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Abstract

Naturally coloured cotton is environmentally friendly, since bleaching and 
chemical dyeing are not needed during textile production. Studying molecular-
genetic mechanisms underpinning pigment production may facilitate breeding 
cotton with coloured fibre. In the current review we summarize the known data 
on structural and regulatory genes involved in biosynthesis of flavonoid pig-
ments proanthocyanidins (PAs) in brown and caffeic acid (CA) derivates in green 
fibre. The first chapter considers the first studies on fibre cotton inheritance, 
from the beginning of the last century. Then, we briefly review the biochemical 
and physico-chemical methods proving the presence of PAs in brown fibre and 
derivatives of CA in green cotton fibre. The biochemical analysis of coloured 
cotton fibre was followed by genetic studies of structural genes coding for en-
zymes participating in PAs and CA biosynthesis, transport and oxidation pro-
cesses. We summarize the data on the genes coding for transcription factors 
from the MBW (MYB-bHLH-WD40) regulatory complex, which controls flavonoid 
biosynthesis in coloured cotton fibre. The regulatory gene most interesting as a 
target for markers-assisted breeding and genome editing is GhTT2-3A. 
Keywords: brown fibre, caffeic acid, flavonoids, green fibre, Gossypium, MBW 
regulatory complex, proanthocyanidins

Introduction

Cotton (Gossypium L.) is an important crop. The raw materials obtained from 
cotton are used in the textile and military industries due to the unique properties 
of cotton fibres, as well as in the pharmaceutical, food, and chemical industries 
due to the high content of some valuable metabolites. (Gong et al., 2018). Veg-
etable oils isolated from cotton seeds contain a significant amount of such fatty 
acids as palmitic, stearic, arachidic, oleic and linoleic acid (Dinesh K. Agarwal 
et al., 2003). The biological activity of gossypol extracted from cotton root, bolls 
and floral organs leads to it being used as a valuable pharmaceuticals component 
(Wang et al., 2009). Cotton fibre serves as an indispensable source of raw materi-
als in the fabric manufacture. However, bleaching and chemical dyeing of fabrics 
during production contribute to environment pollution. In this regard, naturally 
coloured cotton fibre which is also called “eco-friendly cotton” can be used for 
the production of environmentally friendly fabrics (Nimon and Beghin, 1999). 
Furthermore, the use of naturally coloured cotton reduces the cost of fabric, since 
expensive bleaching and chemical dyeing are no longer needed. 
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The current review summarizes known data on 
molecular-genetic mechanisms underpinning pigmen-
tation of fibre during cotton plant development. The 
metabolic pathways as well as structural and regulatory 
genes related to pigment synthesis in green and brown 
cotton fibre are considered. 

1. Green and brown fibre colour —  
the first steps in the investigation

Coloured cotton fibres are characterised by different 
shades from cream to rust, but green and brown fibres 
are prevalent (Dutt et al., 2004). Derivatives of caffeic 
acid accumulating in the suberin layer are known to pro-
vide green fibre colour (Yatsu, Espelie, and Kolattukudy, 
1983; Schmutz et al., 1993; Schmutz, Jenny, and Ryser, 

1994; Feng et al., 2017). Brown pigmentation of cotton 
fibre is caused by the presence of proanthocyanidins 
(PAs) in cell vacuoles (Xiao et al., 2007, 2014; Feng et al., 
2014; Malik et al., 2015) (Fig. 1).

The first investigations related to the genetic aspects 
of fibre colour date from the beginning of the last cen-
tury. It was established that the green fibre trait is domi-
nant over the brown and white colour traits (Harland, 
1932; Hutchinson and Silow, 1939). Later, it was shown 
that the green colour fibre trait is regulated by one gene 
with incomplete dominance (Richmond, 1943).

At the same time, after crossing uncoloured and 
reddish-brown Gossypium plants it was observed that 
the genotypes with cream and light-brown fibres are 
heterozygous due to the splitting ratio and incomplete 
dominance (Balls, 1908; Kottur, 1923; Richmond, 1943; 

Fig. 1. The examples of white and brown cotton samples from Herbarium collection of N. I. Vavilov All-Russian Institute of Plant Genetic Re-
sources.
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Zhang et al., 2002). After further research it was shown 
that the formation of brown cotton fibre is controlled by 
a single locus containing genes with incomplete domi-
nance (Ware, 1932). 

Twelve years later, it was reported that there are six 
Lc genes (Lc1–Lc6) that determine fibre colour in the 
Gossypium genome (Silow, 1944). Further monosomic 
analysis showed that the Lc1 gene, which is responsible 
for brown fibre colour, is located in chromosome 7 (En-
drizzi and Taylor, 1968). 

In 1985 it was first established that condensed tan-
nins or proanthocyanidins (PAs) are responsible for 
brown pigmentation in cotton fibre (Ryser and Hollo-
way, 1985). In 1994  caffeic acid (CA) derivatives were 
extracted from green cotton fibre for the first time (Sch-
mutz et al., 1994). After this discovery, the study of the 
molecular mechanisms controlling the biosynthesis of 
these pigments began.

2. Proanthocyanidins in  
brown cotton fibre

Flavonoids are plant secondary metabolites derived from 
the general phenylpropanoids pathway (Schijlen, Ric 
de Vos, van Tunen, and Bovy, 2004; Koes, Verweij, and 
Quattrocchio, 2005; Panche, Diwan, and Chandra, 2016). 
Flavonoids have a broad spectrum of functions in plants 
including protection against adverse environmental fac-
tors such as extremal temperature, ultraviolet radiation 
damage and pathogens (Alonso-Amelot, Oliveros, and 
Calcagno-Pisarelli, 2004; Takahashi et al., 2010). 

PAs (also condensed tannins) are a class of oligo-
meric flavonoids with the diphenylpropane common 
chemical structure (C6-C3-C6), which includes two 
aromatic rings with a three-carbon bridge that forms a 
heterocyclic ring (Fig. 2)  (Feng et al., 2014; Ma et al., 
2016b). PAs have antioxidant and anti-inflammation 
activities (Salunkhe et al., 1983). In plants, PAs are also 
responsible for pigmentation of plant tissues and usu-
ally accumulate in seed coats, leaves, stems and roots 
(Prasad, 2000; Peng et al., 2012). 

Evidence that PAs are contained in brown cotton fi-
bres was first obtained with the qualitative colour reac-
tion with DMACA (dimethylaminocinnamaldehyde), 
which is commonly used to detect PAs in plant tissues, 
leading to blue staining (Harland, 1932; Hutchinson and 
Silow, 1939; Xiao et al., 2007). The comparative treatment 
of white and brown cotton fibres with DMACA has dem-
onstrated that brown cotton fibre turned into dark-blue, 
while the mature white fibre did not show a significant 
difference in colouration (Li et al., 2013). In addition, the 
more days after anthesis (DPA) have passed, the darker 
the brown colour shade of cotton fibre. This observation 
indicates that the oxidized PAs content increases propor-
tionally with maturation of cotton bolls (Feng et al., 2014).

The structure of PAs units in brown cotton fibre was 
confirmed using a matrix-assisted laser desorption/ion-
ization time of flight mass spectrometry (MALDI-TOF 
MS), nuclear magnetic resonance (NMR) and liquid 
chromatography-mass spectrometry (LC-MS) analysis 
(Nechepurenko et al., 2009; L. Wang et al., 2016). The 
results revealed that an initiating unit derived from gal-
locatechin; all extension units contain 3 hydroxyl groups 
in B-ring (Bogs, 2005; He, Pan, Shi, and Duan, 2008; 
Ershik and Buzuk, 2009; Feng et al., 2014; Xiao et al., 
2014). The structures of PAs are different in white and 
brown cotton fibres. The content of prodelphinidin (PD) 
and proanthocyanidin (PC) are equal in white cotton, 
while in brown 90 % PD and 10 % PC was found (He et 
al., 2008; Feng et al., 2014). Moreover, it was detected 
that the structure of PAs in white cotton was modified 
by a galloyl group (Xiao et al., 2014; Feng et al., 2014). 
Also, the MALDI-TOF MS proteomic analysis of brown 
cotton fibre identified that 21  proteins were related to 
secondary metabolism processes and 15  of them were 
associated with the flavonoid biosynthesis pathway (Li 
et al., 2013).

PAs BIOSYNTHESIS DURING  
THE PHENYLPROPANOID AND FLAVONOID PATHWAY

Structural genes involved in PAs biosynthesis. PAs are 
synthesized during the flavonoid pathway in differ-
ent plant tissues (Debeaujon, 2003; Bogs, 2005; He et 
al., 2008). Identified genes involved in this pathway in 
G. hirsutum are listed in Table 1.

Phenylalanine is a precursor for all flavonoids, in-
cluding PAs (Peng et al., 2012; Li et al., 2013; Thomas and 
ElSohly, 2016). The phenylpropanoid pathway begins 
with transformation of phenylalanine by phenylalanine 
ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H) 
and 4-coumarate CoA ligase (4CL) into 4-Coumaroyl-
CoA (Fig. 2). 4-Coumaroyl-CoA exposed such enzymes 
as chalcone synthase (CHS), chalcone isomerase (CHI), 
flavanone hydroxylase (F3H), flavonoid 3’-hydroxylase 
(F3’H), flavonoid 3’, 5’-hydroxylase (F3’5’H) and dihy-
droflavonol 4-reductase (DFR) to leucoanthocyanidins 
(Fig. 2). Leucoanthocyanidins and anthocyanidins are 
converted into flavan-3-ols by leucoanthocyanidin re-
ductase (LAR) and anthocyanin reductase (ANR), re-
spectively (Fig. 2). Anthocyanidin synthase (ANS) and 
anthocyanidin reductase (ANR) lead to anthocyanidin 
formation from leucoanthocyanidin  — a PAs precur-
sor (Bogs, 2005; Peng et al., 2012; Jiafu Tan et al., 2013; 
Malik et al., 2015). PAs represent the polymer based on 
flavan-3-ol units (Nechepurenko et al., 2009; Feng et al., 
2014; Xiao et al., 2014).

The flavonoid biosynthesis pathway determines pig-
mentation in cotton fibre (Feng et al., 2013, 2014; Liu et 
al., 2018). Recently it was demonstrated that overexpres-
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Table 1. The structural genes which are involved in PAs biosynthesis

G. hirsutum 
gene

Chromosome;
Gene ID (CottonFGD*) The protein family Function References

GhPAL A01; Gh_A01G1839 
D01; Gh_D01G2080 PAL/histidase family Phenylalanine ammonia-lyase 

activity Feng et al., 2017

GhPAL2 A06; Gh_A06G0667 
D06; Gh_D06G0758 Qin et al., 2017

GhC4H1 A10; Gh_A10G1590
D10; Gh_D10G1845 Cytochrome P450

Oxidoreductase activity, acting on 
paired donors, with incorporation 
or reduction of molecular oxygen; 
iron-ion binding; heme binding

Ling Fan and Wen-Ran Hu, 
2012

GhC4H2 A13; Gh_A13G2057
D13; Gh_D13G2458

Ling Fan and Wen-Ran Hu, 
2012; Feng et al., 2013

GhCHS A10; Gh_A10G1079
D10; Gh_D10G1429

Chalcone/stilbene 
synthases family

Transferase activity (transferring 
acyl groups other than amino-acyl 
groups)

Feng et al., 2013

GhCHI A05; Gh_A05G3491
D04; Gh_D04G1926

Chalcone-flavonone 
isomerase family protein

Catalyses the intramolecular 
cyclization of bicyclic chalcones 
into tricyclic (S)-flavanones

Xiao et al., 2007; Li et al., 2013;  
Malik et al., 2015

GhF3H A12; Gh_A12G0549
D12; Gh_D12G0566

2-oxoglutarate-dependent 
dioxygenases superfamily Oxidoreductase activity Xiao et al., 2007;  

Malik et al., 2015

GhF3’H A12; Gh_A12G2650
D12; Gh_D12G1798 Cytochrome P450 Oxidoreductase activity Feng et al., 2013

GhF3’5’H A07; Gh_A07G1098
D07; Gh_D07G1197

GhDFR A05; Gh_A05G1647
D05; Gh_D05G1836

Reductase–epimerase–
hydrogenase

Catalytic activity; coenzyme 
binding Xiao et al., 2007;  

Malik et al., 2015
GhANS A08; Gh_A08G1593

D08; Gh_D08G1902
2-oxoglutarate-dependent 
dioxygenases superfamily Oxidoreductase activity

Gh3GT A05; Gh_A05G3537
D04; Gh_D04G0070 Glycosyltransferase family Catalyzes the glycosylation of 

flavonoids at the 3-O-position Liu et al., 2018

GhANR A05; Gh_A05G1424
D05; Gh_D05G1596

Reductase–epimerase–
hydrogenase

Catalytic activity; coenzyme 
binding

Xiao et al., 2007;  
Malik et al., 2015; Yan et al., 2018

GhLAR A12; Gh_A12G1558
D12; Gh_D12G1686

NAD(P)-binding domain 
superfamily Oxidoreductase activity Yan et al., 2018

Gh4CL1 A02; Gh_A02G1344
D03; Gh_D03G0479 AMP-binding Ligase activity

Feng et al., 2017;
Ling Fan and Wen-Ran Hu, 
2012

Gh4CL2 A02; Gh_A02G1344
D03; Gh_D03G0479

GhCAD1 A02; Gh_A02G1320
D03; Gh_D03G0457

Zinc-containing alcohol 
dehydrogenase family

Cinnamyl-alcohol dehydrogenase 
activity; zinc-ion binding

Ling Fan and Wen-Ran Hu, 
2012

GhCAD3 A05; Gh_A05G1579
D05; Gh_D05G1757

GhCAD7 A11; Gh_A11G2005
D11; Gh_D11G1980

GhCAD5 A12; Gh_A12G2203
D12; Gh_D12G2382

Zinc-containing alcohol 
dehydrogenase family

Cinnamyl-alcohol dehydrogenase 
activity; zinc-ion binding

Qin et al., 2017;
Ling Fan and Wen-Ran Hu, 
2012

GhCAD6 A12; Gh_A12G0193
D12; Gh_A12G0195

* CottonFGD — Cotton Functional Genomics Database
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sion of Gh3GT coding the flavonoid 3-glucosyltransfer-
ase leads to green cotton fibre formation in brown cot-
ton line (H.-F. Liu et al., 2018). Furthermore, three fibre 
phenotypes, including brown, white and green colour 
traits, were observed under downregulation of the Gh-
CHI gene in brown cotton using the RNAi-mediated in-
hibition approach (Abdurakhmonov et al., 2016). 

The suppression of the F3H gene leads to accumu-
lation of naringenin (NAR), which inhibits the rate of 
fibre development (Tan et al., 2013). Transformation of 
F3H-RNA interference segment into the DNA of brown 
cotton fibre of the G. hirsutum line has demonstrated 
PA content reduction and a fibre shortening compared 

with control samples (Gong et al., 2014). On the other 
hand, the overexpression of the F3H gene has no effect 
on cotton fibre length. This experiment has shown that 
flavonoid metabolism could be associated with fibre pig-
mentation and quality (Dutt et al., 2004; Hua et al., 2009; 
Tan et al., 2013; Feng et al., 2015; Hande et al., 2017). 

Several investigations show that the transcription 
level of structural flavonoid biosynthesis genes is higher 
in brown than in white cotton fibre. Transcription analy-
sis reveals that the genes related to the PAs biosynthesis 
pathway from phenylalanine to flavan-3-ols were up-
regulated in brown cotton (Xiao et al., 2014). The ex-
pression level of main structural genes such as GhCHI, 

Fig. 2. Anthocyanins and PAs biosynthesis during flavonoid pathway (the scheme are modified from Schijlen, et al. 2004). Enzymes are involved 
in biosynthesis, abbreviated as: PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-(hydroxy)cinnamoyl CoA ligase; CHS, 
chalcone synthase; CHI, chalcone isomerase; F3H, flavanone hydroxylase; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; LAR, 
leucoanthocyanidin reductase; ANR, anthocyanidin reductase. MATE/TT12  multidrug and toxin extrusion family, AHA10/TT13  — H+-ATPase 
isoform 10, LAC15/TT10 — laccase 15. MATE and AHA10 participate in transportation of PAs precursors from cytoplasm to vacuole. Early bio-
synthetic genes and later biosynthetic genes are designate as EBGs and LBGs, respectively. LBs regulated by MBW complex (TT2-TT8-TTG1) in 
monocots plants, where MBW is Myb-bHLH-WD40 repeat complex. 
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GhF3H, GhDFR, GhANS and GhANR at 8, 16, 20  and 
30  DPA was higher in brown compared with white 
and green cotton fibre (Xiao et al., 2007; Malik et al., 
2015). Similar differences in the transcriptional activity 
of GhPAL, GhCHI, GhDFR, Gh3GT, GhANR (Li et al., 
2013) and GhC4H, GhCHS, GhF3’H, GhF3’5’H genes 
(Feng et al., 2013) in white and brown cotton were no-
ticed. 

The high transcription level of GhANS and GhANR 
leads to anthocyanidin formation from leucoanthocyan-
idin (Peng et al., 2012; Malik et al., 2015). Since the ex-
pression of the identified genes play a key role in the PA 
biosynthesis pathway, it might be possible to control PA 
accumulation and, as a result, to control shades of brown 
colour during fibre development (Malik et al., 2015). 

The transcription factors in PAs biosynthesis. Fla-
vonoid biosynthesis is controlled by many transcription 
factors (TFs) such as R2R3-MYB-type factors, basic he-
lix–loop–helix (bHLH) and WD40  repeat (Koes et al., 
2005; Qi et al., 2011; Lloyd et al., 2017). These TFs could 
form a MBW complex that has a determinant role in the 
regulation of pigment biosynthesis during the flavonoid 
pathway (Baudry, Caboche, and Lepiniec, 2006). Using 
Arabidopsis as an experimental model, it was shown that 
R2R3-MYB proteins activate early anthocyanins and PA 
biosynthetic genes (EBGs) (Fig. 2). The expression of late 
biosynthetic genes (LBGs) is controlled by MYB-bHLH-
WD40 repeat (MBW) complex (Fig. 2) (Li, 2014).

It was reported that in Arabidopsis the R2R3-MYB-
coding gene AtTT2  (TRANSPARENT TESTA 2)  initi-
ates the PAs biosynthesis (Nesi et al., 2001). Two homol-
ogous candidate genes — GhMYB10 and GhMYB36 (lat-
er GhTT2-3A)  — were isolated from tetraploid cotton 
using BLAST analysis and related to R2R3-type MYB 
transcription factors (Table 2) (Lu, Roldan, and Dixon, 
2017). Transactivation assays shown that these genes are 
the part of the regulative MBW complex that could ac-
tivate LAR and ANR promoters (Albert et al., 2014; Jun 
et al., 2015; Li, Chen et al., 2016; Li, Dong et al., 2016; 
Liu, Jun, and Dixon, 2014). The simultaneous presence 
of both proved that MYBs from the G. hirsutum genome 
lead to more effective PAs biosynthesis (Lu et al., 2017). 

The GhTT2-A07  gene (later GhTT2-3A), which is 
related to brown colour cotton fibre as Lc1  locus, was 
identified (Table 2) (Hinchliffe et al., 2016). Using trans-
genic analysis and expression levels, the GhTT2-3A gene 
has been shown to regulate the formation of brown fi-
bres (Yan et al., 2018). 

The Arabidopsis bHLH-type gene AtTT8 (TRANS-
PARENT TESTA 8) is transcriptionally activated by 
AtTT2; it has a further synergic cooperative influence on 
the PAs structural genes and enhances their expression 
level ( Baudry et al., 2004; Koes et al., 2005; Baudry, Cab-
oche, and Lepiniec, 2006; Shangguan, Yang, Zhang, and 
Wang, 2016). Similar observations were reported for 

GhTT2-3A and GhbHLH130D (AtTT8 ortholog) cotton 
genes — it was established that GhTT2-3A activates the 
GhbHLH130D gene (Table 2) (Gong et al., 2018). Dual-
luciferase assays demonstrated that the GhTT2-3A and 
GhbHLH130D genes affect the PAs biosynthesis struc-
tural genes, GhANR and GhLAR, and consequently in-
duce PAs accumulation in cotton fibre (Yan et al., 2018).

It was established that WD40-coding gene AtTTG1 
(TRANSPARENT TESTA GLABRA 1) in Arabidopsis is 
responsible for seed coat production, root hair develop-
ment and control of anthocyanins biosynthesis (Oppen-
heimer et al., 1991; Galway et al., 1994; Liu, Osbourn, 
and Ma, 2015). Among four GhTTG1-GhTTG4  genes 
known to be involved in the cotton fibre growing initia-
tion, GhTTG1 and GhTTG3 demonstrate close sequence 
similarity to the known AtTTG1  anthocyanin regula-
tory gene (Table 2)  (Walker et al., 1999; Mehboob-ur-
Rahman et al., 2012; B. Liu, Zhu, and Zhang, 2015). 
Furthermore, a transient analysis determined that the 
GhTTG1 and GhTTG3 genes were able to complement 
the purple pigment in anthocyanin-deficit ttg1  Arabi-
dopsis mutants, in contradistinction to GhTTG2  and 
GhTTG4 (Humphries et al., 2005; Marinova et al., 2007). 
Thus, WD-repeat GhTTG1  and GhTTG3  genes play a 
significant role during cotton fibre formation and in PAs 
biosynthesis regulation (Humphries et al., 2005). 

Other genes. Structural genes involved in PAs 
modification, transport and oxidation processes have 
also been identified and investigated in the G. hirsutum 
genome. In particular, the TT12 gene encodes proteins 
related to MATE (MULTIDRUG AND TOXIN EX-
TRUSION) family proteins which are responsible for 
the transfer of epicatechin-3’-O-glucoside, a precursor 
of PAs, into a central vacuole (Marinova and Pourcel, 
2007; Zhao and Dixon, 2009). The GhTT12  gene was 
studied using genetic engineering manipulations (Gao 
et al., 2016). A full-length cDNA of TT12  from brown 

Table 2. Regulatory genes which are involved in  
PAs biosynthesis pathway in cotton

G. hirsutum 
gene

Chromosome;
Gene ID (CottonFGD*)

The 
protein 
family

References

GhMYB10 A06; Gohir.A06G075700
D06; Gohir.D06G074700

MYB 
domain

Lu, Roldan, 
and Dixon, 
2017

GhTT2-3A 
(GhMYB36)

A07; Gh_A07G2341
D07; Gh_D07G0169

Hinchliffe et 
al., 2016

GhbHLH130D A11; GH_A11G1273
D11; GH_D11G1302

bHLH 
domain

Yan et al., 
2018

GhTTG1 A05; Gohir.A05G415900 WD-repeat Humphries 
et al., 2005

GhTTG3 D04; Gohir.D04G000300

* CottonFGD — Cotton Functional Genomics Database
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cotton fibre was cloned in N. tabacum to study the ex-
pression level. The results have confirmed the potential 
participation of the GhTT12 gene in PAs transportation 
(Gao et al., 2016). 

Phylogenetic analysis supposes that cotton’s MATE 
proteins are merged in the group with the TT12-like 
MATE transporters in Arabidopsis participating in PA 
transportation from the cytoplasmic matrix into the vac-
uole (Xu et al., 2018). The GhMATE12, GhMATE16 and 
GhMATE38 genes identified using phylogenetic analysis 
share a similar transcription activity with the GhTT12 gene 
at specific development stages. As a result, detected genes 
could participate in transportation of PAs into the vacu-
ole along with GhTT12 (Xu et al., 2018). Besides, it was 
shown that the transcript level of the GhMATE1a and 
GhMATE1b genes was higher in brown than in white cot-
ton (Feng et al., 2014). The highest value was enriched to 
21 DPA for the GhMATE1a gene and to 27 DPA in the 
case of GhMATE1b (Feng et al., 2014).

It is known that Aha10  (H+-APTase isoform 10) 
belongs to p-type ATPase family plasma membrane H+ 

pump and is involved in the PAs accumulation process in 
the vacuole (Baxter et al., 2005; Appelhagen et al., 2015). 
Aha10 mutants are characterized by the formation of a 
large number of small vacuoles instead of one big central 
vacuole. In addition, production of final metabolites in 
the flavonoid biosynthesis pathway such as PAs, antho-
cyanidins and epicatechins breaks down while the pri-
mary products are present (Baxter et al., 2005). 

The AtTT10 gene of Arabidopsis is responsible for 
a laccase-like 15  enzyme (LAC15) synthesis, involved 
in conversion of colourless epicatechin monomer and 
oligomers to brown oxidized tannins in the seed coat 
(Pourcel et al., 2005; Lloyd et al., 2017). The gene ortho-
logue to AtTT10 was identified in G. hirsutum (Hinchliffe 
et al., 2016).

The AtTT13  gene from Arabidopsis is responsible 
for PA production in the seed coat endothelium (Gon-
zalez et al., 2016; Lloyd et al., 2017). The GhTT13 gene, 
an orthologue to AtTT13, was detected in upland cotton 
G. hirsutum (Hinchliffe et al., 2016).

Thus, the control of PAs biosynthesis is controlled 
by factors which are also associated with anthocyanin 
biosynthesis. The main structural genes, as well as the 
components of the MBW complex controlling the syn-
thesis of PAs, are currently discovered.

3. Caffeic acid derivates in  
green cotton fibre

Caffeic acid (CA) represents a cross-linked phenolic 
polymer that derived from three types of phenylpropane 
units: coniferyl, sinapyl and p-coumaryl alcohol (Fig. 3) 
(Schmutz et al., 1994; Ma et al., 2016a). CA is involved 
in lignin biosynthesis, which is a main structural com-

ponent of the secondary cell wall in higher plants (Riley 
and Kolattukudy, 1975; Liu, Luo, and Zheng, 2018). It 
was reported that the secondary cell wall of cotton fibre 
contains mainly cellulose (about 94 %) and 0.4–1 % lig-
nin (Fan et al., 2009). 

It was shown that CA derivatives are responsible for 
the formation of green coloured cotton fibre: about 70 % 
of ω-hydroxydocosanoic acid and 25 % of docosanedoic 
acid were isolated from green cotton fibre, compared 
with 0.5 % in white fibre (Schmutz et al., 1993, 1994). 
Using an ultra-violet spectroscopy and a nuclear-mag-
netic-resonance (1H-NMR) spectroscopy it has been 
shown that glycerol, CA and esterified CA constitute the 
main part of the wax fraction in green cotton fibre (Sch-
mutz et al., 1993).

Green cotton fibre demonstrates the significant 
increase in UV-absorption properties  — the radical-
scavenging activity grate was approximately 20  times 
more than white cotton fibre due to the accumulation of 
CA derivatives (Re et al., 1999; Ma et al., 2016a; Masek, 
2016). A decrease in the ability of radical scavenging ca-
pacities is observed under alkaline solution treatment of 
green and brown fibre cotton due to enchasing of fibre 
hydrophilic properties leading to barrier-free penetra-
tion of free radicals to the active component inside the 
fibre. The reason is alkaline hydrolysis of the ester bond 
and the release of water-soluble CA (Ma et al., 2016b). 
Moreover, the significant changes in fibre colour have 
been observed after alkaline treatment (Hinchliffe et al., 
2015). This emphasizes the essential role of CA and its 
derivatives in fibre pigmentation and indicates the ne-
cessity of the phenylpropanoid pathway in colouration 
of green cotton fibre (Fan et al., 2009). 

SUBERIZATION OF GREEN COTTON 

Suberin and cutin biopolymers usually occur on the sur-
face of higher plants — suberin accumulates into inner 
cell-wall and сutin is found at the surface of epidermal 
cells (Moire et al., 1999; Nawrath, 2002; Graça, 2015). 
These compounds protect plant leaves from adverse envi-
ronmental factors (Kolattukudy, 1980; Yatsu et al., 1983). 
Suberin is formed from poly-functional fatty acids that 
are bound by ester bonds with glycerol (Kolattukudy, 
1980; Matzke and Riederer, 1991; Graça, 2015) Epidermal 
cells of cotton seeds with green fibres produce both cutin 
and suberin (Ryser et al., 1983; Yatsu et al., 1983; Schmutz 
et al., 1993; Stankovič Elesini et al., 2002). 

Suberization of the cotton seed coat is characteristic 
feature of Gossypium species (Ryser et al., 1985). However, 
a suberin layer has not been found in the seed coat of brown 
and white cotton fibres (Ryser et al., 1983, 1985; Schmutz et 
al., 1993). Multiple concentric rings of laminar ultrastruc-
ture similar to the suberin layer in the cell wall of green 
cotton fibre were demonstrated using electron microscopy 
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(Yatsu et al., 1983). Simultaneously, the white fibre cotton 
cell wall had a thin outer cuticle (Yatsu et al., 1983).

Phenylalanine ammonium-lyasa is recognized to 
be an important agent in converting phenylalanine into 
trans-cinnamic acid. Results of an experiment with the 
addition of 2-aminoindan-2-phosphonic acid, known as 
an inhibitor of phenylalanine ammonium-lyasa, to cul-
tivating ovules have shown that an esterified CA is co-
valently linked with suberin and plays a significant role 
in the attachment of suberin to a cellulosic secondary 
wall (Schmutz et al., 1993). Moreover, green fibre colour 
could not be observed if the suberin formation is inhib-
ited during tissue development.

There are some studies describing an accurate chem-
ical structure of aliphatic components of the suberin 
layer (Schmutz et al., 1993; Ma et al., 2016a; Feng et al., 
2017). It was demonstrated by reverse-phase analytical 
high-pressure liquid chromatography (HPLC) that ex-
tracted yellow pigment from the wax of green fibre cot-
ton contains two major components and several minor 
ones. Namely, 22-O-caffeoyl-22-hydroxydocosanoic acid, 
glycerol ester, and 22-O-caffeoyl-22-hydroxydocosanoic 
acid were identified as main components of yellow pig-
ment extract. According to the ultra-violet visible spec-
troscopy data, the minor components could be referred 

to CA derivatives (Ma et al., 2016a). Also, several fatty ac-
ids including dimethyl-2-hydroxysuccinate monoglycer-
ide and heptacosanoic acid monoglyceride were isolated 
from green cotton fibre (Schmutz et al., 1993; Ma et al., 
2016a; Feng et al., 2017). The structures were established 
by NMR spectroscopy on nuclei 1H and 13C, H-H Cor-
relation Spectroscopy (H-COSY), Matrix Assisted Laser 
Desorption Ionization Time-of-Flight mass spectrometry 
(MALDI-TOF MS) and were coincided with earlier data 
(Schmutz et al., 1994, Torresdepinedo et al., 2007; Feng 
et al.,, 2017). It was found that from the isolated fatty ac-
ids, 22-O-caffeoyl-22-hydroxydocosanoic acid and 22-O-
caffeoyl-22-hydroxymonodocosanoin (yellowish and a 
green-yellow powder, respectively) were demonstrated 
to be responsible for pigmentation (Feng et al., 2017). It 
was observed that the higher the concentration of 22-O-
caffeoyl-22-hydroxymonodocosanoin, the deeper green 
colour of the cotton fibre (Feng et al., 2017).

STRUCTURAL GENES RELATED TO CA AND  
ITS DERIVATIVES BIOSYNTHESIS

CA biosynthesis is based on the phenylpropanoid path-
way (Fig. 3)  (Humphreys, Hemm, and Chapple, 1999; 
Boerjan, Ralph, and Baucher, 2003; Heldt and Heldt, 

Fig. 3. Phenylpropanoid pathway of caffeic, ferulic and sinapic acids biosynthesis (modified from Humphreys, et al. 1999). The involved en-
zymes: PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; C3H, p-Coumarate 3-hydroxylase; 4CL, 4-(hydroxy)cinnamoyl CoA 
ligase; COMT, caffeic acid 5- hydroxyferulic acid O-methyltransferase; F5H, ferulate 5-hydroxylase; pCCoA3H, p-Coumaroyl CoA 3-hydroxylase; 
CCoAOMT, caffeoyl CoA O-methyltransferase; CCR, cinnamoyl CoA reductase; CAD, cinnamoyl alcohol dehydrogenase; POD, peroxidase.
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2005; Fan et al., 2009; Li et al., 2015). Identified genes 
involved in the CA biosynthesis pathway for G. hirsutum 
are listed in Table 1.

Trans-hydroxycinnamic acid is a product of the first 
stage catalysed by PAL, which transformed into p-cou-
maric acid due to para hydroxylation with C4H (Fig. 3). It 
should be noted that p-coumaric acid is a main precursor 
of other natural phenols (Boerjan et al., 2003; Ramawat 
and Mérillon, 2013; Shahidi and Yeo, 2018). Addition 
of OH-group is catalysed by p-coumarate 3-hydroxylase 
(C3H) at the ortho-position with CA formation, which 
serves as an initial compound in ferulic and synapic acids 
biosynthesis (Fig. 3) (Heldt and Heldt, 2005).

Gyaiacyl lignin (G-lignin) consists of such mono-
lignols as coniferyl alcohol, syringine lignin (S-lignin) 
and p-Hydroxyphenyl lignin (H-lignin), formed from 
sinapyl alcohol and p-Coumaryl alcohol through the 
phenylpropanoid pathway, respectively (Fig. 3)  (Hum-
phreys et al., 1999; Boerjan et al., 2003; Vanholme et al., 
2010; Li, Pu, and Ragauskas, 2016). The ratio of mono-
lignols affects the physical properties of lignin polymer 
(Macmillan et al., 2013).

From two phenylalanine ammonium-lyase genes, 
GhPAL and GhPAL2, the expression of GhPAL has a 
higher level during initiation of fibre secondary cell 
wall thickening (Ling Fan, Wen-Ran Hu, 2012; Feng et 
al., 2014; Qin et al., 2017). It has been shown that the 
GhC4H1 and GhC4H2 genes involved in lignin and fla-
vonoid biosynthesis processes are expressed in develop-
ing cotton fibres (Ling Fan and Wen-Ran Hu, 2012). 

Gh4CL1-GhCL4 cotton genes encode 4-Coumarate 
CoA ligases (4CL), which are responsible for converting 
p-coumaric acid to p-Coumaroyl CoA and its deriva-
tives such as ferulic, caffeic and sinapic acids into CoA 
esters (Figs. 2, 3). These compounds take part in the 
phenylpropanoid pathway, providing the plant second-
ary metabolites formation (Hamberger and Hahlbrock, 
2004; Ling Fan, Wen-Ran Hu, 2012; Li et al., 2015). Four 
isoforms of the Gh4CL1-GhCL4  genes were identified 
in the genome of white and green G. hirsutum L. The 
expression profiles studding of 4CL structural genes in 
white and green cotton fibre were assayed by RT-PCR 
(Feng et al., 2017). Gh4CL3 and Gh4CL4 demonstrate a 
higher transcript level in roots and hypocotyls than in 
flowers and leaves and have a similar expression profile 
in white and green fibre gradually increased to 24 days of 
growing. Gh4CL1 expression decreased with fibre devel-
opment in white and green cotton. The highest expres-
sion level among all considered genes was observed in 
Gh4CL2 in green fibre (Feng et al., 2017).

The catalytic properties of proteins related to 4CL 
cotton structural genes displayed that Gh4CL2 has the 
highest turnover rate for caffeic, cinnamate and feru-
late in comparison to Gh4CL3  and Gh4CL4  (Feng et 
al., 2017). Gh4CL1 showed a low turnover rate also, but 

demonstrated a preference for 4-coumarat synthesis 
(Feng et al., 2017). Considering the results of expres-
sion level studding and enzyme activity of correspond-
ing genes, it can be proposed that the Gh4CL2 gene is 
involved in the metabolism of CA derivatives and is re-
sponsible for pigmentation of green cotton fibres (Ling 
Fan and Wen-Ran Hu, 2012). 

It was found that among seven GhCAD1-
GhCAD7 genes similar to AtCAD5  in A. thaliana, only 
the GhCAD6 gene showed up-regulation during cotton 
fibre development. This result displays the involvement 
of this gene in the phenylpropanoid pathway (Fan et al., 
2009; Ling Fan and Wen-Ran Hu, 2012).

Thus, the nucleotide sequences of most genes in-
volved in CA derivatives biosynthesis and modification 
have not yet been identified.

Conclusion

The article provides comprehensive knowledge of histor-
ical aspects and describes the various approaches associ-
ated with the research of phenolic pigments isolated from 
coloured cotton. Structural and regulatory genes involved 
in PAs and CA biosynthesis have been characterized in 
the current review. Biosynthesis of these plant phenolic 
compounds occurs via the phenylpropanoid pathway. 
The metabolism of PAs is most fully studied at the genet-
ic level. However, there are no studies concerning tran-
scriptional regulation of CA biosynthesis. In addition, we 
have a limited understanding of the pleiotropic influence 
of the genes responsible for colour on the fibre quality at-
tributes. Further study of the genes related to PAs and CA 
biosynthesis in combination with available data will make 
it possible to reconstruct the complete genetic regulatory 
network of the biosynthesis of these compounds.
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