Л.В.Хитрина

4-КЕТОБАКТЕРИОРОДОПСИН И ОСОБЕННОСТИ ЕГО ФОТОЦИКЛА

Бактериородопсин (БР)¹ — протонная помпа, использующая энергию света [1, 2]. Структурно — это липохромопротеид, образующий специфические жидкокристаллические участки цитоплазматической мембраны бактерии Halobacterium salinarum (halobium) — ПМ [1, 2]. В углах такой решетки находятся белковые тримеры, молекулярная масса мономера — 26 кД. Хромофор образован взаимодействием ε-аминогруппы Lys216 и ретиналя, подобные структуры называют основаниями Шиффа или альдиминами [1-4]. Один из подходов к исследованию механизма данного молекулярного переносчика состоит в модификации хромофора, т.е. замене остатка ретиналя аналогами (см. [4-7]). 4-Кеторетиналь образует с апобелком пигмент, интересный крайне замедленными компонентами фотоцикла при большом квантовом выходе [5, 6, 8]. Поэтому с исследованием 4-кетоБР связывают научные задачи и поиски вариантов создания фотохромных материалов для практического использования. Однако в конце XX в. группой исследователей была опубликована схема функционирования 4-кетоБР, основанная на косвенных данных [9], которую до сих пор противопоставляют современным работам. Назрела необходимость обсуждения выводов этих работ. Цель данного обзора — сконцентрировать внимание на действительно важных особенностях 4-кетоаналога БР и показать, что мнение об исчерпывающей изученности главных особенностей фотоцикла аналога неверно и что потенциал исследований этого пигмента далеко не исчерпан и является ценным инструментом в дальнейшем изучении БР.

Краткая история исследования фотоцикла БР

Схема функционирования БР с главными интермедиатами появилась в 1975 г. [10]. Предполагали, что переходу одного интермедиата в другой соответствует одна экспонента, как реакции первого порядка. Однако при попытке сделать кинетическое описание цикла оказалось, что констант нужно значительно больше, чем переходов [11–13], поэтому требовался дополнительный путь: обратная реакция или разветвление. Эти результаты положили начало многочисленным гипотезам как о разветвлениях цикла, так и о неоднородности исходного пула молекул в невозбужденном состоянии, вступающих в параллельные циклы (см., например, [2, 12–20]). Последнему предположению способствовала легкость превращения почти однофазной релаксации М-интермедиата в заметно двух-трехфазную под действием самых разнообразных факторов (детергентов, повышения pH, высушивания, повышения давления [14, 21–23]). Когда показали, что все (или почти все) интермедиаты находятся в равновесии друг с другом [24], потребовались константы прямой и обратной реакций, мест экспериментальным параметрам хватило с избытком, а поиски параллельных превращений прекратились, и схема

¹ Условные сокращения: БР — бактериородопсин, ПМ — пурпурные мембраны, 13*Z*- — 13-*цис*-, *all-E*- — *полностью-транс*-.

[©] Л. В. Хитрина, 2012

с последовательным расположением интермедиатов стала общепринятой (одну из современных схем см. на рис. 1).

Рис. 1. Схема фотоцикла all-E-БР [25]

Изложенное относилось к пигменту с *all-E*-конфигурацией хромофора. В эту форму с максимумом поглощения 568–570 нм нативный БР переходит полностью при освещении ПМ [2]. В темноте устанавливается равновесие и около половины пигмента возвращается в 13*Z*-состояние (форма с максимумом поглощения 558–560 нм) [2, 26]. Получить БР с максимумом поглощения 548 нм, у которого весь хромофор находится в 13*Z*-конфигурации, можно только добавлением 13*Z*-ретиналя к апоБР [2, 26, 27].

Впервые прямо изучили фотоцикл индивидуального 13*Z*-БР (БР548) немецкие ученые [26, 27]. В таком цикле нет коротковолновых интермедиатов (L и M), а лишь К-подобные. В отсутствие М нет протонного транспорта [2], а в быстрой кинетике электрического ответа отсутствуют характерные фазы [28]. 13*Z*-Цикл оказался частично разомкнутым, так как часть молекул переходила в *all-E*-конфигурацию [26, 27].

Однако изучение pH-зависимости быстрой кинетики оптических ответов тритоновых препаратов БР выявило странное несоответствие соотношения М-подобных и длинноволновых интермедиатов. Единственный непротиворечивый вывод: по мере роста pH происходит переход солюбилизированных молекул с 13Z-хромофором в состояние, генерирующее в фотоцикле М-интермедиат [29]. Сравнение быстрых кинетик электрогенеза светоадаптированных и темноадаптированных БР протеолипосом и ПМ подтвердило как это предположение, так и участие интермедиата М из 13Z-цикла в протонном транспорте [29–34]. Чем сильнее было изменено микроокружение молекулы БР, тем ниже оказывалось значение *pK* интермедиата M в 13Z-цикле. Для нативных ПМ *pK* в зависимости от ионной силы находится в интервале 8,5–9,5, для липосом *pK*=7,6, для мономерного БР, солюбилизированного в тритоне X–100, *pK* < 5 [31, 34].

4-Кетоаналог БР

4-Кеторетиналь — один из первых аналогов ретиналя, восстановивший в апоБР основную полосу поглощения хромофора и функциональную активность [35, 36]. Этот полиеналь также образует окрашенный пигмент с обесцвеченным мономерным препаратом белка, солюбилизированным в тритоне X–100 [37]. Позже был определен максимум поглощения 4-кето-аналога БР — 506 нм [38, 39]. А в спектре его кругового дихроизма в области 400–600 нм выявлены характерные отрицательная и положительная полосы [38]. Считают, что сходство с характером аналогичных полос в спектре нативных ПМ свидетельствует об экситонном взаимодействии хромофоров в тримере 4-кетоаналога [40]. При регенерации 4-кеторетиналем белых² мембран штамма JW5 получили пигмент без «бабочки» в хромофорной полосе спектра кругового дихроизма с единственным положительным максимумом без отрицательного [41].

Впоследствии оказалось, что максимумы поглощения индивидуальных 13Zи *all-E*-4-кетоБР достигаются, соответственно, при 504 и 527 нм [42]. Как тепловой, так и светоиндуцированный переход между этими конфигурациями хромофора затруднены и изменены в сравнении с нативным БР. Обычного для БР перевода всего хромофора в *all-E*-форму при освещении у 4-кетоаналога не происходит. Свет способствует частичным переходам в обе стороны: 13Z-4-кетоБР \leftrightarrow *all-E*-4-кетоБР [42]. Направление термоизомеризации совпадает с фотоизомеризацией. Эти переходы, даже в «правильном» направлении сильно замедлены, хотя и не до такой степени, как у 11,12-дидегидроБР или у фенильного и фторфенильного аналогов [42–44]. Подобное нарушение скорости и направления изомеризации не является редкостью для аналогов БР.

Тепловое равновесие форм 4-кетоБР сильно сдвинуто в сторону 13Z-конфигурации (506 нм в равновесном варианте в сравнении с 504 нм у 13Z-пигмента и 527 нм для all-E-формы) [38, 39, 42]. Однако в присутствии 50 мМ азида в водной суспензии мембран освещение позволяет перевести 4-кетоБР в форму с максимумом 522нм (влияние азида на сдвиг максимума поглощения исчезает с $pK \sim 8$) [45].

В водной суспензии аналогов ПМ при рН 6 у 13Z-4-кетоБР наблюдают батоинтермедиаты, обычные для 13Z-цикла аналогов, при полном отсутствии М-подобных [42]. Цикл *all-E*-4-кетоБР в этих условиях сильно замедлен, полный его оборот при комнатной температуре занимает несколько минут [5, 8, 9, 42]. По данным быстрой кинетики максимум М-интермедиата в водной суспензии мембран, pH 6, при 21-25 °C — 410 нм [46]. Скорость образования М обычная, а релаксация резко двухфазна: начальная скорость распада близка к контролю, а «хвост» содержит сильно замедленные компоненты [5, 8]. Кинетика релаксации фотоиндуцированных изменений вблизи максимума основной полосы поглощения также сильно замедлена, но без резкого деления на быструю и медленную компоненты [42]. Это указывает на особенности второй половины фотоцикла: возврата из позднего (или открытого) М в исходное состояние — БР₅₂₇ [8, 47, 48]. Отмечены изменения соотношения компонент М с разной скоростью релаксации в зависимости от длины волны измерения [9].

Фотоцикл *all-E*-4-кетоБР протонпереносящий, и в быстрой кинетике генерации разности электрических потенциалов на плоской искусственной мембране тестируются сильно замедленные компоненты. При этом микросекундная часть нарастания

² Штамм JW5 не синтезирует ретиналь; если не добавлять последний в процессе роста культуры, то вместо ПМ формируются так называемые белые мембраны, содержащие бактериоопсин.

фотопотенциала, соответствующая образованию М-интермедиата в фотоцикле, и часть миллисекундной электрической фазы близки к контролю [5].

Эффективность выцветания основной полосы поглощения *all-E*-4-кетоБР в ходе фотоцикла ~0,7±0,1 от контроля (в сравнении со светоадаптированными ПМ, полученными из ретиналя и апомембран в аналогичных условиях) [5, 49]; эффективность определяли как ($\Delta A_{4-\text{кетоБР}}/A_{4-\text{кетоБР}}/(\Delta A_{\text{контроля}}/A_{\text{контроля}})$, где А и ΔA — оптическая плотность в хромофорном максимуме поглощения пигмента и ее дифференциальное изменение в ходе фотоцикла после короткой насыщающей вспышки света.

Важным параметром взаимодействия аналогов полиеналей с белковой частью молекулы считают белковый или опсиновый сдвиг (OS), определяемый (согласно К. Наканиши) разностью обратных величин максимума поглощения протонированного основания Шиффа соответствующего полиеналя (SB⁺) и пигмента на основе этого же полиеналя: OS = $1/\lambda_{max(SB+)} - 1/\lambda_{max(пигмента)}$ [6]. Для *all-E*-4-кетоБР SB⁺ = 445 нм [5, 6, 49], максимум пигмента — 527 нм [42], соответственно OS=1/445-1/ 527=0,000350. Для контроля (также с остатком ретиналя в *all-E*-конфигурации [6]) OS = 1/440 -1/568=0,000512. Таким образом, белковый сдвиг 4-кетоаналога составляет 0,68% от контроля, что прекрасно согласуется со снижением эффективности фотоцикла. Следует отметить, что в наших ранних работах [5] изомерное состояние 4-кетоБР не отслеживали достаточно строго. Однако апомембраны регенерировали *all-E-*4-кеторетиналем, хранили препарат в темноте при 5-8 °C, а для лучшей воспроизводимости оптических результатов в количественных измерениях использовали свежеполученные препараты, причем каждая аликвота препарата участвовала в ограниченном количестве измерений. Однако в таблицах из публикаций [5, 49] оказался максимум поглощения, ранее опубликованный участниками этой серии работ [38, 39]. При электрических измерениях быстрой кинетики [5, 49] имелись значительные различия в подготовительной засветке образцов. Вероятно, поэтому амплитуды генерации разности потенциалов, индуцированных короткой лазерной вспышкой света, у 4-кетоБР варьировали в широких пределах и составили ~0,25-0,7 от контроля (принятого за единицу) [49]. В эти данные попали как препараты 4-кетоБР с большой долей *all-E*-формы, так и сильно изомеризованные светом в 132- (статистику набирали по большому количеству образцов, ассоциированных с плоской искусственной мембраной, так как сам процесс ассоциации трудно стандартизовать количественно). Однако и в случае с электрическими измерениями верхняя оценка эффективности совпадает с эффективностью фотоцикла, полученной по оптическим измерениям.

БР давно является объектом нанотехнологических исследований [50–52], причем аналоги БР с разными максимумами основной полосы поглощения вызывают интерес с точки зрения получения фотохромных материалов [53]. Значительное замедление фотоцикла 4-кетоБР при достаточно большой его эффективности привлекло внимание разработчиков подходов к практическому применению в рамках биотехнологических исследований [8, 46, 54–59]. Использование полимерной матрицы позволило дополнительно замедлить фотоцикл 4-кетоаналога в несколько раз [54]. Исследовали замену хромофора 4-кетоаналогом у ряда других точечных мутантов БР [8, 58–62]. Наиболее сильным оказалось совместное замедление фотоцикла в результате мутации D96N и замены остатка ретиналя на его 4-кетоаналог [8, 59–61].

Критический анализ схемы фукнционирования 4-кетоБР с тремя параллельными циклами

В серии работ Л. С. Броуна, А. В. Дружко, Е. П. Лукашева, С. К. Чаморовского и др. предложена схема фотоцикла 4-кетоБР (рис. 2) [9, 45, 63].

Рис. 2. Схема фотоцикла 4-кетоБР согласно публикации [9] (времена авторов при перерисовке схемы опущены, а максимумы поглощения показаны в индексах как более общепринятый вариант)

Главное здесь — наличие трех циклов (один для пигмента с 13Z-хромофором и два для формы с all-E-конфигурацией), причем во всех циклах фигурирует как батоинтермедиат К с максимумом поглощения 570 нм, так и М-интермедиаты. Основной аргумент авторов [9] — обнаруженные при низкотемпературной спектрофотометрии три четко выраженных максимума в спектре поглощения М-интермедиата (395, 420 и 440 нм). Однако практически те же максимумы (и даже большее количество) есть в аналогичном спектре немодифицированного БР. По данным С.П.Балашова, Ф. Ф. Литвина и Н. В. Карнеевой

[64–66] М-интермедиат природного светоадаптированного БР (т. е. пигмента в *all-E*-конфигурации) при низких температурах обладает выраженной вибронной структурой: максимум поглощения M_{412} при снижении температуры до –180 °C сдвинут к 419 нм и интермедиат имеет отчетливые пики при 375, 398, 419 и 442 нм. Учитывая весьма небольшую разницу основных максимумов М при комнатной температуре у БР (412 нм), и у 4-кетоБР (410 нм) по данным исследования быстрой кинетики фотоцикла [46], различия низкотемпературных спектров интермедиатов БР и 4-кетоБР также не должны быть велики, что и наблюдается при сравнении данных двух разных авторских групп. Три пика низкотемпературного спектра М-интермедиата 4-кетоБР из работы [9] весьма похожи на выявленные в аналогичном спектре контрольного *all-E*-БР [64–66], значит, ни о каких «особенностях» 4-кетоБР подобный трехгорбый спектр М не свидетельствует (ни о параллельных циклах с различными М, ни о наличии М в 13*Z*-цикле в экспериментальных условиях).

Следующий аргумент — появление максимумов коротковолновых форм 4-кетоБР после длительного освещения препарата постоянным светом. Однако в контроле все интермедиаты цикла БР фоточувствительны: освещая М, можно получить как «синее ингибирование», т.е. быстрое закорачивание цикла с возвратом в исходное состояние [67, 68], так и появление многочисленных М-подобных форм [64, 69]. Под действием постоянного света будут избирательно накапливаться долгоживущие интермедиаты типа М, которых могло и не быть при однократном обороте цикла. Другой источник замедления — кооперативность в триаде [70]. С появлением импульсной спектрофотометрии серьезным указанием на интермедиат цикла можно считать форму, найденную при контролируемых переходах, а не накопленную в фотостационаре. Например, при освещении БР или одного из аналогов можно получить розовую форму с 9*Z*-хромофором, которая явно к нормальному циклу отношения не имеет [71, 72].

Образование в 132-цикле М-интермедиата — не правило, а скорее, исключение, он появляется только при весьма высоких значениях pH (см. публикации группы Каулена [30-34, 73] и их обсуждение в разд. «Краткая история...»), в циклах ПМ и их аналогов его нет при pH 5-7. Даже в мономерном тритоновом препарате БР доля М-генерирующих молекул рН-зависима (в области от 5 и выше). Однако в публикации [45] отмечено про М-интермедиат: «...в Z-цикле, по нашим данным, он [М] фактически не зависит от рН в диапазоне 5–9». В работе [9] в методике приготовления препарата для низкотемпературных измерений авторы вовсе не указали рН среды, смешиваемой с глицерином. А в работе [63] появляется уточнение, что М₃₉₅ появляется только, когда фотоцикл замедлен добавлением глицерина, высоким рН (>9,5) или низкой температурой. При этом в работах [9] и [63] схема цикла дана для комнатной температуры и pH 7,5, т.е. для условий, где, по мнению самих же авторов, М₃₉₅ они не видели [63]. А информация о наблюдениях М₃₉₅ (М-интермедиата в 13*Z*-цикле 4-кетоБР, см. рис. 2) в публикациях [45] и [63] взаимоисключающая. По нашим данным, прямых измерений на индивидуальном 13Z-4-кетоБР при рН 6 в водной суспензии мембран как при комнатной, так и при более низкой температуре М отсутствовал (условия работы [42]). Если авторы [9, 45, 63] видят в 13Z-цикле при pH 7,5 (и даже при pH 5) М-интермедиат, то это и есть самый интересный и неожиданный результат. Только его необходимо не постулировать, а прямо проверять с индивидуальным 13Z-4-кетоаналогом БР (аналогично БР, 4-кетоБР, требуемой структуры, получают взаимодействием хроматографически чистых изомеров 13Z- и all-E-4-кеторетиналя с апомембранами в темноте или при слабом неактиничном свете [42] и работают непродолжительное время до изомеризации). При этом нужны четкие указания условий эксперимента и схема цикла будет относиться только к этим условиям.

К тому же, как видно из исследования других аналогов БР [73], по мере перехода 13Z-препарата в состояние, генерирующее М-интермедиат, кинетика К-подобного батоинтермедиата сильно изменяется, так что в любом случае необходимо рассматривать 2 отдельных цикла для этих форм, как, например, в работе [31]. Долгоживущие К-подобные батоинтермедиаты в 13Z-циклах существуют именно в условиях, препятствующих образованию М, а появление М при движении вверх по шкале pH их убирает [31, 73], это альтернативные пути.

У БР с немодифицированным остатком ретиналя различаются максимумы поглощения К-интермедиатов (первых устойчивых при –180 °С [64, 69]) в циклах пигментов с 13*Z*- и *all*-*E*-конфигурациями. Это соответственно ⁶¹⁰С и ⁶³⁰T (по [26, 27] при низкотемпературной спектрофотометрии) или Р580 и Р590 (по [65, 66, 69]), последний в более общепринятом обозначении — K_{590} . Поэтому постулирование авторами [9] K_{570} во всех трех циклах настораживает. При однократном обороте фотоцикла индивидуального *all*-*E*-4-кетоБР в длинноволновой области нами не обнаружено прироста оптической плотности во временной шкале 0,001–200с [42]. При этом в миллисекундной шкале у 13*Z*-4-кетоБР наблюдаются обычные для 13*Z*-цикла батоинтермедиаты. Это неудивительно, так как в цикле немодифицированного *all*-*E*-БР (см. рис. 1) К-интермедиат весьма быстро переходит в коротковолновые интермедиаты (в отличие от цикла 13*Z*-пигментов, где после К регистрируют другие К-подобные батоинтермедиаты [2, 26, 27]). Поэтому логичнее относить К₅₇₀ только к 13*Z*-циклу, тем более, что прецеденты наблюдений долгоживущего К в *all-E*-циклах отсутствуют. К тому же обычный короткоживущий К-интермедиат *all-E*-цикла в смешанном препарате трудно различить на фоне более высокоамплитудного К из 13*Z*-цикла, поэтому наличие К₅₇₀ во всех циклах необходимо доказывать экспериментами с индивидуальным *all-E*-4-кетоБР.

Тоже самое касается и предположения авторов [9] об отсутствии L-подобного интермедиата при фотореакциях 4-кетоБР. Согласно быстрой кинетике в фотоцикле именно 13Z-4-кетоБР имеются долгоживущие батоинтермедиаты [42], вполне способные экранировать L. А у индивидуального *all-E*-4-кетоБР отсутствует медленная релаксация К-интермедиата, соизмеримая по времени с переходом в М-форму [42]. Однако именно так (медленной К → М релаксацией в *all-E*-цикле, исключающей L) интерпретируют наблюдаемую кинетику в работе [9] на препарате со смесью изомеров. Аналогичную ситуацию с интермедиатами можно было наблюдать в 13Z- и *all-E*-циклах похожих аналогов (фенил-, фторфенил- и 11, 12-дидегидроБР [43, 44, 73]). Для фенилБР тоже выдвигалось предположение об отсутствии L-интермедиата [74], которое автор данной статьи специально проверял на *all-E*-пигменте и показал идентичность кинетик L-интермедиата в контроле и у аналога [43].

Таким образом, в обсуждаемой серии работ [9, 45, 63] не доказано ни наличия трех постулируемых циклов, ни присутствия К₅₇₀, релаксирующего в М, в каждом из них при рассматриваемых pH. А сам факт поисков гипотез работы аналога в области множественности параллельных циклов — дань времени, когда это делалось по историческим причинам весьма широко (см. разд.: «Краткая история…»).

Литература

1. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium // Nature New Biol. 1971. Vol. 233, N 39. P. 149–152.

2. Stoeckenius W., Lozier R. H., Bogomolni R. A. Bacteriorhodopsin and the purple membrane of halobacteria // Biochim. Biophys. Acta. 1979. Vol. 505, iss. 3–4. P.215–278.

3. *Lanyi J. K.* Proton transfers in the bacteriorhodopsin photocycle // Biochim. Biophys. Acta. 2006. Vol. 1757, iss. 8. P. 1012–1018.

4. *Crouch R. K.* Studies of rhodopsin and bacteriorhodopsin using modified retinals // Photochem. Photobiol. 1986. Vol. 44, iss. 6. P.803–807.

5. Электрогенные стадии фотоцикла аналогов бактериородопсина, содержащих остатки производных ретиналя / Драчев А. Л., Драчев Л. А., Евстигнеева Р. П., Каулен А. Д., Лазарова Ц. Р., Лайхтер А. Л., Мицнер Б. И., Скулачев В. П., Хитрина Л. В., Чекулаева Л. Н. // Биол. мембраны. 1984. Т. 1, № 11. С. 1125–1142.

6. Аналоги ретиналя и их роль в исследовании бактериородопсина / Ходонов А.А., Еремин С.В., Локшин Дж.Л., Швец В.И., Демина О.В., Хитрина Л.В., Каулен А.Д. // Биоорг. химия. 1996. Т. 22, № 10–11. С. 745–776.

7. Ring oxidized retinals form unusual bacteriorhodopsin analogue pigments / Beischel C. J., Mani V., Govindjee R., Ebrey T. G., Knapp D. R., Crouch R. K. // Photochem. Photobiol. 1991. Vol. 54, iss. 6. P.977–983.

8. Хитрина Л. В., Миронова Е. В., Ходонов А. А. Исследование бактериородопсинов Halobacterium salinarum дикого типа и мутанта D96N с модифицированными хромофорами // Биол. мембраны. 2009. Т. 26, № 3. С. 194–200.

9. Броун Л. С., Дружко А. Б., Лукашев Е. П., Чаморовский С. К. Изучение фотохимического цикла аналога бактериородопсина, содержащего остаток 4-кето-ретиналя // Биол. мембраны. 1991. Т. 8, № 5. С. 460–467.

10. Lozier R. H., Bogomolni R. A., Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium // Biophys. J. 1975. Vol. 15, iss. 9. P.955–962.

11. *Stoeckenius W., Lozier R. H., Niederberger W.* Photoreactions of Bacteriorhodopsin // Biophys. Struct. Mechanism. 1977. Vol. 3, N 1. P.65–68.

12. Lozier R. H., Niederberger W. The photochemical cycle of bacteriorhodopsin // Fed. Proc. 1977. Vol. 36, iss. 6. P. 1805–1809.

13. Nagle J. F., Parodi L. A., Lozier R. H. Procedure for testing kinetic models of the photocycle of bacteriorhodopsin // Biophys. J. 1982. Vol. 38, iss. 2. P. 161–174.

14. Шкроб А. М., Родионов А. В. Множественность релаксирующих молекул бактериородопсина // Биоорг. химия. 1978. Т. 4, № 4. С. 500–513.

15. Драчев Л. А., Каулен А. Д., Комраков А. Ю. Природа многокомпонентности образования интермедиата М при фотоцикле бактериородопсина. 1. Анализ образования интермедиатов М у бактериородопсина дикого типа // Биохимия. 1994. Т. 59, вып. 1. С. 126–136.

16. Korenstein R., Hess B., Kuschmitz D. Branching reactions in the photocycle of bacteriorhodopsin // FEBS Lett. 1978. Vol. 93, iss. 2. P. 266–270.

17. Sherman W. V., Eicke R. R., Stafford S. R., Wasacz F. M. Branching in the bacteriorhodopsin photochemical cycle // Photochem. Photobiol. 1979. Vol. 30, iss. 6. P.727–729.

18. *Kalisky O., Ottolenghi M., Honig B., Korenstein R.* Environmental effects on formation and photoreaction of the M412 photoproduct of bacteriorhodopsin: implications for the mechanism of proton pumping // Biochemistry. 1981. Vol. 20, iss. 3. P. 649–655.

19. *Lanyi J. K.* Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin // Biochim. Biophys. Acta. 1993. Vol. 1183, iss. 2. P.241–261.

20. Drachev L. A., Kaulen A. D., Komrakov A. Yu. On the two pathways of the M-intermediate formation in the photocycle of bacteriorhodopsin // Biochem. Mol. Biol. Int. 1993. Vol. 30, N 3. P.461–469.

21. *Korenstein R., Hess B.* Hydration effects on the photocycle of bacteriorhodopsin in thin layers of purple membrane // Nature. 1977. Vol. 270, N 5633. P. 184–186.

22. Váró G. Dried oriented purple membrane samples // Acta Biol. Acad. Sci. Hung. 1982. Vol. 32, N 3-4. P. 301-310.

23. Crespi H. L., Ferraro J. R. Active site structure of bacteriorhodopsin and mechanism of action // Biochem. Biophys. Res. Commun. 1979. Vol. 91, iss. 2. P.575–582.

24. Kinetic model of bacteriorhodopsin photocycle: pathway from M state to bR / Chernavskii D. S., Chizhov I. V., Lozier R. H., Murina T. M., Prokhorov A. M., Zubov B. V. // Photochem. Photobiol. 1989. Vol. 49, iss. 5. P. 649–653.

25. Калайдзидис И.В., Каулен А.Д., Радионов А.Н., Хитрина Л.В. Электрофотохимический цикл бактериородопсина // Биохимия. 2001. Т. 66, вып. 11. С. 1511–1526.

26. Dencher N. A., Rafferty Ch. N., Sperling W. Ber. Kernforsch. Jülich. 1976. N 1374. P.1-42.

27. Sperling W., Carl P., Rafferty Ch. N., Dencher N. A. Photochemistry and dark equilibrium of retinal isomers and bacteriorhodopsin isomers // Biophys. Struct. Mech. 1977. Vol. 3, N 2. P.79–94.

28. Фазы фотоэлектрического ответа 13-*цис*-бактериородопсина / Драчев А. Л., Драчев Л. А., Каулен А. Д., Скулачев В. П., Хитрина Л. В. // Биохимия. 1988. Т. 53, вып. 5. С. 707–713.

29. Зорина В.В., Каулен А.Д. Образование интермедиата М в фотоцикле адаптированного к темноте 13-цис-бактериородопсина. І. Солюбилизированный бактериородопсин // Биол. мембраны. 1988. Т. 5, № 9. С. 910–919.

30. Зорина В.В., Каулен А.Д. Образование интермедиата типа М в фотоцикле адаптированного к темноте 13-*цис*-бактериородопсина. II. Бактериородопсиновые протеолипосомы и пурпурные мембраны // Биол. мембраны. 1988. Т. 5, № 11. С. 1135–1144.

31. *Kaulen A. D., Drachev L. A., Zorina V. V.* Proton transport and M-type intermediate formation by 13-*cis*-bacteriorhodopsin // Biochim. Biophys. Acta. 1990. Vol. 1018, iss. 1. P. 103–113.

32. *Kaulen A. D.* Light-dark adaptation of bacteriorhodopsin and pH-dependence of 13-*cis*-bR photocycle // EBEC Short Reports. Helsinki, Findland, 1992. Vol. 7. P.3. 33. *Drachev L. A., Dracheva S. V., Kaulen A. D.* pH dependence of the formation of an M-type intermediate in the photocycle of 13-*cis*-bacteriorhodopsin // FEBS Lett. 1993. Vol. 332, iss. 1–2. P. 67–70.

34. *Kaulen A. D., Drachev L. A., Dracheva S. V.* M-type intermediate formation during 13-*cis*-bacteriorhodopsin photocycle and light-dark adaptation // Proc. Vth Intern. Conf.: Structures and Functions of Retinal Proteins / ed by J. L. Rigaud. Dourdan, France: Collogue INSERM/John Libbey Eurotext Ltd., 1992. Vol. 221. P. 163–166.

35. Oesterhelt D., Christoffel V. Reconstitution of a proton pump // Biochem. Soc. Trans. 1976. Vol. 4, iss. 4. P.556–559.

36. Sumper M., Herrmann G. Biogenesis of purple membrane: regulation of bacterio-opsin synthesis // FEBS Lett. 1976. Vol. 69, iss. 1. P. 149–152.

37. Шкроб А. М., Родионов А. В., Овчинников Ю. А. Обратимый фотоиндуцированный гидролиз альдимина ретиналя в солюбилизированном бактериородопсине // Биоорг. химия. 1978. Т. 4, № 3. С. 354–359.

38. Соколова Н.А., Мицнер Б.И., Закис В.И. Синтез 4-кето- и 4-оксипроизводных all-Еи 13Z-ретиналя и их взаимодействие с бактериоопсином // Биоорг. химия. 1979. Т.5, № 7. С. 1053–1058.

39. Серебряный В. А., Мицнер Б. И., Закис В. И., Цетлин В. И. Аналоги бактериородопсина на основе 4-замещенных ретиналей // Биоорг. химия. 1981. Т. 7, № 11. С. 1731–1733.

40. Exciton interactions and chromophore orientation in the purple membrane / Ebrey T.G., Becher B., Mao B., Kilbride P., Honig B. // J. Mol. Biol. 1977. Vol. 112, iss. 3. P. 377–397.

41. Спектральные свойства аналога бактериородопсина, полученного встраиванием 4-кеторетиналя в бактериоопсин in vivo / Броун Л.С., Дружко А.Б., Кононенко С.К., Чаморовский С.К., Шахбазян В.Ю. // Биол. мембраны. 1993. Т. 10, № 2. С. 140–144.

42. Хитрина Л. В., Лазарова Ц. Р. Исследование 13-цис- и полностью-транс-изомеров 4-кетобактериородопсина // Биохимия. 1989. Т. 54, вып. 1. С. 136–139.

43. Фотоцикл и электрогенез 13-цис- и полностью-транс-ароматических аналогов бактериородопсина / Драчев А.Л., Зорина В.В., Мицнер Б.И., Хитрина Л.В., Ходонов А.А., Чекулаева Л.Н. // Биохимия. 1987. Т.52, вып. 9. С. 1559–1569.

44. 13-Цис- и полностью-транс-изомеры 11,12-дидегидробактериородопсина / Даншина С.В., Драчев А.Л., Драчев Л.А., Каулен А.Д., Мицнер В.И., Хитрина Л.В., Ходонов А.А. // Биоорг. химия. 1989. Т. 15, № 3. С. 307–312.

45. Броун Л. С., Дружко А. Б., Лукашев Е. П., Чаморовский С. К. Световая адаптация аналога бактериородопсина с 4-кеторетиналем // Биофизика. 1992. Т. 37, вып. 1. С. 79–85.

46. Modified bacteriorhodopsins as a basis for new optical devices / Khodonov A. A., Demina O. V., Khitrina L. V., Kaulen A. D., Silfsten P., Parkkinen S., Parkkinen J., Jaaskelainen T. // Sensors and Actuators B: Chemical. 1997. Vol. 39, iss. 1–3. P.218–221.

47. Proton transport and electrogenous phases in the bacteriorhodopsin photocycle / Skulachev V. P., Drachev L. A., Kaulen A. D., Khitrina L. V., Zorina V. V., Danshina S. V. // Intern. Conf.: Retinal Proteins / ed. by Yu.A. Ovchinnikov. Utrecht, The Netherlands: VNU Science Press, 1987. P.531–552.

48. *Kaulen A. D.* Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle // Biochim. Biophys. Acta. 2000. Vol. 1460, iss. 1. P. 204–219.

49. An investigation of the electrochemical cycle of bacteriorhodopsin analogs with the modified ring / Drachev L. A., Drachev A. L., Chekulaeva L. N., Evstigneeva R. P., Kaulen A. D., Khitrina L. V., Khodonov A. A., Lazarova Z. R., Mitsner B. I. // Arch. Biochem. Biophys. 1989. Vol. 270, iss. 1. P. 184–197.

50. Singh A. K., Hota P. K. Development of bacteriorhodopsin analogues and studies of charge separated excited states in the photoprocesses of linear polyenes // Photochem. Photobiol. 2007. Vol. 83, iss. 1. P.50–62.

51. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics / Jin Y., Honig T., Ron I., Friedman N., Sheves M., Cahen D. // Chem. Soc. Rev. 2008. Vol. 37, iss. 11. P.2422–2432.

52. *Haupert L. M., Simpson G. J.* Chirality in nonlinear optics // Annu. Rev. Phy. Chem. 2009. Vol. 60. P. 345–365.

53. Druzhko A. B. Optical Characteristics of Polymer Films Based on Bacteriorhodopsin for Irreversible Recording of Optical Information // Photochem. Photobiol. 2009. Vol. 85, iss. 2. P.614–616.

54. Дружко А.Б., Жармухамедов С.К., Всеволодов Н.Н. Фотоиндуцированные превращения 4-кето-бактериородопсина в полимерных матрицах // Биофизика. 1986. Т. 31, вып. 2. С. 227–230.

55. 4-Keto-bacteriorhodopsin films as a promising photochromic and electrochromic biological material / Druzhko A. B., Chamorovsky S. K., Lukashev E. P., Kononenko A. A., Vsevolodov N. N. // Biosystems. 1995. Vol. 35, iss. 2–3. P. 129–132.

56. The photochromic properties of 4-keto bacteriorhodopsin / Jaaskelainen T., Leppanen V.P., Parkkinen S., Parkkinen J.P.S., Khodonov A.// Optical Materials. 1996. Vol. 6, iss. 4. P.339–345.

57. Nonlinear transmittance of the 4-keto bacteriorhodopsin / Vanhanen J., Leppanen V. P., Jaaskelainen T., Parkkinen J. P. S., Parkkinen S. // Optical Materials. 1999. Vol. 12, iss. 4. P. 473–480.

58. Photoelectric properties of bacteriorhodopsin analogs for color-sensitive optoelectronic devices / Lensu L., Frydrych M., Parkkinen J., Parkkinen S., Jaaskelainen T. // Optical Materials. 2004. Vol. 27, iss. 1. P.57–62.

59. Measurement of proton release and uptake by analogs of bacteriorhodopsin / Weetall H. H., Druzhko A. B., de Lera A. R., Alvarez R., Robertson B. // Bioelectrochemistry. 2000. Vol. 51, iss. 1. P.27–33.

60. Druzhko A.B. Photoinduced transformation of wild-type and D96N-mutant 4-keto-bacterio-rhodopsin gelatin films // Thin Solid Films. 1997. Vol. 293, iss. 1–2. P. 281–284.

61. Optical and electrical properties of bacteriorhodopsin Langmuir-Blodgett films: II. D96N mutant and its 4-keto and 9-demethyl retinal analogs / Weetall H.H., Druzhko A.B., Samuelson L.A., de Lera A.R., Alvarez R. // Bioelectrochemistry and Bioenergetics. 1997. Vol. 44, iss. 1. P.37–43.

62. Kolodner P., Lukashev E. P., Ching Y.-C., Druzhko A. B. Electric-field and photochemical effects in D85N mutant bacteriorhodopsin substituted with 4-keto-retinal // Thin Solid Films. 1997. Vol. 302, iss. 1–2. P.231–234.

63. *Druzhko A. B., Chamorovsky S. K.* The cycle of photochromic reactions of a bacteriorhodopsin analog with 4-keto-retinal // Biosystems. 1995. Vol. 35, iss. 2–3. P. 133–136.

64. Балашов С. П., Литвин Ф. Ф. Фотохимические превращения бактериородопсина. М.: Издво МГУ, 1985. 163 с.

65. Балашов С. П., Литвин Ф. Ф. Фотохимические превращения бактериородопсина // Биофизика. 1981. Т. 26, вып. 3. С. 557–570.

66. Карнеева Н. В., Балашов С. П., Литвин Ф. Ф. Обнаружение сложной структуры спектра поглощения бактериородопсина // ДАН СССР. 1982. Т. 263, № 3. С. 725–729.

67. *Karvaly B., Dancsházy Z.* Bacteriorhodopsin: a molecular photoelectric regulator. Quenching of photovoltaic effect of bimolecular lipid membranes containing bacteriorhodopsin by blue light // FEBS Lett. 1977. Vol. 76, iss. 1. P.36–40.

68. Kinetics of the blue light-induced inhibition of photoelectric activity of bacteriorhodopsin / Danc-sházy Z., Drachev L. A., Ormos P., Nagy K., Skulachev V. P. // FEBS Lett. 1978. Vol. 96, iss. 1. P.59–63.

69. Балашов С.П. Фотохромные превращения бактериородопсина при низких температурах // Светочувствительные биологические комплексы и оптическая регистрация информации / под ред. Г.Р.Иваницкого. Пущино: Научный центр биологических исследований в Пущине, 1985. С. 49–67.

70. Komrakov A. Y., Kaulen A. D. M-decay in the bacteriorhodopsin photocycle: effect of cooperativity and pH // Biophys. Chem. 1995. Vol. 56, iss. 1–2. P. 113–119.

71. *Fischer U. Ch., Towner P., Oesterhelt D.* Light induced isomerisation, at acidic pH, initiates hydrolysis of bacteriorhodopsin to bacterio-opsin and 9-cis-retinal // Photochem. Photobiol. 1981. Vol. 33, iss. 4. P.529–537.

72. Characterization and photochemistry of 13-desmethyl bacteriorhodopsin / Gillespie N.B., Ren L., Ramos L., Daniell H., Dews D., Utzat K. A., Stuart J. A., Buck C. H., Birge R. R. // J. Phys. Chem. B. 2005. Vol. 109, iss. 33. P. 16142–16152.

73. Образование М-подобного интермедиата в фотоцикле 13-*цис*-аналогов бактериородопсина / Драчев Л. А., Каулен А. Д., Хитрина Л. В., Еремин С. В., Ходонов А. А., Швец В. И., Чекулаева Л. Н. // Биохимия. 1993. Т. 58, вып. 6. С. 819–826.

74. Umadevi P., Sheves M., Rosenbach V., Ottolenghi M. Photochemical studies of artificial bacteriorhodopsins // Photochem. Photobiol. 1983. Vol. 38, iss. 2. P. 197–203.

Статья поступила в редакцию 7 июня 2012 г.