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Abstract

Phlorotannins are the most abundant group of metabolites specific for brown 
algae. These substances contribute both to the primary and secondary metab-
olism of the algal cells and have practical relevance as biologically active com-
pounds. The list of their presumable physiological functions is still not exhaus-
tive and includes wound healing, chelation of heavy metal ions, bioadhesion, 
contribution to the processes of algal early embryogenesis and sporogenesis, 
etc. Similar to higher plant phenolics, phlorotannins also have antioxidant prop-
erties, provide chemical defense against herbivores and contribute to cell wall 
rigidification. The complex and diverse composition of natural phlorotannins 
hampers investigation of their physiological roles and leads to inconsistencies 
in the obtained data. Further study of the correlation between the structure of 
these substances and their functions is needed to take a new look at known in-
formation, thus providing better performance in the fields of both fundamental 
algal physiology and applied phycology.
Keywords: phlorotannins, brown algae, phenolic compounds, cell wall, phy-
sodes, algal exudates, bioadhesion, antifouling compounds

General description of phlorotannins

Phlorotannins (phaeophycean tannins) represent a specific group of secondary 
metabolites of brown algae. These compounds have been known since the 1960s. 
Described initially as yellow-colored UV-absorbing substances (“Gelbstoff ”) 
exuded from brown algae, soon they were proven to belong to phenolics (Crai-
gie and Mc Lachlan, 1964; Sieburth and Jensen, 1969). In spite of the differing 
chemical structures, phlorotannins are frequently regarded as analogues of con-
densed tannins of higher plants because of their specific features: chelating metal 
ions (Connan and Stengel, 2011), absorbing UV radiation (Pavia et al., 1997), 
precipitating proteins and alkaloids (Stern et al., 1996; Martinez and Castaneda, 
2013) and having an astringent taste (Arnold and Targett, 2000).

Natural phlorotannins are a complex mixture of water-soluble oligomers and 
polymers, formed by combining a different number of phloroglucinol (1,3,5-tri-
hydroxybenzene) molecules. Phloroglucinol is synthesized in the algal cells from 
malonyl-CoA through the acetate-malonate (polyketide) pathway by polyketide 
synthase type III (Meslet-Cladière at al., 2013). Further stages of biosynthesis, 
leading to the oligomerization of the phloroglucinol units and the condensation 
of high molecular weight phlorotannins, still remain unclear, though some stud-
ies have reported that vanadium-dependent haloperoxidases might be involved in 
the oxidative condensation of these phenolics (Potin and Leblanc, 2006; Berglin 
et al., 2004; Salgado et al., 2009; Bitton et al., 2006, 2007). The polymerization 
process leads to the formation of different types of phlorotannins with molecular 
size ranging from 126 Da (monomer molecule) to 650 kDa (Ragan and Glombit-
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za, 1986). Generally, these compounds are divided into 
four classes according to the different variants of chemi-
cal bonds between the monomers (Fig. 1). The first class 
of phlorotannins includes fuhalols and phlorethols with 
ether linkages (Aryl-O-Aryl). The second class com-
prises fucols with phenyl linkages (Aryl-Aryl). Phloro-
tannins of the third class — fucophlorethols — have both 
ether and phenyl linkages and can be branched, and the 
fourth class combines the molecules with dibenzodioxin 
linkages — eckols and carmalols (Barre et al., 2010). The 
capacity of the larger molecules to form many isomer-
ic forms gives rise to the great diversity of these com-
pounds (Heffernan et al., 2015). There are a few reports 
showing that the distinct molecular size fractions (<1, 
1–10, 10–100, and >100 kDa) of phlorotannins isolated 
from brown algae were quantitatively different depend-
ing on the species, geographical region and thallus zone 
(Iken et al., 2007). Low molecular weight phlorotannins 
in the tissues of brown algae can be halogenated or sul-
fated (reviewed by Barre et al., 2010). 

The content of phlorotannins in brown algal tissues 
varies from 0.5  to 25% DW (Targett et al., 1995, 1998; 
Iken et al., 2007; Kamiya et al., 2010). This characteris-
tic is species–specific and correlates with water salinity, 
nutrient availability, plant habitat, size and developmen-
tal stage, season, grazing intensity and other conditions 
(Ragan and Jensen, 1978; Targett et al., 1992; Steinberg, 
1995; Peckol et al., 1996; Hammerstrom et al., 1998; Van 
Alstyne, 1988; Van Alstyne et al., 1999; Arnold and Tar-
gett, 2000; Pavia and Brock, 2000; Pavia et al., 2002; Jor-
malainen et al., 2003, 2005, 2008).

Algal cells usually contain a pool of soluble phloro-
tannins in the specialized organelles, physodes, which 
are supposed to be formed in the endoplasmic reticu-
lum (ER) and Golgi apparatus. Phlorotannin precursors 
might be synthesized in the ER and then transferred to 
the Golgi for further processing (Schoenwaelder and 
Clayton, 2000). Histochemical studies allow us to dis-
tinguish at least two types of physodes. Representatives 
of the first type tend to be accumulated around the cell 
nucleus, while the others move to the peripheral layer of 
the cytoplasm and secrete their contents into the apo-
plast, where phlorotannins form complexes with alginic 
acid (Schoenwaelder and Clayton, 2000). According to 
Koivikko et al. (2005), the content of cell wall-bound 
phlorotannins in the algal tissue is an order of magni-
tude lower than the concentration of soluble ones. At 
present, the fraction of phlorotannins associated with 
the cell wall is almost unstudied. Besides the intracellu-
lar and cell wall-associated phlorotannins, there is also a 
fraction which is constantly exuded from algal cells into 
the ambient medium (Sieburth and Jensen, 1969; Ragan 
and Jensen, 1979; Jennings and Steinberg, 1994; Swan-
son and Druehl, 2002; Koivikko et al., 2005; Shibata et 
al., 2006). For several species (Eisenia bicyclis, Ecklonia 

kurome) it was shown that the exuded phlorotannin 
fraction is enriched with halogenated monomeric phe-
nolics (2,4-dibromophenol, 2,4,6-tribromophenol and 
dibromo-iodophenol) (Shibata et al., 2006).

Analysis of the literature devoted to brown algal 
phenolics shows that the studies are focused on four 
main fields partially interacting with each other: 1) works 
dealing with the ecological roles of phlorotannins (re-
viewed by Amsler and Fairhead, 2006); 2)  studies de-
scribing the establishment of methods of phlorotannin 
isolation, fractionation and identification (reviewed by 
Martinez and Castaneda, 2013); 3) a considerable block 
of works focused on the potential practical relevance of 
these compounds (reviewed by Catarino et al., 2017); 
and 4) investigation of the phlorotannin contribution to 
the physiology of brown algae. As the last topic is now 
much less studied than the others, our review is concen-
trated on the systematization of the data revealing the 
physiological functions of phlorotannins.

Physiological functions of phlorotannins

A considerable part of known phlorotannin functions 
allows regarding them as protective metabolites. Simi-
lar to the higher plant tannins, phlorotannins provide 
chemical protection against grazing (Barbehenn and 
Constabel, 2011; Van Alstyne et al., 1999, 2001; Pavia 
and Brock, 2000; Arnold and Targett, 2003; Pavia et al., 
2002; Jormalainen et al., 2003, 2005). Physode-contain-
ing vegetative cells are typically located in the outer cor-
tical layer and in the epidermis of the algal thallus (Luder 
and Clayton, 2004; Shibata et al., 2004, 2006), and it was 
shown that any damage to algal tissues caused by graz-
ing or erosion led to the massive release of phlorotan-
nins (presumably, the soluble fraction from physodes) 
(Van Alstyne et al., 1999). Pavia and Toth (2000) showed 
that the total phlorotannin level in the tissues of Asco-
phyllum nodosum increased significantly after attack of 
the grazing snail Littorina obtusata, but this was not the 
case with the isopod Idotea granulosa. This high degree 
of specificity of chemical responses to physical damage 
was previously known only for terrestrial vascular plants 
but not for marine algae. The efficiency of phlorotan-
nins in providing chemical protection depends upon the 
size of their molecules, with the high molecular weight 
phlorotannin fraction (>10  kDa) being more effec-
tive against marine herbivores than the low molecular 
weight (<5kDa) fraction (Boettcher and Targett, 1993).

Like other plant phenols, phlorotannins exhibit an-
tioxidant properties (Hagerman, 1998; Parys et al., 2010; 
Surveswaran et al., 2007; Ferreres et al., 2012), and their 
peripheral localization and absorption spectrum im-
ply that they may serve as UV-protectors. Ferreres et al. 
(2012)  revealed a correlation between the antioxidative 
activity of phlorotannins and their species-specific chem-
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ical structure. This corresponds well with the considerable 
discrepancy of the data on UV-induced phlorotannin ac-
cumulation in different brown algal species. For example, 
exposure to UV-B radiation led to the two-fold increase of 
phlorotannin concentration in the tissues of A. nodosum 
(Pavia et al., 1997), but had no such effect on Fucus vesicu-
losus (Creis et al., 2015). As phlorotannin content in the 
tissues of F. vesiculosus is generally higher than in A. no-
dosum, we may suppose that being a mid-intertidal spe-
cies, F. vesiculosus constitutively accumulates sunscreen 
substances which make it less sensitive to the increased 
UV radiation. A similar situation was reported for higher 
plants — Arabidopsis mutants permanently produce sun-
screen flavonoids (Bieza and Lois, 2001). For Lessonia ni-
grescens (Laminariales) it was shown that UV-protective 
functions were mostly attributed to the cell wall- bound 
phlorotannin fraction (Gómez and Huovinen, 2010).

The ability of brown macrophytic algae to bind 
heavy metals depends on both their cell wall polysac-
charides (Davis et al., 2003)  and phlorotannins (Con-
nan and Stengel, 2011). It was shown that A. nodosum 
phlorotannin extract collected from a site with a rela-
tively low anthropogenic burden contained copper, 
cadmium, chromium and zinc. A. nodosum and F. ve-
siculosus exposed to an increased copper concentration 
demonstrated a decrease of total phenolic content and 
phlorotannin redistribution between the main three cell 
fractions, with an increase in the relative content of the 
cell wall-associated and exuded phlorotannins (Connan 
and Stengel, 2011).

Another common function of phlorotannins and 
polyphenols of higher plants is their contribution to 
cell wall formation and rigidification (Schoenwaelder 
and Clayton, 1999; Bidlack and Dashek, 2016) Phloro-
tannins are one of the main constituents of brown algal 
cell walls, along with alginate, fucoidan and cellulose 
(Schoenwaelder and Clayton, 1998, 1999). They are in-
corporated into the cell walls during the period of ac-
tive cell growth, presumably contributing to cell wall 
rigidification via cross-linking reactions catalyzed by 
vanadium-dependent haloperoxidases (Schoenwaelder 
and Clayton, 2000; Arnold and Targett, 2003; Koivikko 
et al., 2005; Salgado et al., 2009).

Thus, several functions of phlorotannins corre-
spond well to the functions of vascular plant pheno-
lics. However, there are also some data implying that 
the spectrum of physiological action of polyphenols in 
brown algal cells and tissues is much wider than in the 
higher plants. Moreover, phlorotannins might not be 
considered typical secondary metabolites — most like-
ly they combine both primary and secondary roles in 
cell metabolism and development (Arnold and Targett, 
2002). Now we will discuss the data which do not align 
with the concept of phlorotannins being typical protec-
tive secondary metabolites.

First of all, the dynamics of phlorotannin meta-
bolic turnover are not similar to those of the protective 
secondary compounds in vascular plants. Higher plant 
polyphenolics performing chemical defence are usually 
characterized by a minor rate of metabolic turnover, 
which means high initial cost of biosynthesis of these 
compounds, but low fixed costs for their maintenance 
(Coley et al., 1985). On the contrary, Arnold and Tar-
gett (2000) reported a significant turnover of phloro-
tannins in algal cells, both in laboratory and in natural 
conditions. The rate of polyphenol metabolism varied 
in different brown algal species, which might indicate 
a difference in the use of these compounds. Many spe-
cies of brown algae contain an amount of phlorotannins 
(15–25% DW) which appears to be too much to consti-
tutively perform the protective functions. There are data 
showing that the anti-herbivory effect (Boettcher and 
Targett, 1993) and antioxidant properties (Heffernan et 
al., 2014)  are mostly confined only to specific phloro-
tannin fractions, which might not be dominating ones. 
For example, Boettcher and Targett (1993) showed that 
high molecular weight phlorotannins were the most ef-
fective in decreasing herbivore assimilation, and accord-
ing to the data of phlorotannin profiling (Steevensz et 
al., 2012), some brown algae contain very little of this 
phlorotannin fraction.

Luder and Clayton’s (2004)  detailed study of Eck-
lonia radiata showed that besides herbivory suppression, 
the accumulation of physodes contributes also to the 
wound-healing process. First of all, phlorotannins exud-
ed from the damaged cells promote wound “clotting” by 
protein precipitation and also disinfect the wound due 
to their antibacterial effect. Then, at an early step of the 
regeneration process, some new medullary cells contain-
ing a considerable amount of physodes (which is gener-
ally not typical for these cells) appear in the wound re-
gion. During the next three days, the number and size of 
physodes in these cells increase, indicating an enhanced 
rate of phlorotannin biosynthesis. Finally, after the for-
mation of the new cortical layer, the phlorotannins from 
the peripheral physodes are partially transferred to the 
cell walls (Luder and Clayton, 2004).

Phlorotannins provide chemical defense against 
different sorts of epiphytic organisms, which are sup-
posed to be the natural enemies of marine macrophytes. 
In physiologically relevant concentrations, phlorotan-
nins are reported to be effective against bacteria, poly-
chaetes (Lau and Qian, 1997) and barnacles (Lau and 
Qian, 2000; Wikström and Pavia, 2004). Interestingly, 
the phlorotannin extracts taken from the two Fucus spe-
cies (F. evanescens and F. vesiculosus) have the same total 
amount of polyphenols, but they influence the common 
fouling organism Balanus improvisus (Cirripedia) differ-
ently in laboratory conditions, with F. vesiculosus extract 
being much more effective (Wikström and Pavia, 2004). 
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This can likely be explained by the different composi-
tion of the phlorotannins extracted from these two algal 
species. It was shown that F. vesiculosus contains a rela-
tively high amount of low molecular weight phlorotan-
nins (Steevensz et al., 2012), so we may suppose that this 
particular fraction provides an antifouling effect.

One of the most interesting specific functions of 
phlorotannins is their versatile contribution to algal 
early embryogenesis (Schoenwaelder and Clayton, 1998; 
Schoenwaelder, 2002; Potin and Leblanc, 2006; Berglin 
et al., 2004; Tarakhovskaya, 2014; Tarakhovskaya et al., 
2017). This process is described in one of the most stud-
ied algal models  — fucoid zygotes. The massive release 
of phlorotannins out of the zygote in the first minutes 
after fertilization (just before the start of cell wall forma-
tion) provides a block of polyspermy, which is crucial for 
later embryogenesis, because the polyspermy may lead 
to serious abnormalities in zygote development. Secreted 
polyphenols affect antherozoids by quickly reducing their 
motility. This process has been reported for many fucoid 
species (Schoenwaelder, 2002). During the first 6–10 h of 
fucoid zygote development, a primary cell wall is formed, 
and starting from ~3 h after fertilization, as a result of the 

temporary intensification of biosynthesis of the cell wall 
matrix, the adhesive material appears on the zygote sur-
face (Tarakhovskaya, 2014). Both the cell wall and the ad-
hesive material contain phlorotannins as one of the main 
constituents. Because of the hydroxyl groups exposed to 
the surface of the molecule (Fig. 1), phlorotannins can re-
place H2O and form hydrogen bonds with the substrate. 
The rest of the free hydroxyl groups of phlorotannins are 
used to form a flexible net, structuring the adhesive via 
cross-linking reactions and causing its irreversible rigidi-
fication (Bitton et al., 2007; Tarakhovskaya, 2014). The 
first day of Fucus zygote development is accompanied 
by dramatic changes in the content of the low molecu-
lar weight phenolics (phloroglucinol, phloroglucinic acid, 
difucol, etc.), which apparently reflects the changes in the 
intensity of phlorotannin biosynthesis and consumption 
in the developmental processes (Tarakhovskaya et al., 
2017). Besides their participation in the prevention of 
polyspermy, cell wall formation and adhesive maturation, 
phlorotannins are also supposed to contribute to the first 
asymmetric division of fucoid zygote, which takes place 
~20 h after fertilization. During this process physodes are 
the first structures to appear in the region of the prospec-

Fig. 1 Chemical structure of phloroglucinol and subunits of the four classes of phlorotannins
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tive phragmoplast and form a distinct line across the cen-
ter of the zygote (Schoenwaelder and Clayton, 1998). Data 
imply that physodes may contribute to the sporogenesis 
process in some brown algal species not only as cell wall 
constituents. According to Phillips et al. (1994), physodes 
tend to be aggregated around the dividing nuclei in the 
central region of the immature sporangium of Lobophora 
variegata and several Zonaria species (Dictyotales) up to 
the tetranucleate stage. At the octanucleate stage, when 
the nuclei migrate to the periphery of the sporangium, 
physodes are distributed throughout the cytoplasm. Lat-
er, most of them align themselves along the prospective 
plane of cytokinesis, with very few remaining elsewhere 
in the cytoplasm (Phillips et al., 1994).

Concluding remarks

Our detailed analysis of the literature has shown that 
phlorotannins are still the least studied group of phe-
nolic compounds, especially with respect to their physi-
ological functions. The complex and diverse composi-
tion of natural phlorotannins implies that a considerable 
breakthrough can be reached only by changing the gen-
eral approach to the study of these compounds — com-
bining the methodical achievements with physiological 
implications. Many inconsistencies in the results of early 
studies arise from the impossibility of separating and 
identifying different phlorotannin species and fractions. 
Now the increasing efficiency in the HPLC-MS-based 
separation of crude or fractioned phlorotannin extracts 
(e.g., Steevensz et al., 2012) allows researchers to obtain 
much more detailed information. There are already sev-
eral studies (Wikström and Pavia, 2004; Iken et al., 2007; 
Jormalainen et al., 2008; Gómez and Huovinen, 2010) 
implying that the specific physiological functions might 
be attributed to the specific fractions of phlorotannins, 
and that algal responses to environmental factors are re-
flected not in the changes of the total polyphenol con-
tent, but in the changes of phlorotannin profiles. We 
believe that studies of the correlation between the struc-
ture of these substances and their functions will allow us 
to take a new look at known information, thus providing 
better performance in the fields of both fundamental al-
gal physiology and applied phycology.
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