В. А. Безносиков, Е. Д. Лодыгин

ФРАКЦИОННО-ГРУППОВОЙ СОСТАВ ГУМУСА КРИОГЕННЫХ ПОВЕРХНОСТНО-ГЛЕЕВЫХ И ГИДРОМОРФНЫХ ПОЧВ БОЛЬШЕЗЕМЕЛЬСКОЙ ТУНДРЫ

Введение

Интерес к гумусовым веществам непрерывно нарастает, причем не только у специалистов в области почвоведения и агрономии, но и ряда отраслей знаний, зачастую довольно далеко отстоящих от проблем почвоведения. В частности, исследования гумусовых кислот оказываются востребованными при решении многих проблем палеогеографии и палеоклиматологии, инженерной геологии, океанологии, медицины и физиологии, геохимии, а также при решении некоторых технических вопросов [1].

Территория Европейского северо-востока России — типичный мерзлотный регион циркумполярного пояса земли. Суровые климатические условия тундры способствуют глубокому промерзанию почвогрунтов, накоплению в них больших запасов холода, образованию многолетней мерзлоты. Влияние мерзлоты на почвообразование отмечалось многими исследователями [2–8]. Начатые в 1942 г. Е. Н. Ивановой и О. А. Полынцевой углубленные исследования почв на северо-востоке Европейской части позволили впервые дать систематическое описание почв Воркутинского района (восточная часть Большеземельской тундры). Они отметили основные моменты тундрового почвообразования: возникновение близкого к поверхности переувлажненного оглеенного тиксотропного слоя, развитие поверхностного оглеения в условиях элювиального почвообразования, не сопровождающегося накоплением органической массы [2]. Специальные исследования органического вещества тундровых глеевых почв [6, 9] показали, что в его составе преобладают вещества неспецифической природы; в специфической части фульвокислоты (ФК) резко преобладают над гуминовыми кислотами (ГК).

В почвах, расположенных в зоне многолетней мерзлоты, протекает своеобразный комплекс процессов, связанных с влиянием низких температур. Образование слоев льда (шлиров) в почве приводит к разрыву капилляров, вследствие чего прекращается подтягивание влаги из надмерзлотных горизонтов к корнеобитаемому слою. Наличием мерзлого слоя вызван целый ряд механических изменений в почвенном профиле, таких как криотурбация и солифлюкция. Криогенная деформация приводит к образованию характерного для тундр мелкобугорковатого рельефа пучения — нанорельефа, что обусловливает геохимическую дифференциацию органических веществ в результате латерального и вертикального стоков.

Имеющиеся экспериментальные данные показывают, что для плакорных почв тундры характерны: подстилкообразование и поверхностное гумусообразование при слабой интенсивности распада органических остатков и процессов гумификации [10–11]; кислая реакция среды и фульватный характер гумуса; слабый, преимущественно латеральный вынос небольшого количества элементов, мобилизованных при разложении опада и выветривании первичных минералов [2, 3, 5]. По И. А. Соколову почва обладает

[©] В. А. Безносиков, Е. Д. Лодыгин, 2012

сенсорностью и рефлекторностью по отношению к условиям природной среды, причем не только почва в целом, но и отдельные ее компоненты [12].

Биоклиматические условия тундрового почвообразования определяют специфический состав гумусовых веществ. Однако гетерогенность соединений этих классов не позволяет с достаточной степенью уверенности судить о геохимической дифференциации высокомолекулярных органических соединений в почвах криолитозоны. К настоящему времени имеются работы, посвященные исследованию структуры и трансформации ГВ в условиях таежного почвообразования [1, 13–16], однако подобные исследования для почв тундровых ландшафтов единичны.

Цель данной работы — выявить специфику фракционно-группового состава гумуса в криогенных поверхностно-глеевых и гидроморфных почв Большеземельской тундры.

Объекты и методы исследования

Исследования проведены в Большеземельской тундре в Воркутинском районе Республики Коми, где распространена массивно-островная многолетняя мерзлота [17]. Территория представляет полого-увалистую равнину, покрытую чехлом покровных пылеватых суглинков мощностью менее 10 м [18].

Объекты исследований — плакорные почвы: поверхностно-глеевые, поверхностно-глеевые освоенные (южная кустарниковая тундра); торфянисто-глеевые, торфяноглеевые (типичная мохово-лишайниковая тундра).

Почвы южной кустарниковой тундры

Разрез 12-ж. Разрез заложен на верхней части пологого склона водораздельного моренного увала Нерусовей-мусюр. Сеянный мятликово-лисохвостный бессменный луг — возраст 53 года.

$A_{\text{дер.}}$	0-5 см	На поверхности почвы слаборазложившийся растительный материал, нижняя часть— суглинок средний, буровато-серый, комковато-порошистой структуры, переплетен корнями трав, переход ясный.
A_1Bg	5-10 см	Суглинок средний, буровато-сизый, листоватой структуры, тиксотропный, немногочисленные корни, переход постепенный.
Bg	10-35 см	Суглинок средний, светло-бурый с сизыми пятнами, листоватая структура, встречаются железистые конкреции, нижняя граница хорошо выражена по структуре.
B_1	35-60 см	Суглинок средний, бурый, мелко-ореховатая структура, рассыпается на структурные отдельности, по граням обильная белесая присыпка, переход постепенный.
B_2	60-105 см	Тяжелый суглинок, бурый, сверху ореховатой, внизу комковато-слоеватой структуры, белесая присыпка, более влажный, чем B_1 , слабо тиксотропный, переход выраженный.
BCg	105-130 см	Суглинок средний, влажный, на буром фоне сизые и ржавые зоны, структура плитчатая.

Почва: тундровая поверхностно-глеевая освоенная на суглинистых почвообразующих породах.

Разрез 9-ж. Разрез заложен в 50 м от разреза 12-ж. Пологий склон моренного увала. Ивняково-ерниковая моховая мелкобугорковатая тундра, в покрове преобладают гипновые мхи, примесь политриховых, единичные экземпляры карликовой березки, кустарнички брусники, осоковые встречаются редко.

A_0	0-5 см	Черно-бурая полуразложившаяся торфянистая подстилка, плотно пере-
		плетена корнями кустарников и злаков.
A_0Ah	5-10 см	Переходный от торфянистой подстилки к глеевому горизонту, средний
		суглинок, серовато-бурый с примесью торфянистых частиц, порошистый,
		переплетен корнями, переход ясный.
G	10-25 см	Средний суглинок, ржаво-сизый, влажный, бесструктурный, переход по-
		степенный.
GB_1	25-55 см	Средний суглинок, буровато-палевый с сизыми и ржавыми пятнами,
		влажный, слоевато-мелкокомковатый, тиксотропный, обилие желези-
		стых новообразований, переход постепенный.
B_1	55-87 см	Средний суглинок палево-светло-бурый, белесая кремнеземистая присып-
		ка, оглеение морфологически не обнаружено, структура ореховатая, пере-
		ход постепенный.
B_2	87-120 см	Средний суглинок, структура ореховато-комковатая, слабая белесая при-
		сыпка, переход постепенный.
BCg	120-150 см	Суглинок сизовато-бурый, ржавые пятна, влажный, структура плитчато-
		ореховатая.

Почва: тундровая поверхностно-глеевая на суглинистых почвообразующих породах.

Таблица 1. Гранулометрический состав тундровых почв

			Размер ф	ракции (м	м) и их содер	эжание (в %)		Сумма
Горизонт	Глубина, см	1-0,25	0,25-0,05	0,05-0,01	0,01-0,005	0,005-0,001	<0,001	частиц <0,01
		Тун	дровая пове	грхностно-	глеевая осво	енная		
Bg	10-25	0,79	2,96	62,46	6,12	4,90	22,77	33,79
Bg	25-35	0,63	11,17	57,53	4,08	6,94	19,65	30,66
B_1	35-60	1,11	3,57	61,07	5,70	5,70	22,85	34,25
B_2	60-105	0,31	1,17	56,23	4,51	8,62	29,16	42,30
BCg	105-130	0,18	11,85	49,15	5,32	9,42	24,08	38,82
			Тундрова	я поверхно	тно-глеева	म		
G	10-20	0,24	0,40	68,22	5,68	7,72	17,74	31,14
GB_1	35-55	0,19	7,79	57,83	6,92	5,70	21,57	34,19
\mathbf{B}_1	55-87	0,13	18,10	45,49	3,28	6,97	26,03	36,28
B_2	87-120	0,05	0,46	61,37	5,73	3,68	28,71	38,12
BCg	120-130	0,04	33,41	27,01	5,32	6,55	27,67	39,54
			Торфяни	сто-тундр	овая глеевая	!		
G	25-35	0,44	47,74	11,49	4,92	7,80	27,60	40,33
GB_1	40-55	0,36	2,04	57,46	4,93	6,16	29,06	40,14
Bg	55-60	0,43	35,37	20,94	3,70	2,87	36,69	43,26
			Торфян	ю-тундров	ая глеевая			
$G_{\rm f}$	28-40	0,63	12,65	51,05	6,13	6,53	23,00	35,66
G_1	40-50	0,66	12,58	51,54	3,27	8,18	23,77	35,22
G_2	50-60	0,47	7,61	52,90	2,46	4,51	32,05	39,02

Тундровые поверхностно-глеевые почвы характеризуются морфологически дифференцированным профилем с двумя уровнями оглеения: в верхней части минеральной толщи — элювиально-глеевый и в нижней — глубинно-глеевый горизонты; глубоким залеганием многолетнемерзлых покровных суглинков около 1,5 м. Верхние горизонты G и GB₁ профиля тундровых поверхностно-глеевых почв по содержанию физической глины, в том числе и илистой фракции, имеют облегченный гранулометрический состав (табл. 1). Аналитические данные показывают (табл. 2), что тундровые поверхностно-глеевые почвы имеют кислую реакцию всего профиля. В подстилке и элювиально-глеевых горизонтах гидролитическая кислотность составляет 7,59–30,6 ммоль/100 г почвы и резко снижается в BC до 1,78 ммоль/100 г. Профильное распределение содержания обменного кальция и магния в почвенной толще имеет бимодальный характер проявления: минимальное — в глеевых горизонтах, максимальное — в подстилке и почвообразующей породе.

Таблица 2. Агрохимическая характеристика почв

Г	Б. С		11 /100	P_2O_5	K ₂ O	Ca ²⁺	Mg ²⁺
Горизонт	Глубина, см	$pH_{\text{сол.}}$	Hг, ммоль / 100 г	мг / 1	100 г	ммоль /	′ 100 г
		Тундр	овая поверхностн	о-глеевая о	своенная		
$A_{\text{дер.}}$	0-5	4,75	35,1	39,71	289,85	22,95	1,86
A_1Bg	5-10	3,74	11,0	3,34	17,68	3,65	0,44
Bg	25-35	3,65	10,3	5,48	22,46	2,30	1,08
B_1	35-60	3,70	6,11	9,60	32,55	7,62	2,57
B_2	60-105	3,85	3,33	16,32	43,63	15,40	6,33
BCg	105-130	4,25	2,11	17,70	43,18	15,42	6,07
			Тундровая поверхн	остно-глее	гвая		
A_0	0-5	4,68	30,60	25,86	150,5	40,72	2,95
G	10-25	3,81	7,59	3,68	13,28	3,59	1,01
GB_1	30-50	3,88	5,48	9,98	18,28	8,62	2,13
B_1	55-85	4,07	2,74	18,21	26,40	16,51	4,52
B_2	90-115	4,45	2,02	23,20	28,70	16,83	4,90
BCg	120-130	4,65	1,78	25,89	48,00	18,0	5,08
			Торфянисто-тун	ровая глее	вая		
О	0-14	6,10	17,0	34,25	429,95	135,0	5,08
G	25-35	4,21	3,05	15,44	42,71	18,56	6,32
GB_1	40-55	4,52	2,86	16,65	40,47	20,66	4,79
Bg	55-60	4,57	2,07	18,58	43,80	23,30	6,66
			Торфяно-тундр	овая глеева	я		
О	0-25	6,15	20,9	29,63	391,80	144,80	5,64
G_{f}	28-40	3,94	3,96	22,32	36,53	15,13	4,90
G_1	40-50	4,02	3,05	26,77	43,01	16,83	5,58
G_2	50-60	4,41	2,41	27,82	43,28	19,52	6,10

Почвы типичной мохово-лишайниковой тундры

Разрез 10-ж. Средняя часть юго-западного склона, уклон 3°. Ерниково-зеленомошный покров, политриховые и сфагновые мхи, лишайники, водяника, багульник, по бугоркам — морошка, голубика. Микрорельеф: бугорковатый — бугры высотой до 40 см, диаметром до 1,5 м. Межбугорковое понижение.

O_1	0-7 см	Слаборазложившаяся моховая подстилка, темно-серая, обилие корней растений.
O_2	7-14 см	Темно-серый, почти черный, в нижней части хорошо разложившийся торф.
O ₂ Ahg	14-17 см	Переходный, пылеватый средний суглинок, неоднородный по окраске: от темно-коричневого до серого с сизовато-бурым оттенком, структура неясно-порошистая.
G	17-40 см	Суглинок средний, ржаво-сизый, сырой, тиксотропный.
GB_1	40-55 см	Тяжелый суглинок ярко-сизый с ржавыми пятнами, мерзлый, структура мелкоореховатая, имеются морозобойные трещины, заполненные гумусированным суглинком.
Bg	55-90 см	Бурый тяжелый суглинок, плотный, мерзлый, раскалывается на ореховатые структуры, множество Мп примазок, под ним потечно-гумусовый затек. На глубине 50–60 см — темное пятно зернистой структуры.

Почва: торфянисто-тундровая глеевая мерзлотная на суглинистых почвообразующих породах.

Разрез 11-ж. Описание места закладки разреза 11-ж аналогично разрезу 10-ж. Разрез заложен на бугорке.

O_1	0-5 см	Торфянистая слаборазложившаяся подстилка, светло-коричневая, сфагново-политриховая, сырая.
O_2	5-26 см	Слаборазложившаяся подстилка из мхов, книзу степень разложения увеличивается, темно-серый торф, свежий, рыхлый, переход ясный.
O ₂ Ahg	26-28 см	Переходный, пылеватый средний суглинок, неоднородный по окраске: от темно-коричневого до серого с сизовато-бурым оттенком, структура неясно порошистая.
$G_{\rm f}$	28-40 см	Суглинок средний, ржаво-сизый, сырой, вязкий, тиксотропный.
G_1	40-50 см	Средний суглинок ярко-серовато-сизый с ржавыми пятнами, мерзлый, структура мелкоореховатая, имеются морозобойные трещины, заполненные гумусированным суглинком. На глубине 46–62 см — темное пятно зернистой структурой.
G_2	50-70 см	Средний суглинок, бурый, плотный, мерзлый, раскалывается на ореховатые структуры, криотурбированные разводы, под ним потечно-гумусовый затек.

Почва: торфяно-тундровая глеевая мерзлотная на суглинистых почвообразующих породах.

Торфянисто- и торфяно-тундровые глеевые почвы (криогидроморфные) формируются в подчиненных ландшафтах и приурочены к плоскоравнинным водораздельным увалам, понижениям, подножью склонов, к периферии болотных массивов. Морфологические особенности этих почв: наличие поверхностной торфяной подстилки (15–30 см) и четко выраженного глеевого тиксотропного горизонта; иллювиальная толща малой мощности; почвенный профиль слабо дифференцирован; деформация почвенного профиля, вызванная перемещением насыщенных влагой почвогрунтов при оттаивании и замерзании; замедленный биологический круговорот; низкая биологическая продуктивность; в почвах преобладают восстановительные условия. Процессы выщелачивания практически отсутствуют, в этих почвах отмечается значительное накопление полуторных окисидов алюминия, железа и марганца. Верхняя часть ил-

лювиальной и криогенной зон являются геохимическими барьерами. Почвы обладают слабокислой реакцией среды органогенных горизонтов и кислой — минеральной толщи, высокой гидролитической кислотностью и особенно органической составляющей, низкой насыщенностью ППК основаниями. Гранулометрический состав: средний — тяжелый суглинок. Илистая фракция и физическая глина практически равномерно распределены по профилю почв, наблюдается некоторое увеличение данных фракций на границе мерзлого слоя (нижняя часть глеевого-тиксотропного горизонта).

Фракционно-групповой состав гумуса определяли по методу И.В. Тюрина в модификации В. В. Пономаревой и Т. А. Плотниковой [19] со спектрофотометрическим окончанием [20]. Для сравнительной оценки гумусного состояния почв использовали систему показателей, предложенную Д. С. Орловым и О. Н. Бирюковой: 1) соотношение углерода гуминовых и фульвокислот ($C_{\Gamma K}/C_{\Phi K}$), определяющие тип гумуса и являющиеся мерой глубины гумификации органического вещества; 2) отношение углерода гуминовых кислот к общему углероду ($C_{\Gamma K}/C_{\text{общ.}}$) как показатель степени гумификации органического вещества; 3) содержание гумусовых веществ ($C_{\Gamma B} = C_{\Gamma K} + C_{\Phi K}$) как характеристика растворимости органического вещества и содержание негидролизуемого остатка (Н. О.), рассматриваемого как пул органического вещества, потенциально доступного для трансформации [21].

Результаты исследования и их обсуждение

Информативность гумусового профиля основана на том, что гумус, обладая свойствами сенсорности и рефлекторности по отношению к природной среде, представляет собой открытую природную систему гумусовых веществ, которая формируется по законам термодинамики и способна к саморегуляции и самовосстановлению [22]. Гумусовые вещества делятся на три группы соединений: гуминовые кислоты, фульвокислоты и гумины (негидролизуемый остаток). Гуминовые кислоты подразделяются на фракции: свободные и связанные с подвижными полуторными оксидами (ГК–1); с обменным кальцием (ГК–2); с устойчивыми формами оксидов железа, алюминия и глинистыми минералами (ГК–3). Фульвокислоты, в свою очередь, разделяются на четыре фракции: три фракции фульвокислот, находящиеся в полимерных связях с гуминовыми кислотами соответствующих фракций и минеральными компонентами этих фракций, и одна фракция свободных ФК, связанная с подвижными полуторными оксидами — агрессивная фракция фульвокислот (ФК–1а) и негидролизуемый остаток.

Групповой и фракционный состав гумуса тундровых криоповерхностно-глеевых и криогидроморфных почв представлен в табл. 3. Полученные данные дают возможность выявить особенности фракционно-группового состава гумуса и профильной дифференциации главных групп ГВ в изучаемых почвах.

Криоповерхностно-глеевые почвы. Специфичность вертикального распределения гумуса в суглинистых поверхностно-глеевых почвах обусловливается криогенными процессами: режимом промерзания — оттаивания. Сезонномерзлый слой в весенне-летний период является временным водоупорным горизонтом, который перемещается вниз по профилю по мере протаивания толщи почвы. Это способствует длительному застою влаги в верхней части минерального слоя профиля, переувлажнению, вследствие наличия в нем тиксотропных свойств и низкой фильтрующей способности. С наступлением морозного периода нисходящий ток почвенных растворов прерыва-

ется криогенной (морозной) миграцией влаги, направленный к фронту промораживания

Анализируя полученные материалы, можно отметить, что профили, как поверхностно-глеевой освоенной, так и целинных почв имеют одинаковый характер вертикального распределении гумуса, несмотря на некоторые количественные колебания содержания органического углерода. Данные показывают, что для процесса вертикальной дифференциации органического вещества криоповерхностно-глеевых почв характерно равномерно-убывающий характер гумуса. Для грубогумусных аккумулятивных горизонтов поверхностно-глеевых почв выражена резкая локализация органического вещества в небольших по мощности слоях (0-5 см). Содержание органического вещества в этих горизонтах довольно высокое. Массовая доля углерода в поверхностно-глеевых почвах (целина) составила 14,8%, в то время как в поверхностно-глеевой освоенной почве отмечен рост содержания углерода в органогенном горизонте на 3,8%, по сравнению с целинным аналогом. Это, по-видимому, связано с освоением целинных тундровых поверхностно-глеевых почв и трансформации их под мятликово-лисохвостный луг. В освоенных почвах горизонт Адер, морфологически представляет собой с поверхности обилие слаборазложившегося растительного материала (мятликово-лисохвостный опад и их корни), ниже — бурый подгоризонт (2-3-5 см), который густо переплетен корнями трав, что является источником органического вещества.

Сопоставляя данные по содержанию в гумусе исследованных почв фракций ГК и ФК, следует отметить преобладание в гумусе фульвокислот по всему профилю (рисунок). В группе гуминовых кислот в почвах преобладает первая фракция ГК, в то время как вторая фракция ГК находится в незначительном количестве или полностью отсутствует. Закономерности распределения третьей фракции ГК находятся в соответствии с первой фракцией, однако, ее содержание меньше. В группах фульвокислот в количественном отношении выделяются фракции 1 и 3, находящиеся в связях с соответствующими фракциями ГК и минеральными компонентами. Значительное количество ФК приурочено к минеральным горизонтам. В минеральных горизонтах эти фракции находятся довольно в большом количестве, особенно в тундровой поверхностно-глеевой освоенной почве.

Распределение углерода ГК по профилю имеет аккумулятивный тип, что обусловлено гидрофобной природой молекул ГК и, как следствие, их низкой миграционной способностью.

Сумма фракций ФК, наоборот, увеличивается в минеральной толще по причине гидрофильности молекул ФК и их вымывания из верхних горизонтов. Распределение различных фракций ФК неодинаково: фракции 1а и 1 имеют элювиально-иллювиальный тип, фракция 2 практически отсутствует, а фракция 3 имеет элювиальный тип.

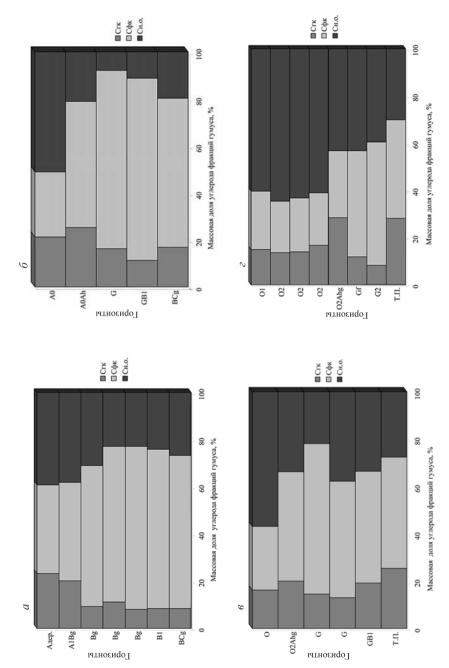

Третья группа гумусовых веществ представлена негидролизуемым остатком. Его доля в гумусе исследованных почв сильно варьируется. В органогенных горизонтах (A_0 , $A_{\text{дер.}}$) содержание негидролизуемого остатка составляет 40–54% от $C_{\text{орг.}}$, что обусловлено высоким содержанием негумифицированных органических остатков. Причем в тундровой дерновой поверхностно-глеевой почве доля $C_{\text{H.O.}}$ в органогенном горизонте на 14% ниже, чем в неосвоенном аналоге, что обусловлено более интенсивным процессом гумификации в освоенной почве. В минеральных горизонтах доля $C_{\text{H.O.}}$ резко снижается до 8–23% и содержание данной фракции обусловлено способностью молекул гумусовых кислот связываться с минеральной матрицей почвы, образуя гумин.

Таблица 3. Фракционно-групповой состав гумуса тундровых почв

Тина	Глубина,	C _{opr.} ,		Crk			Cok			0	Crk/	,
Поризоп	СМ	%	1	2	3	la	1	2	3	Crk / Cok	Copr., %	GH.0.
				Тунд	ровая поверл	сностно-глее	Тундровая поверхностно-глеевая освоенная	Я				
$A_{ m nep.}$	0-5	18,6±1,9	3,3±0,5 18±3	$0.36 \pm 0.07 \\ 1.9 \pm 0.4$	$\frac{0.64 \pm 0.13}{3.4 \pm 0.8}$	$\frac{0,77 \pm 0,15}{4,2 \pm 0,9}$	$2,8\pm0,6$ 15 ± 3	$0,43 \pm 0,09 \\ 2,3 \pm 0,5$	$2,9\pm0,6$ 16 ± 4	0,62±0,17	23 ± 4	$\frac{7,3\pm 2,1}{39\pm 12}$
A ₁ Bg	5-10	3,9±0,6	$\frac{0.67 \pm 0.13}{17 \pm 4}$	0	$0,13\pm0,03\\3,2\pm0,8$	$0,19\pm0,04 \\ 4,7\pm1,2$	0.75 ± 0.15 19 ± 5	0	$0,70\pm0,14$ 18 ± 4	0,49±0,21	19±5	$\frac{1,5\pm0,6}{38\pm17}$
Bg	10–15	1,24 ± 0,25	$0,079 \pm 0,016 \\ 6,4 \pm 1,8$	0	0.036 ± 0.007 2.9 ± 0.8	$0,095 \pm 0,019 \\ 7,7 \pm 2,2$	0.24 ± 0.05 20 ± 6	0	$0,40\pm0,08$ 32 ± 9	0,16±0,20	9,3±2,3	$0.39 \pm 0.27 \\ 32 \pm 23$
Bg	15-20	0,99 ± 0,20	$0.072 \pm 0.014 \\ 7.2 \pm 2.0$	0	$ \begin{array}{c c} 0.040 \pm 0.008 & 0.079 \pm 0.016 \\ \hline 4.0 \pm 1.11 & 7.9 \pm 2.2 \\ \end{array} $	$0.079 \pm 0.016 \\ 7.9 \pm 2.2$	0.22 ± 0.04 23 ± 6	0	$\frac{0,35 \pm 0,07}{35 \pm 10}$	0,17±0,20	11±3	$0.23 \pm 0.22 \\ 23 \pm 23$
Bg	25–30	0,77±0,15	$0.030 \pm 0.006 \\ 3.9 \pm 1.1$	$0.018 \pm 0.004 \\ 2.3 \pm 0.7$	$0.015 \pm 0.003 \\ 1.9 \pm 0.5$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.17 \pm 0.03 \\ 23 \pm 6$	0	0.30 ± 0.06 39 ± 11	0,12±0,18	8,2 ± 1,9	$0.18 \pm 0.17 \\ 23 \pm 24$
\mathbf{B}_{1}	35-40	0,49±0,10	$0.033 \pm 0.007 \\ 6.8 \pm 1.9$	$0,008 \pm 0,003 \over 1,6 \pm 0,5$	0	$0.022 \pm 0.004 4.5 \pm 1.3$	$\frac{0,083 \pm 0,017}{17 \pm 5}$	0	$0.22 \pm 0.04 \\ 46 \pm 13$	0,12±0,22	8,4±2,2	$0.12 \pm 0.11 \\ 24 \pm 24$
BCg	125–130	0,40±0,08	$0.022 \pm 0.004 \\ 5.4 \pm 1.5$	0	$0.012 \pm 0.003 \\ 3.0 \pm 0.8$	0	$0,028 \pm 0,006 \\ 6,9 \pm 2,0$	0	$0.24 \pm 0.05 \\ 58 \pm 16$	0,13 ± 0,23	8,4±2,1	$0.11 \pm 0.09 \\ 26 \pm 26$
					Тундровая п	Тундровая поверхностно-глеевая	-глеевая					
A_0	0-5	14,8±1,5	$\frac{1,8\pm0,4}{12,4\pm2,8}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1,22 \pm 0,24}{8,3 \pm 1,8}$	$0,32 \pm 0,06 \\ 2,2 \pm 0,5$	$\frac{1,9\pm0,4}{13,1\pm2,9}$	$0,096 \pm 0,019 \\ 0,65 \pm 0,14$	$\frac{1,7\pm0,3}{11,7\pm2,6}$	0,77±0,19	21 ± 4	$7,5\pm0,6$ 51 ± 12
A_0Ah	5-10	2,1±0,4	0.25 ± 0.5 12 ± 4	$\frac{0,065 \pm 0,013}{3,2 \pm 0,9}$	$0.21 \pm 0.04 \\ 10.1 \pm 2.9$	$\frac{0,16\pm0,03}{7,6\pm2,2}$	0.50 ± 0.10 24 ± 7	0	$0,45 \pm 0,09 \\ 22 \pm 6$	0,48±0,18	26±6	$0,43 \pm 0,44$ 21 ± 23
Ð	10–15	0,55±0,11	$0.044 \pm 0.009 \\ 8.0 \pm 2.3$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.043 \pm 0.009 \\ 7.8 \pm 2.2$	$0,105 \pm 0,021 \\ 19 \pm 5$	0	$0.27 \pm 0.05 49 \pm 14$	0,21 ± 0,19	16±4	$0.04 \pm 0.13 \\ 8 \pm 25$
GB_1	25–30	0,44±0,09	$0.027 \pm 0.005 \\ 6.1 \pm 1.7$	$\begin{array}{c c} 0.010 \pm 0.003 & 0.013 \pm 0.003 \\ 2.3 \pm 0.6 & 2.9 \pm 0.8 \end{array}$		$0.020 \pm 0.004 4.5 \pm 1.3$	$\frac{0,073 \pm 0,005}{16 \pm 5}$	0	$0.25 \pm 0.05 57 \pm 16$	0,14±0,20	11±3	$0.05 \pm 0.10 \\ 11 \pm 26$
BCg	125–130	0,36±0,07	$\frac{0.018 \pm 0.004}{5.1 \pm 1.4}$	$\begin{array}{c c} 0.021 \pm 0.004 & 0.021 \pm 0.004 \\ 5.9 \pm 1.7 & 5.9 \pm 1.7 \end{array}$	$0.021 \pm 0.004 \\ 5.9 \pm 1.7$	0	$0.012 \pm 0.003 \\ 3.4 \pm 1.0$	0	$\frac{0.21 \pm 0.04}{60 \pm 17}$	0,27±0,22	17±4	$\frac{0.07 \pm 0.08}{20 \pm 26}$

					Торфянисп	Торфянисто-тундровая глеевая	1 глеевая					
0	0-14	24,9±2,5	$\frac{1,43\pm0,29}{5,7\pm1,3}$	$\begin{array}{c c} 0.53 \pm 0.11 \\ 2.1 \pm 0.5 \end{array}$	$\frac{2,1\pm0,4}{8,4\pm1,9}$	$\frac{0.66 \pm 0.13}{2.7 \pm 0.6}$	$2,0\pm0,4 \ 8,2\pm1,8$	0.97 ± 0.19 3.9 ± 0.9	$3,0\pm0,5$ 12,1±2,2	0.60 ± 0.16 16.2 ± 2.6	16,2 ± 2,6	$\frac{14,1\pm 2,6}{57\pm 11}$
O ₂ Ahg	14-17	1,31±0,26	$\frac{0,060\pm0,012}{4,6\pm1,3}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0.112 \pm 0.022 \\ 8.5 \pm 2.4$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,141±0,028 11±3	$0,119 \pm 0,024 \\ 9,1 \pm 2,6$	0.25 ± 0.05 19 ± 5	0,44±0,16	20±5	$\frac{0,45 \pm 0,27}{34 \pm 21}$
Ð	20-25	0,47±0,09	$ \begin{array}{c c} 0.014 \pm 0.003 \\ \hline 3.0 \pm 0.8 \\ \hline \end{array} \begin{array}{c} 0.034 \pm 0.007 \\ \hline 7.2 \pm 2.0 \\ \hline \end{array} $		0.020 ± 0.004 4.3 ± 1.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0,101 \pm 0,020}{21 \pm 6}$	0	$\frac{0,15 \pm 0,03}{33 \pm 9}$	0,23±0,18	14±3	$\frac{0,10\pm0,10}{22\pm23}$
G	35-40	0,69±0,14	$\frac{0,021 \pm 0,004}{3,0 \pm 0,9}$	$0.051 \pm 0.010 \\ 7.4 \pm 2.1$	$\frac{0.018 \pm 0.004}{2.6 \pm 0.7}$	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	$\frac{0.046 \pm 0.009}{6.6 \pm 1.9}$	$\frac{0.044 \pm 0.009}{6.4 \pm 1.8}$	0.20 ± 0.04 29 ± 8	0,26±0,18	13±3	0.26 ± 0.15 37 ± 22
GB_1	45-50	0,55±0,11	$\frac{0,020\pm0,004}{3,6\pm1,0}$	$0.068 \pm 0.014 \\ 12 \pm 4$	0.020 ± 0.004 3.6 ± 1.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0,023 \pm 0,005}{4,2 \pm 1,2}$	$0,043 \pm 0,009$ $7,8 \pm 2,2$	0.15 ± 0.03 27 ± 8	0,42±0,18	20±5	$0,19 \pm 0,12 \\ 34 \pm 22$
Т.П.	20-60	1,32±0,26	$\begin{array}{c c} 0,108 \pm 0,022 \hline 8,2 \pm 2,3 \\ \hline 8,2 \pm 2,5 \\ \end{array} \begin{array}{c c} 0,115 \pm 0,023 \\ 8,7 \pm 2,5 \\ \end{array}$		$0.112 \pm 0.022 \\ 8.5 \pm 2.4$	$ \begin{array}{c c} \hline 0.112 \pm 0.022 & 0.043 \pm 0.009 \\ 8.5 \pm 2.4 & 3.3 \pm 0.9 \\ \end{array} $	$0.18 \pm 0.04 \\ 13.3 \pm 3.8$	$0.032 \pm 0.006 \\ 2.4 \pm 0.7$	0.37 ± 0.07 28 ± 8	0,54±0,18	25±6	$\frac{0,36 \pm 0,28}{27 \pm 22}$
					Торфяно	Торфяно-тундровая глеевая	леевая					
O	0-5	30±3	$\frac{1,11\pm0,22}{3,7\pm0,8}$	$\frac{1,35\pm0,27}{4,5\pm1,0}$	$2,0\pm0,4$ $6,8\pm1,5$	$\frac{1,09\pm0,22}{3,7\pm0,8}$	2.9 ± 0.6 9.8 ± 2.2	$0.17 \pm 0.03 \\ 0.57 \pm 0.13$	$\frac{3,2\pm0,5}{10,6\pm1,9}$	0.61 ± 0.16 15.0 ± 2.3	15,0±2,3	$\frac{18\pm3}{60\pm11}$
O ₂	5-10	30±3	$\frac{0.78 \pm 0.16}{2.6 \pm 0.6}$	$\frac{1,6\pm0,3}{5,4\pm1,2}$	$\frac{1,7\pm0,3}{5,7\pm1,3}$	$\frac{0.94 \pm 0.19}{3.2 \pm 0.7}$	$2,3\pm0,5$ 7,6±1,7	$0.034 \pm 0.007 \\ 0.115 \pm 0.026$	$3,2\pm0,5$ 10,8±1,9	0.63 ± 0.16 13.7 ± 2.2	13,7±2,2	$\frac{19\pm3}{65\pm11}$
O ₂	10–15	24,0±2,4	$\frac{0.91 \pm 0.18}{3.8 \pm 0.8}$	0.82 ± 0.16 3.4 ± 0.8	$1,6\pm0,3$ $6,8\pm1,5$	$\frac{0.76 \pm 0.15}{3.2 \pm 0.7}$	1.9 ± 0.4 7.8 ± 1.8	$0.36 \pm 0.07 \\ 1.5 \pm 0.3$	$2,5\pm0,5$ 10,3 ± 2,3	0,62 ± 0,17	14,1 ± 2,2	$\frac{15,1\pm 2,5}{63\pm 11}$
O ₂	15-20	29,1±2,9	$\frac{1,7\pm0,3}{5,9\pm1,3}$	$0.79 \pm 0.16 \\ 2.7 \pm 0.6$	$2,4\pm0,5$ 8,2±1,8	$0.56 \pm 0.11 \\ 1.9 \pm 0.4$	$\frac{2,4\pm0,5}{8,1\pm1,8}$	$0.26 \pm 0.05 \\ 0.88 \pm 0.20$	$3,3\pm0,5$ 11,3±2,0	$0,76\pm0,16$ $16,8\pm2,7$	16,8±2,7	$\frac{18\pm3}{61\pm11}$
O ₂ Ahg	26–28	6,8±0,7	$\frac{0,89 \pm 0,18}{13,1 \pm 2,9}$	0.58 ± 0.12 8,6±1,9	$0,46\pm0,09\\6,8\pm1,5$	$0.21 \pm 0.04 \\ 3.1 \pm 0.7$	0.96 ± 0.19 14 ± 3	0	$\frac{0.76 \pm 0.15}{11,2 \pm 2.5}$	1,01 ± 0,18	29±4	2.9 ± 0.8 43 ± 11
Ğr	30–35	0,66±0,13	$\frac{0.026 \pm 0.005}{3.9 \pm 1.1}$	$\begin{array}{c} 0.026 \pm 0.005 \\ 3.9 \pm 1.1 \\ \end{array} \begin{array}{c} 0.026 \pm 0.005 \\ 3.9 \pm 1.1 \\ \end{array}$	$0.027 \pm 0.005 \over 4.1 \pm 1.2$	$\begin{array}{c c} 0.027 \pm 0.005 & 0.060 \pm 0.012 \\ \hline 4.1 \pm 1.2 & 9.1 \pm 2.6 \end{array}$	$\begin{array}{c c} \underline{0.018 \pm 0.004} & \underline{0.014 \pm 0.003} \\ 2.7 \pm 0.8 & 2.1 \pm 0.6 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.20 ± 0.04 31 ± 9	0,27±0,18	12±3	$0,29 \pm 0,14 \\ 43 \pm 22$
G_2	55-60	0,46±0,09	$\frac{0,011\pm0,003}{2,4\pm0,7}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0,012\pm0,003}{2,6\pm0,7}$	$0.033 \pm 0.007 \\ 7.3 \pm 2.1$	0	$0.013 \pm 0.003 \over 2.9 \pm 0.8$	$0.19 \pm 0.04 \\ 42 \pm 12$	0,16±0,20	8,4±1,9	$\frac{0,18 \pm 0,10}{39 \pm 23}$
Т.П.	46–62	1,7±0,3	$\frac{0,115\pm0,023}{6,9\pm1,9}$	$0,17\pm0,03\\10,3\pm2,9$	$\frac{0,19\pm0,04}{11\pm3}$	$\frac{0,079 \pm 0,016}{4,7 \pm 1,3}$	$\begin{array}{c c} 0,15\pm0,03\\ 9,0\pm2,5 \end{array}$	0.18 ± 0.04 11 ± 3	$0,29 \pm 0,06$ 17 ± 5	0,68±0,16	28±7	0.5 ± 0.3 30 ± 22

 Π р и м е ч а н и е. В числителе указана массовая доля в % к почве, в знаменателе — в % к $C_{\rm opr.}$ в почве. Т. Π . — темное пятно; H. O. — негидролизуемый остаток.

a- тундровая поверхностно-глеевая освоенная; $\delta-$ тундровая поверхностно-глеевая; s-торфянисто-тундровая глеевая; Массовая доля углерода фракций гумуса в тундровых почвах: г — торфяно-тундровая глеевая.

Криогидроморфные почвы. Гумусовый профиль криогидроморфных почв, сформированных на суглинистых породах, создается комплексом процессов: криогенный массообмен, мерзлотная ретинизация, гумусонакопление за счет разложения главным образом корневого опада *in situ*. Распределение органического углерода по профилю криогидроморфных почв имеет аккумулятивно-потечно-иллювиальный характер с максимумом содержания его в гумусо-аккумулятивном горизонте (гор. О) и резким уменьшением Сорг. в горизонте G. Ведущим компонентом среди основных фракций почв ГВ являются ФК. Степень гумификации органического вещества слабая, содержание гуминовых кислот, связанных с Ca²⁺ очень низкое, состав гумуса гуматно-фульватный в горизонте O (O₂Ahg), в остальной части минеральной толщи — фульватный. В надмерзлотном слое увеличивается содержание $C_{\text{opt.}}$ и растворимость ГВ ($C_{\Gamma K} + C_{\Phi K}$) до 56-67% и расширяется отношение $C_{\Gamma K}/C_{\Phi K}$ Увеличение содержания $C_{\text{odd.}}$ и ГВ связано с криогенной денатурацией и трансформацией дисперсных ГВ в жестких условиях промерзания, высокой контрастностью термического режима и особенно в горизонте O₂Ahg тундровой торфяно-глеевой почвы. Горизонт О₂Ahg является для криогидроморфных почв субгоризонтом, образующимся в результате внутрипочвенного гумусонакопления. Данный горизонт формируется на мерзлотной подошве верхней части горизонта G. Внутрипочвенное гумусонакопление в горизонте O₂Ahg происходит за счет миграции растворов ГВ из верхней части подстилки (мерзлотная ретинизация) с последующей деградацией (криогенная денатурация) и коагуляцией дисперсных гумусовых систем, а также за счет термокапиллярного перемещения ГВ к фронту промораживания. Данный горизонт, с одной стороны, является водоупором, а с другой «насосом», обусловливающий возвратное перемещение (подтягивание) и внутрипочвенное закрепление части растворенных ГВ в верхней части профиля в осенне-зимний период [6, 8].

ГК тундровых торфянисто- и торфяно-глеевых почв представлены всеми фракциями с преобладанием свободных (фракция 1) и прочно связанных с глинистыми минералами (фракция 3). Наиболее упрощенные по строению (слабополимеризованные соединения) и более подвижные ГК–1, связанные с полуторными оксидами, составляют основную часть ГВ в группе ГК и, особенно в торфяно-глеевой почве. Высокое содержание обменных оснований, сравнительно низкая гидролитическая кислотность в криогидроморфных почвах способствуют увеличению доли гуминовых кислот, связанных с кальцием (ГК–2), от 6–8% в горизонте G до 7–9% в горизонте O_2 Ahg от $C_{opr.}$ Для сравнения в составе гумуса поверхностно-глеевых почв Γ K–2 практически отсутствует. Поскольку гуматы кальция аккумулируются на месте своего образования и не способны к миграции в водных растворах с кислой, нейтральной и слабощелочной реакцией, появление их на глубине 40–50 см почвенного профиля может рассматриваться как современный процесс гумусообразования, или как процесс, свидетельствующий о реликтовости гумуса, образование которого протекало в иной биоклиматической обстановке.

В распределении по профилю фульвокислот отмечаются флуктуации. Наименьшая доля ФК отмечается в органогенном горизонте (26–27% от $C_{\rm opr.}$), наибольшая в тиксотропном слое — 55–64%. В группе фульвокислот преобладают лабильные и связанные с устойчивыми формами оксидов железа, алюминия и глинистыми минералами фракции (1+3). Гумус суглинистых криогидроморфных почв отличается незначительным количеством фракции 1а, обладающей наибольшей подвижностью и фракции 2, связанной с кальцием. При этом следует отметить, что дифференциация качественного состава гумуса достаточно ярко выражена на границе раздела между минеральной

и органической частями профиля. Минеральная часть профиля пропитана главным образом фульватным органическим веществом и особенно это рельефно проявляется в тундровой торфянисто-глеевой почве. В криогидроморфных почвах в горизонте G увеличивается растворимость и подвижность органических веществ, мощность пропитанного гумусом минерального тиксотропного слоя. В весенне-летний периоды высокая переувлажненность, особенно в верхней части тиксотропного горизонта, обусловливает увеличение потечности гумуса, что приводит к растянутости гумусового профиля почв. В морозные периоды года почвенные растворы концентрируются в нижней части тиксотропного горизонта благодаря вымораживанию влаги и дальнейшей коагуляции и перевода их в плохорастворимое состояние. Именно с этими процессами, по утверждению И.Б. Арчеговой, связано повышенное содержание в тиксотропном горизонте фракции 3 фульвокислот и подвижной фракции 1 [6].

В последнее десятилетие появились работы, показывающие, что гумусовый профиль фиксирует все, даже кратковременные изменения природной среды и четко отражает стадии и фазы развития почв, которые можно диагностировать и при отсутствии явно выраженных морфологических реликтовых признаков.

Наличие в минеральных горизонтах второй фракции гуминовых кислот, связанных с кальцием (1–6% от $C_{\rm opr.}$) свидетельствует, по-видимому, о реликтовости гумуса. Известно, что нахождение этой фракции в горизонтах B-BCg мерзлотных почв Большеземельской тундры и незначительное количество негидролизуемого остатка в них говорит об иных условиях почвообразования в прошлые этапы голоцена [23]. Согласно палеогеографическим данным, в это время на дренируемых участках господствовали злаково-разнотравные сообщества, таежные экосистемы. Подтверждением служат погребенные дерново-подзолистые иллювиально-глинистые почвы (6030 \pm 170 лет назад), обнаруженные в 5,5 км к северо-востоку от Воркуты [24].

В разрезах криогидроморфных почв на глубине 50–62 см в зоне активного развития криогенных процессов в тиксотропном горизонте обнаружены темно-серые пятна зернистой структуры, прокрашенные органическим веществом. Обращает внимание сравнительно высокое содержание в гумусированных пятнах фракции гуминовых кислот, связанных с кальцием (9–10%). Особенностью пятен также является повышенное содержание органического углерода и увеличение отношения $C_{\Gamma K}/C_{\Phi K}$, по сравнению с верхними сопредельными горизонтами, что не характерно для почв с простым (моногенетичным) профилем. Аккумулятивный характер ГК-пятен (в пятнах ГК составляют 25–28% от суммы $C_{\text{орг.}}$), трансаккумулятивный и мигрирующий компоненты ΦK (часть ΦK может связываться в комплексы с ΓK , а часть мигрировать по профилю) определяют процессы формирования нижней части профиля и гумусовых пятен. По данным Е. В Каллас, М. И. Дергачевой эти показатели гумусовых веществ являются более рефлекторными по отношению к природной среде по сравнению с морфологическим профилем и являются устойчивыми признаками, которые могут использоваться в качестве маркера стадий и фаз почвообразования [25, 26].

Глинистые натеки (пятна) в срединных горизонтах свидетельствуют об их реликтовой текстурной дифференциации, что связано с резким похолоданием в суббореальный период. Резкое похолодание сопровождалось погребением почв, осадконакоплением и началом следующего этапа почвообразования под тундровыми сообществами [24]. Высокие величины показателей гумификации свидетельствуют в пользу автоморфных условий образования темных пятен.

Заключение

Таким образом, гумусообразование и формирование фракционно-группового состава гумуса тундровых почв происходит в жестких климатических условиях, что определяет специфику количественного и качественного состава органического вещества. Характерной особенностью исследованных почв, сформированных на суглинистых породах, является высокое содержание углерода в грубогумусовых органо-аккумулятивных горизонтах и резкое его снижение с глубиной. Состав гумуса гуматно-фульватный в органогенных горизонтах и фульватный в остальной части минеральной толщи. Криоповерхностно-глеевые почвы характеризуются высокой растворимостью, слабой и средней степенью гумификации органического вещества. Гумусовый профиль криогидроморфных почв создается комплексом процессов: криогенный массообмен, мерзлотная ретинизация, криогенная денатурация и коагуляция дисперсных гумусовых систем. Распределение органического углерода по профилю криогидроморфных почв имеет аккумулятивно-потечно-иллювиальный характер с максимумом его содержания в гумусо-аккумулятивном горизонте. Степень гумификации органического вещества слабая, содержание гуминовых кислот, связанных с Са²⁺, очень низкое. В надмерзлотном слое увеличивается содержание C_{odd} , растворимость ΓB и расширяется отношение $C_{\Gamma K}/C_{\Phi K}$

* * *

Работа выполнена при поддержке РФФИ (гранты №10-04-01247, 11-04-00086).

Литература

- 1. *Орлов Д. С.* Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ, 1990. $325 \, \mathrm{c}$.
- 2. Иванова Е. Н., Полынцева О. А. Почвы Европейских тундр // Труды Коми филиала АН СССР. Вып. 1. 1952. С. 72–122.
 - 3. Караваева Н. А. Тундровые почвы Северной Якутии. М.: Наука, 1969. 208 с.
- 4. *Таргульян В.О.* Почвообразование и выветривание в холодных гумидных областях. М.: Наука, 1971. 268 с.
 - 5. Игнатенко И. В. Почвы Восточноевропейских тундры и лесотундры. Л.: Наука, 1979. 280 с.
- 6. *Арчегова И.Б.* Особенности гумусообразования в почвах Воркутинской тундры. Сыктыв-кар, 1972. 60 с.
 - 7. Забоева И. В. Почвы и земельные ресурсы Коми АССР. Сыктывкар, 1975. 344 с.
- 8. Фоминых Л. А., Золотарева Б. Н., Пинский Д. Л. Сравнительный анализ палеопочв в древних ландшафтах севера России // Криосфера Земли. 2010. Т. XIV, № 2. С. 56–68.
- 9. *Гришина Л. А.* Особенности формирования органического вещества почв в условиях криогенеза // Проблемы почвенного криогенеза. Сыктывкар: Коми филиал АН СССР, 1985. С. 49–50.
- 10. Барановская А. В. Особенности гумусообразования и состава гумуса в почвах Коми АССР // Труды Коми филиала АН СССР. Сер. геогр. Вып. 1. 1952. С. 113–125.
 - 11. Василевская В. Д. Почвообразование в тундрах Средней Сибири. М.: Наука, 1980. 235 с.
- 12. Соколов И. А. Пространственно-временная организация педосферы и ее эволюционно-экологическая обусловленность // Почвоведение, 1993. № 7. С. 12–22.
- 13. Чуков С. Н. Структурно-функциональные параметры органического вещества почв в условиях антропогенного воздействия. СПб.: Изд-во СПбГУ, 2001. 216 с.
- 14. Чимитдоржиева Г. Д. Гумус холодных почв: экологические аспекты. Новосибирск: Наука, 1990. 201 с.

- 15. Попов А. И. Гуминовые вещества: свойства, строение, образование. СПб.: Изд-во СПбГУ, 2004. 248 с.
- 16. Дергачева М. И. Гумусовая память почв // Память почв: почва как память биосферно-геосферно-антропосферных взаимодействий. М.: Изд-во ЛКИ, 2008. С. 530–560.
- 17. Геокриологическая карта СССР. Масштаб 1:2,5 млн / под ред. Е. Д. Ершова, К. А. Кондратьевой. М.: Министерство геологии СССР, МГУ. 1998.
- 18. *Карта* четвертичных отложений. Серия Северо-Уральская. Лист Q-41-V. Масштаб 1:200 000 / Автор Енокян В. С. М.: Министерство геологии и охраны недр СССР, 1959.
- 19. Пономарева В. В., Плотникова Т. А. Методика и некоторые результаты фракционирования гумуса черноземов // Почвоведение, 1968. № 11. С 104–117.
- $20.\ \Gamma OCT\ 26213-91.\ \Pi$ очвы. Методы определения органического вещества. М.: Комитет стандартизации и метрологии СССР. 8 с.
- 21. *Орлов Д. С., Бирюкова О. Н.* Система показателей гумусного состояния почв // Методы исследования органического вещества почв. М.: Россельхозакадемия ГНУ ВНИПТИОУ, 2005. С. 6-17.
- 22. Дергачева М. И. Органическое вещество почв: статика и динамика. Новосибирск: Наука, 1984. 155 с.
- 23. Золотарева Б. Н., Фоминых Л. А., Ширшова Л. Т., Холодов А. А. Состав гумуса мерзлотных почв Большеземельской и Колымской тундр // Почвоведение, 2009. № 1. С. 42–56.
- 24. *Русанова Г.В., Лаптева Е.М., Пастухов А.В., Каверин Д.А.* Современные процессы и унаследованные педогенные признаки в почвах на покровных суглинках южной тундры // Криосфера Земли. 2010. Т. XIV, № 3. С. 52–60.
- 25. Каллас Е. В. Гумусовые профили почв озерных котловин Чулымо-Енисейской впадины. Новосибирск: Гуманитарные технологии, 2004. 170 с.
- 26. *Каллас Е. В., Дергачева М. И.* Гумусовый профиль почв как отражение стадийности почвообразования // Сибирский экологический журнал. 2007. № 5. С.711–717.

Статья поступила в редакцию 10 октября 2011 г.