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Abstract

Cytosine deaminases of the AID/APOBEC family have a weighty influence on
human health. These enzymes are part of the innate and humoral immunity;
they participate in lipid metabolism and muscle development, protect cells
from viruses and regulate retrotransposition. If the activity of AID/APOBEC de-
aminases is misregulated, they can become “weapons of mass destruction,”
causing deaminations in unprotected single-stranded DNA regions leading to
genome-wide mutagenesis. Ultimately, mutations contribute to cell malignancy
and rapid evolution of cancer cells, helping them to evade the organism’s de-
fense. Also, hypermutable tumor cells develop resistance to anti-cancer drugs.
Here we overview current understanding of the structure, functions, and regu-
lation of AID/APOBEC cytosine deaminases in connection to carcinogenesis.
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Carcinogenesis is often associated with the accumulation of a large number of
new mutations in somatic cells. In one scenario, driver mutations in proto-onco-
genes or tumor suppressor genes trigger uncontrolled cell proliferation, which is
often accompanied by a decrease in the accuracy of replication and repair (Loeb
et al., 1974; Loeb, 2001). In another, the driver mutation can by itself cause a mu-
tator phenotype that leads to mutations in oncogenes and onset of tumorigenesis.
During tumor growth, its cells accumulate additional mutations, the number of
which increases after each division. Some of these mutations enhance the tumor
aggressiveness and cause drug resistance of tumor cells; others are called “pas-
senger mutations” and do not affect carcinogenesis (Stratton et al., 2009; Martin-
corena et al., 2015; Martincorena et al., 2017; Bailey et al., 2018).

Different tumors can differ significantly by the quantity of accrued muta-
tions, mutation types, and their distribution along the genome, which depends
on the nature of mutagenic processes operating in the specific tumor. Therefore,
analysis of mutational spectra can serve as a tool to deduce what was the cause of
mutations in tumors (Rogozin et al., 2003; Alexandrov et al., 2013; Rogozin et al.,
2018). Recently, cytosine deaminases of the AID/APOBEC family have been im-
plicated in etiology in many types of tumors. Enzymes of the AID/APOBEC fam-
ily regularly participate in various cellular processes, from RNA editing to innate
and humoral immunity, by deaminating cytosine to uracil in DNA or RNA (Con-
ticello, 2008). Genome-wide deamination would cause a genetic catastrophe. The
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activity of cytosine deaminases in the cell is strictly reg-
ulated and limited to a few mRNA molecules or selected
genome loci. Aberrant regulation of deaminase activity
leads to genome-wide deaminations causing catastroph-
ic accumulation of mutations and cancer (Burns et al.,
2013; Roberts and Gordenin, 2014; Rogozin et al., 2019).

Introduction to deaminases of
the AID/APOBEC family

At the moment, 11 human enzymes of the AID/
APOBEC family are known. They have different tissue-
specific roles. All of them contain a conservative zinc-
dependent cytidine-deaminase catalytic domain (CDA)
(Samaranayake et al., 2006; Conticello, 2008; Salter et al.,
2016) (Fig. 1). Those enzymes of this family that pos-
sess enzymatic activity catalyze a simple biochemical
reaction of cytosine to uracil deamination in the single-
stranded RNA or DNA (Fig. 2). The appearance of uracil
in either RNA or DNA alters the coding properties of
the nucleic acid molecule, and mutations appear after
replication (Fig. 3, upper right corner). Also, uracil in
DNA is a substrate for base excision DNA repair. Dur-
ing repair, apyrimidinic (AP) sites and, further, single-
strand breaks/gaps can occur, which also have a muta-
genic potential (Lada et al., 2007) (Fig. 3). Breaks during
base excision repair are a prerequisite to the recombino-
genic activity of deaminases (Di Noia and Neuberger,
2004; Poltoratsky et al., 2004). Closely spaced deami-
nations on opposite DNA strands may lead to double-
strand breaks (Fig. 3, lower right). The catalytic activity
of some deaminases or deaminase modules, APOBEC2,
APOBECH4, and N-terminal domain of both APOBEC3B
and APOBEC3G is not known (Fig. 2).

APOBECI (apolipoprotein B mRNA Editing Cata-
lytic subunit 1) was the first identified member of the
AID/APOBEC enzyme family performing deamination
of cytosine in nucleic acids. In 1993, APOBECI was
shown to be the catalytic subunit of a protein-editing
complex that post-transcriptionally edits apolipoprotein
B mRNA (Chen etal., 1987; Powell et al., 1987). The com-
plete form of this apolipoprotein containing 4536 amino
acids (ApoB100) is synthesized in the liver and the small
intestine cells. Deamination of cytosine to uracil in posi-
tion 6666 of APOB mRNA leads to substitution of CAA
glutamine codon to UAA stop codon. When modified
mRNA carrying a premature stop codon is translated,
a shortened version of APOB is synthesized with a size
of 48 % of the original form (ApoB48) (Teng et al., 1993;
Davidson et al., 1995). Thus, in natural conditions,
APOBECI1 preferably deaminates only one specific cy-
tosine residue in the mRNA, though recently it was
found that, in addition to apolipoprotein mRNA,
APOBECI1 can edit 3'UTR regions of 32 different
mRNAs (Rosenberg et al., 2011). It is possible, thereby

for APOBECI to exert influence upon gene expression
by microRNA and other ways. When heterologously ex-
pressed in bacteria and yeast, APOBECI can deaminate
genomic DNA, inducing numerous substitutions in CG
pairs (Harris et al., 2002; Lada et al., 2011a).

Deaminase AID (Activation-induced deaminase)
initiates the somatic hypermutagenesis (SHM) and
class-switch recombination of immunoglobulin genes
(Muramatsu et al., 1999). During SHM, uracil in the
DNA template of the variable IG regions leads to C -
T transitions when replicated (Fig. 3). Also, uracil-con-
taining DNA may be repaired by the base excision repair
(BER) pathway. When uracil-DNA glycosylase (UNG)
cuts uracil out from DNA the intermediate product,
transient AP-sites are formed. Unprocessed AP-sites
block the major replicative DNA polymerases but could
be bypassed in error-prone fashion by Y-family transle-
sion DNA polymerases (Casali et al., 2006; Lada et al.,
2007). In another pathway of SHM, U:G pairs are rec-
ognized by DNA mismatch repair (MMR), which gen-
erates gaps in the DNA duplex. In B cells, the gaps are
oddly filled with the participation of inaccurate DNA
polymerase 1 (Fig. 3). As a result, numerous and vari-
ous point mutations appear in the variable regions of
the immunoglobulin genes of activated B-lymphocytes,
increasing the diversity of the antibodies (Muramatsu et
al., 2000; Yoshikawa et al., 2002; Papavasiliou and Schatz,
2002; Di Noia and Neuberger, 2007). Another factor of
immunoglobulins diversity, class-switch recombination,
also depends on AID. Uracils, appearing on the border
of constant regions of immunoglobulin heavy chain
genes, are excised by BER or MMR, resulting in single-
and double-stranded breaks that induce recombination
leading to antibody isotype switching from IgM to IgG,
IgA or IgE (Muramatsu et al., 2000; Revy et al., 2000;
Okazaki et al., 2002; Stavnezer and Schrader, 2006; Di
Noia and Neuberger, 2007).

After the discovery of the role of AID in immunity,
it was unclear whether it deaminated either DNA or
RNA (Muramatsu et al., 2000). Seminal experiments by
Michael Neuberger’s group unequivocally demonstrat-
ed that AID deaminates DNA (Petersen-Mahrt et al.,
2002). The expression of the AID gene in E. coli cells was
mutagenic, and the effect was much stronger in ungl
cells unable to excise uracil from DNA (Petersen-Mahrt
et al., 2002; Beale et al., 2004). Purified AID deaminated
single-stranded DNA in vitro, producing clustered mu-
tations with a signature similar to mutations in immu-
noglobulin genes (Pham et al., 2003). Human deaminase
AID expressed in yeast cells is mutagenic, too (Poltor-
atsky et al., 2004). AID increased the frequency of Can’
forward mutations almost 8-fold in the wild-type strain
and 82-fold in the ungl mutant. The synergistic effect
was observed for the frequency of reversions of nonsense
mutation (that occur mainly by suppressor mutations in
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Fig. 1. Phylogenetic tree of human AID/APOBEC deaminases (Rogozin et al., 2007; Krishnan et al., 2018). Active deaminase modules are shown
in solid blue, deaminase domains which have no catalytic activity are shown as cross-hatched bars. The numbers above each bar refer to amino
acid positions according to (https://www.uniprot.org).
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Fig. 2. Cytosine deamination performed by AID/APOBEC family deaminases on ssDNA generates U:G mispair.
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Fig. 3. Genetic consequences of cytosine deamination in DNA by AID/APOBEC. Altered DNA is shown in red; operating processes are shown in
blue, enzymatic systems in black and resulting genetic alterations in maroon. U — uracil; AP — apyrimidinic site; N — any base; BER — base
excision repair; MMR — mismatch repair; NHE] — non-homologous end joining; UNG — uracil-DNA-glycosylase; APE — AP endonuclease;
Pol B — DNA polymerase {3; TLS Pols — translesion DNA polymerases; DSB — double-strand DNA break.

the anticodons of tRNA genes) in the ungl strain, with
an increase up to 1290-fold over the wild-type. Sequenc-
ing of the CANI gene in AID-induced Can" mutants
revealed that most mutations were transitions in GC
pairs in a context similar to SHM (Mayorov et al., 2005;
Rogozin and Pavlov, 2006). Genome-wide studies de-
tected mutational clusters with a predominance of C -
T transitions (Lada et al., 2012; Taylor et al., 2013).

APOBEC?2 is found in the heart and skeletal mus-
cles of mice, chickens, and humans (Liao et al., 1999; Li
et al., 2014). It is necessary for the normal development
of muscles and weight gain in mice (Sato et al., 2009). In
the absence of APOBEC2, animals develop age-depen-
dent myopathy (Sato et al., 2009), which was related to
mitochondrial function defects (Sato et al., 2017). Het-
erologous expression of APOBEC?2 in yeast and bacteria
did not lead to a mutator phenotype (Lada et al., 2011a),
and APOBEC2 does not deaminate DNA in vitro (Harris
et al., 2002; Lada et al., 2011a).

The APOBEC3 (A3) human deaminase subfam-
ily includes seven proteins: A3A, A3B, A3C, A3DE,
A3F, A3G, and A3H, possessing one deaminase module
(A3A, A3C, A3H) or two modules (A3B, A3DE, A3F,
A3QG), (Fig. 1). The genes encoding these proteins are
located on chromosome 22 in tandem (Jarmuz et al,,

2002). APOBEC3 deaminases protect cells from exoge-
nous and endogenous retroelements by inducing hyper-
mutagenesis in the viral genome. A3B, A3DE, A3F, A3G,
and A3H inhibit the replication and infectivity of HIV-
1 (Doehle et al., 2005; Chaipan et al., 2013). A3G has
been shown to inhibit HIV-1/Avif infectivity through
the degradation or hypermutagenesis of the viral minus-
strand DNA (Sheehy et al., 2002; Harris et al., 2003).
A3B, A3F and A3G prevent infection with the hepati-
tis B virus by introducing numerous CG — TA transi-
tions into the virus DNA (Suspene et al., 2005; Bonvin
et al., 2006). A3A, A3B, A3DE, and A3H inhibit the Alu
retrotransposition (Bogerd et al., 2006; Orecchini et al.,
2018). A3A, A3C, and A3H deaminate papillomavirus
DNA (Vartanian et al., 2008). A3A inhibits replication of
the adeno-associated virus (AAV), a member of the par-
vovirus family (Chen et al., 2006). A3A, which has one
deaminase module, can inhibit replication of both wild-
type AAV and the autonomous parvovirus minute virus
of mice (MVM) by a DNA deamination-independent
mechanism (Narvaiza et al., 2009). Perhaps deaminase
binds to viral RNA and sterically inhibits further elon-
gation of reverse transcription (Bishop et al., 2008). In
this relation, APOBECI, all APOBEC3 proteins and an-
other member of this family, deaminase AID, inhibit hu-
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man LINE-1 retrotransposition, and can do it through a
deamination-independent manner (Bogerd et al., 2006;
Muckenfuss et al., 2006; Stenglein and Harris, 2006; Ki-
nomoto et al., 2007; Schumann, 2007; Pak et al., 2011;
Orecchini et al., 2018).

Although the single cytidine-deaminase domain
of A3A has significant homology with the C-terminal
domain of A3G (~ 65%) and A3B (~ 90%), A3A has
no antiviral activity against HIV-1 (Goila-Gaur et al.,
2007; Caval et al., 2014). Endogenous A3A is a pre-
dominantly cytoplasmic protein and is not expected to
be genotoxic (Land et al., 2013), but when upregulated,
it causes DNA damage (Suspéne et al., 2017). Under
conditions of overexpression, A3A becomes genotoxic
(Land et al.,, 2013) and can enter the nucleus (Chen et
al., 2006). Studies have shown that A3A induction acti-
vates severe DNA damage response (DDR) in a deami-
nase-dependent manner. Ectopic expression of A3A in
U20S osteosarcoma cells caused an accumulation of
phosphorylated histone y-H2AX, which is a marker of
double-stranded DNA breaks (Chowdhury et al., 2005;
Landry et al.,, 2011). At the same time, phosphorylated
forms of replication protein A (RPA), activation of ATM
protein kinase, and cell cycle arrest in the early S phase
were observed in response to DNA damage (Shiloh,
2003; Jackson and Bartek, 2009; Landry et al., 2011).
While a mutant A3A gene encoding a protein without
deaminase activity was expressed, a cascade of events
of the response to DNA damage was not triggered. In
HEK?293 cells, overexpression of A3A was also cytotoxic
(Burns et al., 2013). Recently, it was shown that, besides
DNA, A3A could deaminate transcripts of 3078 genes
at more than 4200 sites and change the amino acid se-
quence of 1110 proteins (Sharma et al., 2015; Sharma
et al., 2017). Those include genes associated with breast
cancer, hematologic neoplasms, amyotrophic lateral
sclerosis, Alzheimer disease, and primary pulmonary
hypertension (Sharma et al., 2017). A3A expression is
mutagenic in yeast cells (Taylor et al., 2013; Hoopes et al.,
2016). Heterologous expression of the two-domain A3B
is also mutagenic in E. coli and yeast (Bogerd et al., 2006;
Taylor et al.,, 2013). The N-terminal deaminase module
of A3B does not possess the catalytic activity and is not
mutagenic, but enhances both the deaminase activity of
the C-terminal domain and binding to the substrate sin-
gle-stranded DNA (Bogerd et al., 2006; Fu et al., 2015).
Heterologous expression of A3C and A3G is mutagenic
in E. coli and yeast (Harris et al., 2002; Schumacher et al.,
2005; Lada et al., 2011a; Taylor et al., 2013).

APOBEC4 deaminase was found bioinformatically
by analyzing protein sequence databases and is present
in mammals, chickens, and frogs (Rogozin et al., 2005).
It weakly interacts with single-stranded DNA, does not
exhibit deaminase activity in vitro, and enhances the
replication of HIV-1 (Marino et al., 2016). No mutator

phenotypes were detected in yeast and bacteria express-
ing APOBEC4 (Lada et al., 2011a).

Deamination and mutagenesis
by AID/APOBECs

All currently known human AID/APOBECs are struc-
turally similar to each other, but their functions are very
different. After the breakthrough discovery of deami-
nases, especially AID, the urgent problem was to under-
stand how they realize their catalytic potential in target-
ed genome compartments, in specific cells and tissues.
Purified AID needs RNase treatment to exert deamina-
tion activity on single-stranded DNA (Bransteitter et al.,
2003); RNA attenuates A3B activity (Xiao et al,, 2017),
suggesting a role of RNA bound to deaminases in the
regulation of their activity. AID deaminations in single-
stranded DNA in vitro lead to clustered mutations in
defined DNA sequence contexts (Pham et al., 2003) by
intertwined scanning and catalysis (Mak et al., 2013).
Transcription has an essential role in AID activity be-
cause it constantly generates ssDNA (Pham et al., 2003).
AID causes multiple clustered mutations under tran-
scriptional pausing and stalling (Canugovi et al., 2009).
Transcription is not the only source of unprotected
ssDNA, and mutations attributed to APOBECs are
detected in parity on both transcribed and non-tran-
scribed DNA strands in human tumors (Kazanov et al,,
2015). Yeast cells expressing human AID have revealed
deamination on both DNA strands with more efficient
uracil repair in the transcribed DNA strand (Mayorov
etal., 2005). Genome-wide studies of APOBEC-induced
mutations in yeast firmly established the connection of
deamination with transcription (Taylor et al., 2014; Lada
et al,, 2015; Saini et al,, 2017). DNA may be transiently
exposed to APOBEC deaminases during replication
(Green et al,, 2016). Lagging DNA strand replication
involves more complicated transactions, thus leaving
unprotected ssDNA more frequently. Not surprisingly,
a third of mutations attributed to APOBECs are inferred
to occur during DNA replication on the lagging strand
in cancer cells (Seplyarskiy et al., 2016). APOBEC-de-
pendent deamination preferentially occurs in the lag-
ging strand in yeast (Hoopes et al.,, 2016) and E. coli
(Bhagwat et al., 2016). One additional source of ssDNA
substrates for deaminases is homologous recombination
(Poltoratsky et al., 2010; Taylor et al., 2013).
Double-stranded DNA is resistant to deaminase ac-
tion. Transcription, replication, and repair provide tran-
sient single-stranded regions that can be deaminated.
Single-strand DNA binding proteins (e.g., RPA) attenu-
ate the ability of APOBECs to work on ssDNA (Pham et
al., 2008; Lada et al., 2011b). Accessibility of ssDNA to
RPA versus competing APOBECs determines the extent
of mutagenic action of deaminases. The sites/situations
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where the balance is shifted to APOBECs are one of the
factors for the appearance of hypermutated regions in
cells. The mutations caused by deaminases are found
in the regions of the chromosomes that contain a large
number of genes and are transcribed early (Kazanov et
al,, 2015).

Footprints of deaminases in DNA

Studies in microbial models and analysis of cancer ge-
nomes allowed identification of specific deaminase im-
prints in DNA termed “AID/APOBEC mutational signa-
tures” A mutational signature is a specific combination
of base substitutions and other mutations in a defined
sequence context (Rogozin and Pavlov, 2003). By study-
ing the mutational signatures in cancer cells, it is possi-
ble to deduce with some probability the strength and du-
ration of the action of the mutagenic factor (Nik-Zainal
et al.,, 2012). About 30 signatures of various mutational
processes have now been identified in cancer genomes,
two of them (no. 2 and no. 13) belong to the APOBEC
family deaminases, (Nik-Zainal et al., 2012; Alexandrov
et al., 2013; Alexandrov and Stratton, 2014). APOBEC
mutational signatures were found in more than half of
human cancers (Alexandrov et al., 2013). The remnants
of APOBECs deaminations, C - T transitions and C -
G transversions in the preferred 5°-TC (A/T)-3" motifs
that can be caused by A3A and A3B, were found in 3.8 %
of multiple myeloma cases, along with translocations oc-
curring in the vicinity of the preferred AID 5-WRC-3
motifs. Patients with an increased number of such muta-
tions had a poor prognosis (Walker et al., 2015).

The study of 1020 cell lines of various types of can-
cer from the COSMIC (Catalog of Somatic Mutations
in Cancer) somatic mutation database has revealed
APOBEC mutational signatures in more than 100 cell
lines (Jarvis et al., 2018). In 5% of skin cancer cell lines,
19% of lung cancer, and 48 % of breast cancer, mutations
were found that might have been induced by APOBEC
deaminases. There was a strong positive correlation be-
tween the abundance of APOBEC signatures in breast
cancer cell lines with overall base substitution muta-
tion loads (Jarvis et al., 2018). Bladder cancer analysis
by TCGA (The Cancer Genome Atlas) revealed the
APOBEC mutational signature in 84 % of bladder cancer
samples. The expression of both A3A and A3B in blad-
der cancer samples correlated with overall mutation load
in bladder cancer (Glaser et al, 2018). Mutations in the
DNA damage response genes (TP53, ATR, BRCA2) and
chromatin regulatory genes (ARIDIA, MLL, MLL3) were
substantially enriched in the bladder cancer samples with
the APOBEC signature (Glaser et al., 2018).

In 2012, another interesting hallmark of deami-
nase action was discovered by the international team
of researchers of the Wellcome Trust Sanger Institute

in the analysis of the genomes of breast cancer samples.
Among multiple scattered mutations, clusters of closely
spaced mutations were found. The phenomenon was
named kataegis, from Greek “thunderstorm.” The major-
ity of mutations were CG - TA transitions; therefore it
was suggested that APOBEC deaminases are connected
to kataegis (Nik-Zainal et al., 2012). Almost at the same
time, C- or G-coordinated mutation clusters (multiple
changes of either “C” or “G” in continuous DNA strand)
were detected in genomes of multiple myeloma, pros-
tate, and head and neck cancer (Roberts et al., 2012) and
were linked to APOBEC activity, because of frequent-
ly occurring mutations in TCW (W=A or T) motifs
characteristic to several APOBEC deaminases (Rob-
erts et al., 2012). Expression of model deaminase genes
PmCDAI and AID in yeast resulted in kataegis, too, con-
firming a link between the activity of deaminases and ka-
taegis (Lada et al,, 2012; Lada et al., 2013). A3A and A3B
mutation specificity in yeast was similar to mutations
found in some breast cancers; kataegistic clusters de-
pended on DSBs (Taylor et al., 2013). Kataegis is defined
as the proximity of six or more mutations with an average
intermutation distance less than one kb in the same DNA
strand (Nik-Zainal and Morganella, 2017). Mechanisti-
cally, kataegis might be explained by the appearance of
continuous single-stranded regions during transcription
or repair of double-stranded DNA breaks or break-in-
duced replication (Sakofsky et al., 2014). Kataegis is often
observed in junction regions of chromosomal rearrange-
ments in human tumor cells. Typically, the APOBEC sig-
nature consists of C — T transitions in the characteristic
motifs and C - G transversions, which result from the
operation of translesion polymerases on the damaged
strand with an AP site (Taylor et al., 2013; Hoopes et al,,
2017). The similarity in specificity and distribution of
mutations induced by deaminases in model systems and
found in tumors indicate that AID/APOBEC deaminases
play a significant role in cancer origin and development.

The role of AID/APOBECs in
the etiology of cancer

Discovery of deaminases led to a prediction that lack
of control over deaminases in the cell might lead to ge-
nome-wide mutagenesis and cancer (Neuberger et al.,
2003). The hypothesis quickly found experimental sup-
port from studies with model systems discussed above
and evidence from analysis of human cancers; this led to
the tremendous expansion of a number of publications
on the roles of various deaminases in carcinogenesis
(Rogozin et al., 2018).

Hepatic dysplasia and hepatocellular carcinoma were
observed in transgenic mice and rabbits with constitutive
expression of APOBECI (Yamanaka et al., 1995). With
the constitutive expression of APOBEC2 in transgenic
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mice, liver and lung cancer developed, and changes in
the RNA nucleotide sequence of some oncogenes were
also found (Okuyama et al., 2011). Transgenic mice with
constitutive expression of AID developed malignant
T-cell lymphomas, and micro-adenomas/adenocarcino-
mas in the lung, hepatocellular carcinomas, gastric can-
cer; in parallel, point mutations in T-cell receptors, MYC,
KRAS, TP53 genes were frequently observed (Okazaki
et al., 2003; Morisawa et al., 2008). Aberrant activity of
AID can trigger double-stranded DNA breaks not only in
immunoglobulin genes but in other susceptible genomic
regions, which leads to chromosomal translocations be-
tween immunoglobulin genes and other genes. During
such events, proto-oncogenes translocate to cis-regulato-
ry transcriptional elements and strong immunoglobulin
enhancers that cause unregulated constitutive expression
of the translocated gene (Ramiro et al., 2004; Robbiani et
al., 2009; Nussenzweig and Nussenzweig, 2010). Such re-
arrangements are the hallmark of lymphomas (Okazaki
et al,, 2007). AID is implicated in the hypermutagenesis
of oncogenes controlling proliferation and apoptosis—
MYC, PIM1, JUND, and BCL2—and B cell development
and activation genes—PAX5, CD79b, AICDA, IRFS,
BACH2, and NFKB—as well as promoters and super-en-
hancers regulating the cell cycle and apoptosis (Gaidano
et al., 1997; Qian et al.,, 2014). Studies have shown that
there are over a hundred of such genes (Casellas et al.,
2016). Normally, AID activity is restricted to the activated
B-lymphocytes and some tissues, but in most lymphomas,
the expression of this deaminase is constant (Okazaki et
al., 2007).

Analysis of the expression level of various deami-
nases in breast cancer has revealed that 38-70 % of tissue
samples and cell lines have an increase in the expression
of APOBEC3B, but not other deaminases of this family.
These cell lines have twice as many mutations as those
that express low levels of A3B expression and an increase
of C - T transitions. Knockdown of A3B caused a de-
crease in the total number of transitions (Burns et al.,
2013). Therefore, it was concluded that A3B is the lead-
ing source of mutations in breast cancer. Further studies
of 19 types of cancer according to The Cancer Genome
Atlas (TCGA) revealed an elevated A3B level in head
and neck, bladder, cervix, and lung cancers, also with
C - T predominance in the context of 5-TC-3’ which
is characteristic of APOBEC3 deaminases (Burns et al.,
2013). In some types of cancer, these mutations reached
68 % of all mutations (Roberts et al., 2013). In the case
of estrogen-positive breast cancer, expression of A3B is
associated with poor prognosis during treatment. A3B
regulates the estrogen receptor, enhances tumor growth
and confers resistance to treatment with tamoxifen
(Periyasamy et al., 2015; Law et al., 2016).

Some experimental evidence, however, argues
against the overwhelming dominance of A3B in cancer

etiology. It turned out the human genome has the com-
mon deletion polymorphism on chromosome 22 in the
APOBECS3 subfamily gene locus (Kidd et al., 2007). Car-
riers of the deletion allele lack a 29.5 kb fragment be-
tween the fifth exon of A3A and the eighth exon of A3B,
and cells produce a transcript containing the 3’-untrans-
lated region (3’-UTR) from A3B and the coding part
identical to the A3A gene. The main difference between
the 3°-UTR of the two genes is that the A3A 3’-UTR
contains Alu-repeat (Kidd et al., 2007). The deletion is
rare in Europe (9 %) and Africa (0.9 %), more common
in Asia (36.9 %) and America (57.7 %), and almost ubiq-
uitous in Oceania (92.9 %) (Kidd et al., 2007). Contrary
to the expectations, breast cancer rates are comparable
in all these regions. Also, the polymorphism is more
common in European and Chinese women with breast
cancer, than in healthy ones (Xuan et al., 2013). The total
number of mutations in the genomes of breast cancer
cells is increased in cells with deletion polymorphism
(Nik-Zainal et al., 2014). The A3A-UTRas3p chimeric
transcript expressed in HEK293T cells increases both the
chimeric A3A mRNA level yielding 10-20-fold and the
deaminase activity A3A in comparison to A3A-UTRys3a.
Therefore, it was concluded that the expression level of
A3A is regulated by the 3’-UTR region. The chimeric
protein also caused more damage and double-stranded
breaks than the naturally occurring A3A, which ex-
plained the association of deletion polymorphism with
a large number of mutations in cancer cells (Caval et al.,
2014). It became apparent that A3B is not the only factor
in mutagenesis conferred by deaminases in cancer.

APOBEC3A can be more cytotoxic and genotoxic
than APOBEC3B (Caval et al., 2015). In yeast cells, it was
possible to establish a difference in the preferred deami-
nation motifs, YTCA for A3A and RTCA for A3B (Y =
pyrimidine, R = purine), and thereby determine what
proportion of tumors possess A3A versus A3B signa-
tures (Chan and Gordenin, 2015). It is uniformly agreed
that A3A overexpression can cause double-stranded
DNA breaks and apoptosis, but there is controversy in
the case of A3B (Landry et al., 2011; Burns et al., 2013;
Taylor et al., 2013; Caval et al., 2014). The study of the
relative roles of A3A and A3B in cancer needs further
thorough investigation.

Factors affecting the activity of
AID/APOBEC deaminases

The normal expression of AID/APOBEC: is tissue-spe-
cific in humans (Conticello, 2008; Salter et al., 2016).
We know that the heterologous expression of deaminase
genes in bacterial and yeast cells leads to an increase in
the frequency of mutations (Harris et al., 2002; Lada et
al., 2011a). High levels of deaminases are potentially
harmful, though the correlation between deaminase lev-
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els and actual deamination is complicated (Siriwardena
et al., 2018) and the activity of deaminases in human
cells is under tight control. When the deaminase activ-
ity regulation is compromised, the enzymes deaminate
cytosine in nonspecific loci of the genome, which leads
to an increase in the frequency of mutagenesis and ma-
lignant transformation of tissues (Yoshikawa et al., 2002;
Ramiro et al., 2004; Robbiani et al., 2009; Roberts et al.,
2013). The search for factors affecting deaminase activ-
ity might help identify new risk factors and methods for
the prevention and treatment of cancer.

Both bacterial lipopolysaccharides and human
papillomavirus-like particles induce AID expression in
murine B cells (Okazaki et al., 2007). Epstein-Barr virus
and hepatitis C virus induce AID expression in B-lin-
eage cells (Okazaki et al., 2007). Chronic inflammation
on the background of cancer or virus infection leads to
the release of cytokines TGF(, TNFa, IL-4, IL-13, which
initiate the expression of AID and cause the subsequent
mutation of the tumor suppressor TP53 and other genes
and solid tumor development (Kumar et al., 2014;
Choudhary et al., 2017). Studies show that in chronic in-
flammation and hypoxia, the risk of developing cancer
is increased due to an elevated level of A3A and the sub-
sequent enhancement of RNA editing by this protein,
since the expression of A3A and A3B is stimulated by
interferons (Bonvin et al., 2006; Sharma et al., 2017). In-
creasing the amount of these proteins is one of the stages
in the development of the immune response to infection
with viruses. Infection of breast and bladder cancer cell
lines with Sendai virus led to a strong induction of A3A,
but more moderate induction of A3B, possibly because
of the initially high expression of A3B deaminase in can-
cer cells (Middlebrooks et al., 2016).

Cancer cells multiply faster than normal with fer-
vent replication. Therefore, the number of mutations in
tumors increases with time (Hanahan and Weinberg,
2011). Permanent divisions deplete protein complexes
that ensure the stable progression of the replication fork.
Many oncogenes induce replication stress, defined as the
impediment of replication, which also contributes to the
accumulation of mutations. The number of sites with
unprotected ssDNA increases, creating favorable con-
ditions for APOBEC mutagenesis (Cescon and Haibe-
Kains, 2016; Hoopes et al.,, 2016). Anti-cancer drugs
camptothecin, gemcitabine, hydroxyurea, and the DNA
polymerase inhibitor a-aphidicolin also induce replica-
tion stress. The stress increases the activity of deaminas-
es A3A and A3B (Kanu et al., 2016).

It has been suggested that the regulation of the ex-
pression of A3A and A3B may also occur at the post-
transcriptional level using miRNA. The 3’-UTR A3A is
674 bp long. Hundreds of potential microRNA binding
sites were found in the 3’-UTR of A3A.In the 3>-UTR
of A3B with a length of 356 bp 82 potential microRNA

binding sites were predicted. It is possible that the re-
pression of A3A by miRNA will be tighter than A3B or
chimeric A3A-UTRas3p (Cao and Wu, 2017). Also, four
kinds of miRNA bind to target sites in the AID 3’-UTR
and reduce the amount of the protein (Zan and Casali,
2013). Modulation of APOBEC gene expression by miR-
NA might be a perspective method of modulation of de-
aminase activity in cancer.

There is no doubt that deaminases of the AID/
APOBEC family contribute significantly to tumor ori-
gins and progression. We expect that many puzzles and
mysteries related to cancer/deaminases connection that
surfaced during the first two decades of research in the
field will be subject to intense future studies.
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