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Abstract

The aim of this work was to study the effect of a high rate of Zn on the chemical 
bond forms of metal in soil and on the physical properties and organic matter 
of Haplic Chernozem under model experiment conditions. The metal sequen-
tial extraction procedure used in this study was the classical five-step method 
proposed by Tessier et al. (1979). The particle size distribution was determined 
by the pipette method (using the pyrophosphate procedure of soil prepara-
tion) (GOST 12536-79). The microaggregate distribution was determined in the 
same way as the particle size distribution analysis above, except that there 
was no chemical dispersant (sodium pyrophosphate) applied (only mechanical 
agitation with water) (GOST 12536-79; Vadyunina and Korchagina, 1973). The 
qualitative composition of organic matter was determined using the Tyurin pro-
cedure modified by Ponomareva and Plotnikova (Vorob’eva, 2006). Contamina-
tion of Haplic Chernozem with Zn acetates at high rates of 2000 mg/kg affected 
the physical and chemical properties of the soil. A significant increase in the 
first two soil fractions least strongly bound to the soil was observed in contami-
nated soils. Silicates and Fe-Mn oxides made the largest contribution to the Zn 
adsorption and retention. The content of organo-mineral particles in colloidal 
size increased, which resulted in an increase of the clay fraction content up 
to 4.5 % compared to the control. The qualitative composition of organic mat-
ter changed: the contents of free and sesquioxide-bound humic acids and free 
fulvic acids increased. Studies of soil physical properties and organic matter 
quality changes and chemical bond forms of Zn in soil are needed to better un-
derstand metal behaviors in the environment and implement repair strategies 
in different polluted soils.
Keywords: zinc, soil, fractional composition, organic matter, particle size distri-
bution, structural status, aggregate content.

Introduction

Heavy metals (HMs) pollution of soil is an increasingly urgent problem all over the 
industrialized world. Elevated metals concentrations in soils can pose long-term 
risks for soil fertility and ecosystem health. Organic matter, clay minerals, as well as 
Fe and Mn oxides are the most important components determining the sorption of 
metals in soils (Vega, Covelo, and Andrade, 2006). The organic components form 
stable metal-organic complexes with a variety of metals, while clay minerals and 
oxides concentrate heavy metal ions through surface ion exchange and metal-com-
plex surface adsorption. Soil organic matter (SOM) that plays a key role in govern-
ing metal mobility consists mainly of humic substances: humic and fulvic acids. Or-
ganic materials have large negatively charged interfaces that compete strongly with 
inorganic ligands to readily immobilize metal ions through the formation of stable 
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complexes, thereby decreasing their phytoavailability to 
plants (Guo et al., 2006; Mohamed et al., 2010; Ok et al., 
2011). In addition, dissolved organic matter and fulvic/
humic acids can form soluble chelates with metals, which 
increases metal mobility, extractability and phytoavail-
ability under certain soil conditions (Salati, Quadri, Tam-
bone, and Adani, 2010; Hu et al., 2016). Iron and man-
ganese oxides present in soils are frequently nanometer-
sized materials, which have a large surface area to volume 
ratio and thus are capable of binding metals. For example, 
T. Phuengprasop, J. Sittiwong, and F. Unob (2011) found 
that one gram of iron oxide-coated sludge had a capac-
ity to adsorb 17.3, 14.7 and 42.4 mg of Cu, Cd and Pb, 
respectively.

The environmental behavior of HMs in soils and 
potential risks to human health depend critically on the 
form in which they occur. The manner in which an ele-
ment is bound to the components of the soil complex 
influences the mobility and, ultimately, the bioavailabil-
ity and toxicity of the element to organisms (Bacon and 
Davidson, 2008). The availability depends on the nature 
of the chemical association between the metal and or-
ganic and/or inorganic soil constituents (Wang, Zhou, 
and Cang, 2009).

Determination of the chemical forms of trace ele-
ments in complex environmental matrices such as soils 
can be achieved by sequential extraction. Sequential ex-
traction, although operationally defined, can give infor-
mation about the association of heavy metals with the 
geochemical phases of soil. Thus, sequential extraction 
is widely used to reveal the distribution of heavy metals 
in soil fractions and to assess the mobility and toxicity of 
metals in soil (Guo et al., 2011).

It is known that HMs contamination also changes 
the quality of the soil. The HMs adsorbed by soils can 
affect the physical and chemical properties of the soil. 
Many authors have studied the effects of HM cations on 
the specific surface area of soils, microstructure of clay 
minerals, sorption of water vapors, thermodynamic state 
of water in clay minerals, mineralogy of the clay frac-
tion, and distribution of HMs in aggregates of soils of 
different genesis (Vityazev, Kaurichev, and Rabii, 1980; 
Vityazev, Chizhikova, and Shevchenko, 1983; Manucha-
rov, Kharitonova, Chernomorchenko, and Zemlyanukh-
in, 2001; Smagin et al., 2004; Fedotov et al., 2008). It was 
shown that the intensities of reflections corresponding 
to montmorillonites and illites on the X-ray diffraction 
patterns of the clay fractions from heavy loamy soddy-
podzolic soil and heavy loamy chernozem changed after 
treatment with Zn and Cu salts (Motuzova et al., 2012).

The affinity of clay minerals to HM cations is due 
to their high surface energy and reactivity related to 
the small size of particles and their morphological ele-
ments, as well as the specific properties of HM cations 
determined by the electron structure of their atoms. The 

interaction energy of HMs with clay minerals is higher 
than that of alkaline and alkaline-earth cations; in the 
general case, it changes in the following order: Pb > Cu > 
Ni > Co > Zn > Mn > Ba > Ca > Mg > K > Na (Pinskiy 
and Fiala, 1985). It also depends on the acid–base prop-
erties of the exchanger; hence, the order can vary among 
soils and their components (Pinskiy, 1996). 

It was noted that high contamination can disturb 
the organic matter content and quality of soils: changes 
in the content of the aliphatic structures inhibit the mat-
uration of molecules of humic acids (Grishina, Koptsik, 
and Makarov, 1990), increase the share of fulvic acids 
(Karpukhin and Bushuev, 2007), and even slightly in-
crease the organic matter content (Bezuglova and Yudi-
na, 2006). Hence, studies on native SOM quality changes 
and metal-SOM interactions are needed to better under-
stand metal behaviors in the environment and imple-
ment repair strategies in different polluted soils.

The aim of this work was to study the effect of a high 
rate of Zn on the chemical bond forms of metal in soil and 
on the physical properties and organic matter of Haplic 
Chernozem under model experimental conditions.

Materials and Methods

SOIL CHARACTERISTIC

Soil for model laboratory experiments was collected from 
the humus-accumulative A1 horizon of Haplic Cherno-
zem (Clayic) (IUSS, 2015) in the Persianovskaya Steppe 
Specially Protected Natural Territory, Rostov Oblast, 
Russia. The soil has the following chemical composi-
tion: Corg 3.7 %; CaCO3 0.4 %; pHH2O 7.6; exchangeable 
cations (mM(+)/100 g): Ca2+ 31.0; Mg2+ 6.0; Na+ 0.06; 
cation exchange capacity (CEC) — 38.0 mM(+)/100 g. 
The content of the physical clay fraction (particles 
<0.01  mm) is 63.6 %; the content of the clay fraction 
(particles <0.001 mm) is 28.1 %.

The mineralogy of the clay and fine silt (0.005–
0.001  mm) fractions in the humus-accumulative hori-
zon (0–20 cm upper layer) of Haplic Chernozem is char-
acterized by the following phase composition of layered 
silicates: illite, 51–54 % in the clay fraction and 51–60 % 
in the fine silt fraction; labile silicates, 23–27 % in the 
clay fraction and 12–27 % in the fine silt fraction; kaolin-
ite, 22–23 % in the clay fraction and 22–28 % in the fine 
silt fraction. The fine silt fraction also contains micas, 
amorphous silica, and crystallized iron and aluminum 
oxides and hydroxides (Sokolova, 1985; Kryshchenko 
and Kuznetsov, 2003; Nevidomskaya et al., 2016).

EXPERIMENT DESIGN

To study the effect of adsorbed Zn on the physical and 
chemical properties of Haplic Chernozem, a laboratory 
experiment was established under controlled condi-
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tions. The soil selected for the experiment (1 kg) was air-
dried, triturated using a pestle with a rubber head and 
sieved through a 1-mm sieve. Zn acetate was then added 
separately as dry salt at a rate of 2000 mg HM kg–1. High 
pollution levels are found in soils near enterprises that 
mine and process non-ferrous metals (Iavazzo et al., 
2012; Huang, 2014; Minkina et al., 2018). It should be 
noted the soils such as Chernozem can retain their prop-
erties and functions even under a very high contamina-
tion level.

The soil was thoroughly mixed, wetted, and incu-
bated for 6  months at a water content of 60 % of field 
capacity. Experiments were performed in triplicate. 
Analogous procedures, although without addition of 
Zn, were performed with control soil samples. After the 
end of incubation, an average sample was taken from 
each vessel for analysis. The soil was air-dried, triturated 
using a pest with a rubber head, and sieved through a 
1-mm sieve.

SEQUENTIAL EXTRACTION

The metal sequential extraction procedure used in this 
study was the classical five-step method proposed by 
Tessier et al. (1979), as follows:

Step 1: exchangeable fraction (F1). The solid sample 
(1.0 g) was extracted at room temperature (25 °C) with 
8 mL of 1 mol L−1 MgCl2 (pH 7.0) for 1 h with continu-
ous agitation.

Step 2: carbonate-bound fraction (F2). The residue 
from Step 1 was extracted at room temperature (25 °C) 
with 8 mL of 1 mol L−1 NaOAc adjusted to pH 5.0 with 
HOAc, and the mixture was shaken for 5 h.

Step 3: Fe-Mn oxide-bound fraction (F3). The resi-
due from Step 2 was extracted with 20 mL of 0.04 mol 
L−1 NH2OH-HCl in 25 % (volume/volume) HOAc at 
96 °C with occasional agitation for 8 h.

Step 4: organic matter-bound fraction (F4). 3  mL 
of 0.02 mol L−1 HNO3 and 5 mL of 30 % H2O2 adjust-
ed to a pH of 2  with HNO3 was added to the residue 
from Step 3, and the mixture was heated to 85±2 °C for 
2  h with occasional agitation. A second 3-mL aliquot 
of 30 % H2O2 (pH 2 with HNO3) was then added and 
the sample was heated for a second time to 85±2 °C for 
3 h with intermittent agitation. After cooling, 5 mL of 
3.2  mol L−1 NH4OAc in 20 % (volume/volume) HNO3 
was added and the sample was diluted to 20 mL and agi-
tated continuously for 30 min.

Step 5: residual fraction (F5). The residue from Step 
4 was digested with an HF-HClO4 mixture, and finally 
dissolved in 12 mol L−1 HCl and diluted to 25 mL. 

All these extractions were conducted in centrifuge 
tubes; each step was performed in triplicate. Between 
each successive extraction, separation was completed 
using a centrifuge at 6000 r min−1 for 20 min, and the 

supernatant was stored at 4 °C for later analysis. Labo-
ratory equipment used in this study was washed with 
0.1  mol L−1 HNO3, rinsed with deionized water, and 
placed in an air-dry oven until dry. The Zn contents in 
the liquid extracts were measured by atomic absorption 
spectrophotometry (‘KVANT 2-AT’). The total content 
of Zn in solutions was determined as the total concen-
trations of the metals in all fractions.

METHODS OF PHYSICAL PROPERTIES AND  
ORGANIC MATTER DETERMINATION

In the studied samples, the maximum hygroscopic 
moisture was determined according to Russian standard 
(GOST 28268-89); the structural state of soils was deter-
mined by the Savvinov method of dry and wet sieving; 
water stability was determined by the Andrianov meth-
od (Dolgov and Bahktin, 1966). The aggregate water sta-
bility coefficient was calculated from the equation:

 K = (a * k1) + (b * k2) + … + (n * kn) / A, (1)

where a, b, n — number of aggregates, disintegrated in 
one minute; k1, k2 … kn — correction factor, which sig-
nifies aggregates water stability for each minute count-
ing (in percentage); A — the total number of aggregates 
taken for analysis. The correction factor k1 is 5 for the 
first minute, 15  for the second minute … 100  for the 
eleventh minute.

The particle size distribution (PSD) was deter-
mined by the pipette method (using the pyrophosphate 
procedure of soil preparation) (GOST 12536-79). In 
this method, carbonates, SOM, Fe, and Al oxides were 
not removed before the pipette procedure. The particles 
<0.01 mm were united in the physical clay fraction, and 
the particles >0.01 mm were united in the physical sand 
fraction. The physical clay fraction, which includes the 
silt fraction (<0.001 mm), consists of organic, organo-
mineral and mineral particles.

The microaggregate distribution was determined 
as in the PSD analysis above except that there was no 
chemical dispersant (sodium pyrophosphate) applied 
(only mechanical agitation with water) (GOST 12536-79; 
Vadyunina and Korchagina, 1973).

The saturation degree of physical clay with clay 
(Vα,  %) was calculated by the Kryshchenko method 
(Kryshchenko et al., 2016):

 Vα = 100 α/z, (2)

the value of Vα characterizes the relationship between 
the varying masses of clay (α) and silt (β) present in 
physical clay (z).

The qualitative composition of organic matter was 
determined using the Tyurin procedure modified by 
Ponomareva and Plotnikova (Vorob’eva, 2006), which 
involved the separation of organic matter into humic 
acids (HAs), fulvic acids (FAs), and nonhydrolyzable 
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residue (humin) followed by the fractionation of HAs 
and FAs depending on their bonds with the mineral soil 
component.

STATISTICAL DATA ANALYSES 

All laboratory tests were performed in triplicate. The ex-
perimental data (means and standard deviations) were 
statistically treated using STATISTICA 10.0. Results 
were considered statistically significant at p ≤ 0.05.

Results and Discussion

As previously indicated, a sequential chemical extrac-
tion was carried out in order to identify the distribution 
of the metal in the different geochemical soil fractions. 
Table 1  shows the contents of Zn associated with the 
fractions of each soil. The relative amounts of Zn ex-
pressed as a percent of the cumulative total extracted are 
given in Fig. 1. In the uncontaminated soil most of the 
Zn is in the residual fraction (48 % of the sum of all frac-
tions). These values reflect the regional trace-element 
specifics of the composition of soils in Rostov Oblast 
and the mineralogy of the soil-forming rocks. Yel-
low brown loess-like loams and clays in Pre-Caucasian 
plains inherited stable minerals from the parental rocks 
enriched in trace elements. Ions released from the rocks 
in the course of their weathering and the origin of soils 
are partly strongly bound in the structures of clay min-

erals (Minkina et al., 2016; Motuzova and Bezuglova, 
2007). Organic matter also significantly contributes to 
the strong fixation of Zn: it constitutes 32 % of the total 
metal content (Fig. 1). The relative content of Zn in the 
first two fractions, which are least strongly bound to the 
soil, is 3 %, including 1 % of the most mobile exchange-
able forms. The low mobility and dominance of Zn in 
the residual fraction confirm the absence of significant 
amounts of anthropogenic metal in the original soil. In 
the uncontaminated Haplic Chernozem, the following 
distribution of Zn among the compounds forms is re-
vealed: residual fraction > organic matter–bound frac-
tion > Fe-Mn oxide-bound fraction > carbonate-bound 
fraction > exchangeable fraction.

Addition of metal to the soil at a rate of 2000 mg kg−1, 
the absolute concentrations of all compounds of the 
metals in the soil samples increase (Table 1). The relative 
content of metal in the exchangeable and specifically ad-
sorbed (carbonate-bound) fractions increases: 2 % and 
4 % respectively (Fig. 1). A significant role of carbon-
ates in bonding Zn was previously mentioned (Adriano, 
2001; Minkina et al., 2016). The affinity of metal ions to 
carbonates is controlled by their low solubility. Heavy 
metals can co-precipitate with carbonates by being in-
corporated into their structures or can be adsorbed in 
Fe-Mn hydroxides that are precipitated on the surface of 
carbonates (Santillan-Medrano and Jurinak, 1975).

Fe-Mn oxides play a dominant role in Zn accumu-
lation. The Zn amount in the fraction bound to Fe-Mn 

Fig. 1. Fractional distribution of Zn in Haplic Chernozem, % of the sum of fractions.

Table 1. Fractional composition of Zn in Haplic Chernozem under model experimental conditions, mg kg−1 (n=3)

Soil

Fraction

Sum of 
fractionsExchangeable Bound to 

carbonates
Bound to  

Fe-Mn oxides

Bound to 
organic 
matter

Residual

Uncontaminated soil 
(control) 0.6±0.1 1.8±0.3 14.2±2.3 27.5±3.4 41.0±6.5 85.1±12.3

Artificially contaminated 
soil 64.8±8.7 119±13 670±17 321±15 899±22 2074±64
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oxides and hydroxides is the greatest as compared to the 
residual fraction increased by 25 % (Fig. 1). In agree-
ment with these results, other authors have also reported 
the high affinity of Zn for Fe oxides (Mahanta and Bhat-
tacharyya, 2011; Yin et al., 2016; Ghayoraneh and Qish-
laqi, 2017). This may be due to the stability constants of 
Zn oxides being high enough to be concentrated in this 
fraction (Ramos, Hernandez, and Gonzalez, 1994). Ka-
bala and Singh (2001) concluded that Zn sorption by Fe 
oxides is probably the most important mechanism that 
controls the behavior of this element in the soils. The 
similarity in the effective ionic radii of Zn2+, Fe2+, Fe3+, 
Mg2+, and Al3+ allows its incorporation in a large num-
ber of soil minerals (Manceau et al., 2004).

In the case of soil contamination with Zn in the 
dose of 2000 mg kg–1, a share of the organic fraction is 
decreased by 16 %. Zn is capable of forming stabile com-
plexes to a lesser extent. The organic matter plays a signifi-
cant role in Zn immobilization in view of forming the un-
stable outer sphere and intrasphere complex compounds 
capable of transfering into the other forms of compounds 
(Kabata-Pendias, 2010; Rodríguez-Oroz et al., 2012).

Metal input to soil in the dose of 2000 mg kg–1 re-
veals a decrease in the share of the firmly bound residual 
fraction in the total content of the metal extracted from 
soil (Fig.  1). This serves as evidence that this metal is 
weakly involved in the structure of the most stable soil 
components. Such a peculiarity in distribution of Zn 
fractions can be used as a diagnostic criterion for natural 
or anthropogenic contamination of soils and the level of 
their contamination (Minkina et al., 2015).

The significant increase of Zn content in the first 
two fractions, which are least strongly bound to the soil, 
reflected the changes of soil properties.

According to the Kachinskii classification, PSD in 
Haplic Chernozem corresponds to the variety of light silty 
loess-like clays (Table 2). The content of physical clay in 
the control samples is 63.6 %. The silt fractions are pre-
dominant: the content of medium and fine silt is 35.5 %. 
The content of the clay fraction is 28.1 %. The saturation 
degree of physical clay with clay (Vα, %) is 44.2 %.

The contamination of the studied soil with Zn is 
accompanied by changes in PSD due to the reliable in-
crease in the content of the clay fraction compared to the 
control to 4.5 %. The content of physical clay increases 
respectively. The clay fraction, along with the silt frac-
tion, becomes predominant, which allows classifying the 
contaminated soil samples as light clayey-silty clays. Soil 
samples under Zn contamination are characterized by 
an increase of the saturation of physical clay (soil par-
ticle <0.01 mm) with clay (soil particle <0.001 mm) up 
to 48.4 % (Table 2).

Analysis of the microaggregate size composition 
of the studied soil (Table 3) shows that the content of 
coarser aggregates (1–0.25 mm) increases and the con-

tent of finer (0.05–0.001 mm) aggregates decreases after 
the addition of Zn. 

The transformations of microaggregate composi-
tion are interrelated to the structural parameters of soil. 
High concentrations of Zn affect the structure of Hap-
lic Chernozem. We observed a significant decrease in 
the coefficient of water stability in the control from 3 to 
1.4 in the contaminated treatments (Table 4).

The aggregate status (estimated from total agro-
nomically valuable aggregates) changes from excellent to 
good. Kachinskii (1958) studied the structure of soil and 
noted that the aggregate water stability coefficient is re-
lated to the coagulating effect of organic colloids coagu-
lated by Ca2+ and Fe2+ ions. Some authors (Dobrovol’skii, 
2004; Gülser, Minkina, Sushkova, and Kızılkaya, 2017) 
noted the important role of HAs in the binding of min-
eral particles with the formation of microaggregates. 
The interaction of HMs with HAs fixes them in organic 
films formed on the surface of aggregates.

The adsorption of Zn2+ ions by the soil exchange 
complex largely follows the mechanism of ion exchange 
(Ponizovskii, Studenikina, and Mironenko, 1999; Poni-
zovskii and Mironenko, 2001; Strawn and Baker, 2008; 
Minkina et al., 2014). The substitution of HM cations 
for Ca2+ and Fe2+ ions can significantly affect the water 
stability of the corresponding aggregates.

An increase in the specific surface area of soil and 
fine fractions under the treatment of soils with Cu and 
Zn salts was shown by Motuzova et al. (2012). The au-
thor explained this fact by the formation of Me-organic 
complexes with HM cations and the partial decomposi-
tion of mineral-organic compounds, which play an im-
portant role in structure formation. The highest effect 
was observed for the clay fraction of chernozem at the 
interaction with Cu2+ and Zn2+ ions: the specific surface 
area determined by nitrogen adsorption increased by 
69 % compared to the initial value. 

The changes in the amphiphilic properties of HM-
contaminated soils are of a different nature. They can be 
related to changes in the relative content, composition, and 
properties of organic and organomineral soil components 
(Motuzova et al., 2012). It is shown that the formation of 
organomineral complexes significantly affects the hydro-
philic-hydrophobic properties of soils (Perelomov, Pins-
kiy, and Violante, 2011). The most probable mechanisms 
of the HM effect on the physical properties of soil can be 
the changes in the occurrence forms of HMs and organic 
matter in soils, including the formation of relatively stable 
complexes with organic components (Grishina, Makarov, 
and Baranova, 1988; Minkina, Motusova, and Nazaren-
ko, 2006). Therefore, some organic substances acting as 
structuring agents are removed from the solid phase, and 
aggregates are disintegrated into finer units. The forma-
tion of hardly soluble HM precipitates, e.g., lead humates, 
gives the same effect (Manceau, Marcus, and Tamura, 
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2002; Scheinost, Kretzchmar, and Pfister, 2002). Another 
mechanism can include the experimentally proved frag-
mentation of HAs during interaction with HM cations 
(Motuzova and Makarychev, 2014). 

The results of studying the fractional and group 
composition of organic matter from the uncontaminat-
ed Haplic Chernozem (Table 5) agree with the data of 
earlier studies of regional Chernozems (Bezuglova, Zvy-
agintzeva, and Goryainova, 1996). In the upper horizon 
of virgin Haplic Chernozem, the coefficient of humifica-
tion is 1.9, which characterizes the fulvate-humate type of 
organic matter. In the organic matter composition, HAs 
presumably bound to Ca (HA-2) prevail over FAs. Their 
content in the upper horizons of Haplic Chernozem is 
21.3 %. The contents of free and sesquioxide-bound HAs 
(HA-1) and free FAs (FA-1a) in the control soil are low: 

1.4 and 1.6 %, respectively (Table 5), which agrees with 
literature data (Bezuglova and Yudina, 2006).

The content of free HAs (HA-1)  and FAs (FA-1a) 
increased after Zn application to the soil (Table 5). The 
contamination of Haplic Chernozem with Zn also in-
creases the content of mobile HAs bound to sesquioxides 
(HA-3). These fractions are more mobile and responsive 
to changes in ecological conditions. The CHA/CFA ratio 
in soils contaminated with Zn decreased from 1.9 to 1.6. 

The qualitative composition of organic matter in 
contaminated soil is largely determined by adsorbed Zn 
added in the form of soluble salt. Adsorbed HM cations 
partially interact with SOM (Kabata-Pendias and Ka-
bata, 1985; Onyatta and Huang, 1999; Gray, McLaren, 
Robert, and Condron, 2000), including in the studied 
soil (Minkina et al., 2016). 

Table 2. Effect of high concentration of Zn on the particle-size fraction of Haplic Chernozem under model experimental 
conditions, %

Soil

The particle-size fraction content The saturation 
degree of 

physical clay 
with clay, (Vα)

Fine  
sand 0.25–
0.05 mm

Coarse 
silt 0.05–
0.01 mm

Medium 
silt 0.01–
0.005 mm

Fine  
silt 0.005–
0.001 mm

Clay
< 0.001 mm

Physical 
sand

> 0.01 mm

Physical 
clay

< 0.01 mm

Uncontaminated soil 3.7±0.1 32.7±2.2 11.0±0.8 24.5±1.1 28.1±1.6 36.4±2.3 63.6±3.5 44.2±0.2

Artificially 
contaminated soil 1.3±0.2 31.3±1.8 10.4±0.7 24.4±1.3 32.6±2.2 32.6±2.0 67.4±4.2 48.4±0.2

Table 3. Effect of high concentration of Zn on the microaggregate composition of Haplic Chernozem under model 
experimental conditions, %

Soil 1–0.25 0.25–0.05 0.05–0.01 0.01–0.005 0.005–0.001 < 0.001 > 0.01 < 0.01

Uncontaminated soil 41.3±2.8 20.4±1.4 26.2±1.8 5.6±0.3 6.4±0.9 1.2±0.1 86.8±6.0 13.2±1.3

Artificially 
contaminated soil 43.9±3.7 20.8±1.2 24.6±1.2 4.6±0.2 4.4±0.6 1.6±0.2 89.3±6.1 10.7±0.9

Table 4. Effect of high concentration of Zn on the structural status of Haplic Chernozem under model experimental 
conditions

Soil

The structural state 
coefficient

The aggregate content  
(0.25–10.0 mm), %

The agroecological 
estimation of the structural 
state (Dolgov, Bahktin 1966) The water 

stability 
coefficient, %dry sieving 

method
wet sieving 

method
dry sieving 

method
wet sieving 

method
dry sieving 

method
wet sieving 

method

Uncontaminated soil 2.0 3.0 66.5 75.5 good excellent 100.0

Artificially 
contaminated soil 1.9 1.4 64.9 60.5 good good 77.4

Table 5. Effect of high concentration of Zn on the fractional and group composition of organic matter in Haplic Chernozem, % 
of Ctot in the soil

Soil Сtot, 
%

The humic acids 
content (HAs) ∑ HAs

The fulvic acids content (FAs)
∑ FAs HAs + 

FAs
HAs
FAs

The 
humin 

content1 2 3 1а 1 2 3

Uncontaminated soil 3.7 1.4 21.3 5.9 28.6 1.6 1.3 7.8 4.6 15.3 43.9 1.9 56.1

Artificially 
contaminated soil 3.8 2.5 22.0 6.7 31.2 3.1 1.7 8.5 5.9 19.2 50.4 1.6 49.6
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Metals coming into the soil are mainly concentrat-
ed in fine silt (0.005–0.001 mm) and clay (<0.001 mm) 
fractions (Trofimenko and Kizyakov, 1976; Titova et al., 
1996a; Titova, Travnikova, and Shaymukhametov, 1996b; 
Pinsky and Minkina, 2013). It is known that particle-size 
fractions significantly vary in properties of bound organic 
matter and, hence, affinity for HMs. The clay fraction in-
cludes stable adsorption complexes of the youngest humic 
substances (predominantly of fulvate nature) with clay 
minerals and iron and aluminum oxides. In the fine silt 
fraction, SOM consists of humic substances in the form 
of HAs unbound by strong chemical bonds to clay miner-
als. It is found (Motuzova et al., 2012) that Zn is mainly 
concentrated in the clay fraction of Haplic Chernozem. 
So, the content of Zn is 82  mg kg–1 in the silt fraction 
and 162 mg kg–1 in the clay fraction. Thus, the adsorbing 
capacity of fine particle-size fractions for HM cations is 
variable. The capacity of HMs to accumulate in different 
particle size fractions is related to their density (Titova, 
Travnikova, and Shaymukhametov, 1996b) and proper-
ties of their organomineral matrix (Motuzova et al., 2012). 

Conclusions

Based upon a model experiment it has been established 
that the main Zn share was predominantly concentrated 
in the crystalline primary and secondary minerals in 
uncontaminated soil. In contaminated soil the metal was 
found in the residual fraction as well as in the fraction 
bounded to Fe-Mn oxides.

Under model experiment conditions the contami-
nation of Haplic Chernozem with Zn was followed by 
changes in particle size distribution due to the increase 
of the organo-mineral particles content in colloidal size 
in the clay fraction compared to the control by 4.5 %. 
Consequently, the degree of physical clay saturation with 
clay increased from 44.2 to 48.4 under contamination.

The high concentrations of metal salt affected the 
structural state of Haplic Chernozem: the coefficient of 
water stability decreased and the aggregate status (es-
timated from total agronomically valuable aggregates) 
changed from excellent to good.

The addition of Zn to the soil affected the quantita-
tive composition of organic matter. The contents of mo-
bile fractions (free and sesquioxide-bound HAs (HA-1) 
and free FAs (FA-1a)) increased. Contamination with 
Zn caused the aliphatization of organic matter, which 
decreased the CHA/CFA ratio from 1.9 to 1.6.
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