion into 
the GhERF promoter in the D subgenome causes an in-
crease in the expression level of this homoeolog com-
pared to its A genomic copy (Shi et al., 2006; Qin et al., 
2007; Wang et al., 2016).

A new look at the evolution of the genus Gossy-
pium. It was previously believed that diploid forms of 
cotton carrying the A genome appeared less than 5 MYA 
after the divergence from the ancestor of the F genome 
forms (Wendel and Albert, 1992). Allotetraploid spe-
cies were thought to have formed as a result of interspe-
cific hybridization about 1–2 MYA (Wendel and Albert, 
1992).

In 2018, a new family of LTR elements named CICR 
(Chinese Institute of Cotton Research) was identified in 
the genus Gossypium (Lu et al., 2018). It was shown that 
these MGEs are widespread in all chromosomes of the 
A and B genomes, but are almost absent in the genomes 
C–G (Cui et al., 2016; Lu et al., 2018). The analysis of 
CICR showed that the A and D genomes diverged at 
least 4  MYA (before the appearance of CICR), which 
coincides with the results of previous studies on the di-
vergence time of the ancestors of these genomes about 
5–10 MYA (Fig. 2) (Wendel and Albert, 1992; Senchina 
et al., 2003; Liu et al., 2015; Zhang et al., 2015). The di-
vergence of the ancestors of the C–G genomes occurred 
probably about 3.5–4  MYA, i.e., approximately during 
the appearance of CICR elements (Lu et al., 2018). Be-
sides, according to the distribution of these mobile ele-
ments, the A and B genomes are the closest to each other 
among the genomes of the genus Gossypium, having di-
verged about 2.5 MYA (Lu et al., 2018). It contradicts the 
previous information that the F genome is more similar 
to the A than to the B genome (Fig.  2) (Grover et al., 
2004).

The formation of allotetraploid cotton about 
1–1.5 MYA as a result of hybridization between the A 
and D genome ancestors coincides with the results of 
previous studies (Wendel, 1989; Wendel and Albert, 
1992; Wendel and Cronn, 2003; Senchina et al., 2003; Li 

Table 2. MGEs content in genomes of G. arboreum (A2 genome), G. raimondii (D5 genome) and G. hirsutum ((AD)1 genome) 
(according to Wang et al., 2015)

MGE G. arboreum, % of genome G. raimondii, % of genome G. hirsutum, % of genome

LINE 1.20 1.50 1.56

SINE 0.01 0.09 0.03

LTR-Gypsy 55.80 33.80 52.54

LTR-Copia 5.50 11.10 8.36

Others 5.13 10.60 4.87

Total 67.64 57.09 67.36
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et al., 2015; Zhang et al., 2015). However, it is assumed 
that allotetraploid cotton was formed after the CICR 
family silencing, since these MGEs were preserved in 
the A subgenome, though not transferred to the D sub-
genome (Lu et al., 2018). 

Thus, the insertions of MGEs and their polymor-
phism among genomes and subgenomes could be a key 
factor in the evolution of cotton, as well as in the process 
of artificial selection of traits that determine fiber prop-
erties.

3. Expression of homoeologous genes in 
cotton

The key point in the evolution of genomes of polyploid 
organisms relates to the regulation of intergenomic in-
teractions (including the nuclear-cytoplasmic ones), on 
the one hand, and normalization of the consequences of 
the gene duplication, on the other hand (Panchy, Lehti-
Shiu and Shiu, 2016; Sattler, Carvalho and Clarindo, 
2016). 

The fusion of the A and D genomes of the allotet-
raploid cotton ancestors into the genome of one organ-
ism with the A genome cytoplasm caused a change in 
the level and pattern of expression of genes from both 
genomes due to new interactions. As a consequence, the 
expression of some homoeologous genes underwent sig-
nificant changes due to the merging of regulating fac-
tors and their target genes (Riddle and Birchler, 2003; 
Birchler, Riddle, Auger and Veitia, 2005; Chen, 2007; 
Panchy et al., 2016; Sattler et al., 2016). On the other 
hand, the suppression of some homoeologous genes ex-
pression occurred as a compensation of the change in 
gene dosage that accompanied polyploidy (Osborn et 
al., 2003; Birchler et al., 2005; Sattler et al., 2016). 

3.1. Changes in the homoeologous genes 
expression

The first evidence that polyploidy within the genus Gos-
sypium is accompanied by vast changes in the expres-
sion of genes appeared from the studies of 40 homoeolo-
gous genes in different organs of G. hirsutum (Adams, 
Cronn, Percifield and Wendel, 2003). Almost one-third 
of the studied genes demonstrated changes in expres-
sion towards a significant increase in the activity of one 
of the homoeologs and a decrease in the expression of 
the other. Special attention should be given to the genes 
that demonstrated organ-specific expression: while one 
of the genes in the homoeologous pair expressed itself in 
the organs of one type, the other gene was active only in 
the other organs (Adams, Cronn, Percifield and Wendel, 
2003).

When studying the activity of the duplicated genes, 
it was also established that patterns of the homoeolo-

gous copies’ expression were environment-sensitive. It 
was shown that the homoeologous genes of G. hirsutum 
demonstrate different levels of expression in different 
tissues under the influence of such abiotic stresses as an 
increase or decrease in temperature, deficiency or excess 
of water, and an increased content of salts (Liu and Ad-
ams, 2007; Dong and Adams, 2011). Probably, the dif-
ferential expression of homoeologous genes in response 
to a stress or an environmental signal may be a factor 
that facilitates the preservation of the duplicated genes’ 
functional state in the polyploid organism.

3.2. Expression of genes in synthetic cotton 
hybrids

The changes caused by distant hybridization at the early 
stages of allopolyploid organism formation should dif-
fer from those changes that took place in its subsequent 
evolution. In order to differentiate these changes, in a 
number of articles the expression of homoeologous 
genes was studied when comparing the synthetically 
created allopolyploids (or F1 hybrids) with the natural 
allopolyploid cotton species (Adams et al., 2003; Adams, 
Percifield and Wendel, 2004; Flagel, Udall, Nettleton and 
Wendel, 2008; Chaudhary et al., 2009). For example, a 
comparison of gene activity in the F1 hybrid, artificially 
produced by crossing G. arboreum and G. raimondii, and 
that in the natural G. hirsutum allopolyploid has shown 
that about 24 % of the genes with differential expression 
have demonstrated a similar change in expression in the 
F1 hybrid and in the natural allopolyploid, if compared 
with the parent forms (Flagel et al., 2008). The remain-
ing 76 % of the genes of G. hirsutum with the expression 
changed in comparison with G. arboreum and G. rai-
mondii could be determined by both the accumulated 
mutations and by the sub- or non-functionality of the 
duplicated genes (Flagel et al., 2008). 

Thus, the merging of genomes plays an important, 
but only partial role in changing the pattern of expres-
sion of the homoeologous genes in the genus Gossy-
pium, while the level of expression and tissue specific-
ity of the genes demonstrate that specific patterns of the 
homoeologous genes expression can appear in both de 
novo created synthetic hybrids and remain in natural al-
lopolyploids.

3.3. Dominance of allopolyploid cotton 
subgenomes

In allopolyploid plant forms resulting from interspecific 
hybridization, one of the parent subgenomes is dominant 
as a rule, i.e., it preserves the expression of homoeologous 
genes at a level similar to that of the genes’ activity in the 
parent organism in relation to other homoeologs (Wang 
et al., 2006; Rapp, Udall and Wendel, 2009; Buggs et al., 
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2010; Chang et al., 2010; Flagel and Wendel, 2010; Wood-
house et al., 2010; Schnable, Springer and Freeling, 2011; 
Tang et al., 2012). Interestingly, such an expression profile 
is characteristic of the genes with both increased and de-
creased expression levels, so that the same diploid parent 
genome can be either dominant or recessive, depending 
on the particular combination (Rapp et al., 2009).

The dominance of a subgenome can manifest itself 
in a situation when the maternal genes of the nuclear 
genome and the plastome co-adapted to each other can 
be expressed and the paternal homoeologous copies si-
lenced. An example of this kind has been described for 
the RuBisCO genes (Gong et al., 2012). The RuBisCO en-
zyme (4.1.1.39; ribulose-1.5-bisphosphate carboxylase/
oxygenase), which catalyzes the addition of CO2  to ri-
bulose-1.5-bisphosphate in the Calvin cycle, consists of 
small subunits (SSU) encoded by nuclear genes, and of 
large subunits (LSU) encoded by plastome genes (Fig. 3) 
(Rodermel et al., 1996). The genes of the maternal A ge-
nome were shown to dominate in polyploid cotton, i.e., 
both the nuclear genes of the small rbcS subunits, and 
the genes of the large rbcL subunits transmitted from the 
mother, which may demonstrate co-evolution of genes 
of large and small subunits (Gong et al., 2012).

The subgenome dominance could also be associ-
ated with natural selection, which in the course of evo-
lution eliminates various problems with regulating trait 
manifestation, caused by the fusion of genomes (Yoo, 
Szadkowski and Wendel, 2013). For instance, the shift in 
the expression of genes involved in fiber formation in al-
lotetraploid cotton is directed towards the D genome as 
a rule (Flagel et al., 2008; Hovav et al., 2008; Guan, Song 
and Chen, 2014). Since the D genome donors are inca-

pable of producing fiber, it is quite likely that negative 
regulators, such as microRNAs and transcriptional re-
pressors, suppress the expression of genes related to fiber 
formation in the D genome, compared to the A genome.

The homoeologous regulatory genes of the R2R3-
MYB type — GhMYB2A and GhMYB2D — could serve 
as an example. They are homoeologs of the A. thaliana 
GLABROUS1  (GL1) gene involved in trichome forma-
tion (Fig. 3) (Wang et al., 2004; Ishida, Kurata, Okada 
and Wada, 2008; Pesch and Hülskamp, 2009; Guan and 
Pang et al., 2014). It has been demonstrated that more 
mRNAs of the GhMYB2D gene than of GhMYB2A are 
synthesized during the initiation of cotton fiber for-
mation (Guan and Pang et al., 2014). However, only 
GhMYB2A is involved in the process of fiber forma-
tion, since the products of GhMYB2D are the targets for 
miR828  and miR858  microRNAs (Fig.  3) (Pang et al., 
2009; Guan and Pang et al., 2014).

Besides, it turned out that in A. thaliana gl1-mu-
tants, i.e., mutants incapable of forming trichomes, the 
overexpression of GhMYB2A restores the mutant phe-
notype (Guan and Pang et al., 2014). Normally, the over-
expression of GhMYB2D does not restore the gl1 pheno-
type, but in the case of the miR828-binding site muta-
tion, trichomes development is restored in gl1-mutants 
(Guan and Pang et al., 2014). Thus, these studies sup-
pose not only functional divergence between GhMYB2A 
and GhMYB2D in cotton, but also an important role of 
microRNAs in the process of fiber formation.

In total, the studies show that gene expression in 
polyploid cotton changes in comparison with its diploid 
predecessors, and unequal expression of one of the two 
homoeologs is a rule rather than an exception.

Fig. 3. Regulation of expression and dominance of homoeologous genes of allotetraploid cotton. Explanation is given in the text.
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Conclusion

The review summarizes the results of works devoted to 
the studies on phylogenetic relationships in the genus 
Gossypium, evolution of genomes within this genus, reg-
ulation of homoeologous genes’ expression and domi-
nance of allotetraploid cotton subgenomes. Despite the 
large amount of available data, the status of individual 
taxa in the Gossypium genus is still unclear, especially 
within the Gossypium and Sturtia subgenera, due to their 
poor representation in collections, inaccessibility of the 
territories where representatives of these taxa occur and 
the tendency to produce interspecific hybrids. Studies 
of the distribution patterns of repeating DNA elements, 
such as MGEs, can shed light on the evolution of ge-
nomes in the genus Gossypium and on the time of their 
divergence. On the other hand, the analysis of MGEs 
polymorphism could help to reveal the genes that control 
fiber development in cotton. Further studies, combined 
with the available data, will offer ample opportunities for 
producing cotton varieties with the desired properties.
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