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Abstract

Here two murine salivary gland cancer (SGC) cell lines WR21 and SCA-9 were 
studied for the first time in detail by high-resolution molecular cytogenetic ap-
proaches. This study revealed that these cell lines are models for human SGCs 
of initial stage myoepithelioid or mucoepidermoid (WR21) and of advanced 
stage mucoepidermoid (SCA-9) tumors. Besides, three genes most likely play-
ing a role in SGC development (FGF10, ELAVL1/HUR and SEL1) were identified. 
All of them were involved in translocation events in these in vitro models and 
thus were most likely activated. Overall, the present study highlights the neces-
sity not only to establish but also to genetically characterize murine tumor cell 
lines. Without such a characterization they cannot be used in a reasonable way 
in research. 
Keywords: salivary gland cancer (SGC), murine tumor cell lines, WR21, SCA-9, 
myoepithelioid SGC, mucoepidermoid SGC, FGF10, ELAVL1/HUR, SEL1.

Introduction

Salivary gland cancers (SGCs) are a specific and rare subgroup of tumors known 
from oral and maxillofacial clinical practice. They account for around 3–5 % of 
all head and neck cancers and for only less than 0.5 % of all cancers (Zboray et 
al., 2018). Nevertheless, SGCs include more than 35 histological subtypes and are 
known for their progressive and heterogeneous clinical behavior (El-Naggar et 
al., 1997; Persson et al., 2009; Cao et al., 2018).

The mentioned subtypes of SGCs exist partially due to the fact that salivary 
glands consist of three major paired glands (parotid, submandibular and sub-
lingual) and minor glands, located in the mucosa of the palate, lips and respira-
tory tract (Omitola and Iyogun, 2018; Zboray et al., 2018). Tumors located in 
the parotid part are only 25 % malignant. However, the incidence of malignan-
cies is much higher in the submandibular part (50 %) and minor salivary glands 
(60–80 %) (Sood et al., 2016; Solanki, 2011). In general, SGCs are divided in two 
forms: (i) a simple palpable lump, being well-defined, discrete, and mobile, and 
(ii) a lump with significant accompanying symptoms like pain, rapid growth, fix-
ity to surrounding structures, nerve involvement and/or neck metastasis (Sood et 
al., 2016). Current therapeutic options for human SGCs are limited. Depending 
on their location, some SGCs can be surgically addressed, while others are dif-
ficult to remove completely. Radiation therapy is used; still it has turned out to be 
less effective for clinical treatment. Accordingly, chemotherapy is the only treat-
ment option in metastatic SGCs (Keller et al., 2017; Zboray et al., 2018).
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The detailed molecular mechanisms controlling 
tumor progression and metastasis in SGCs and their 
genetic profiles are still not well understood (Vekony et 
al., 2009). However, characterization of these underlying 
mechanisms is essential for understanding and develop-
ment of more effective methods of diagnosis and treat-
ment against the disease (Murase et al., 2016). Hence, 
there is a need for better understanding of the genetics 
and molecular mechanisms of SGC-pathogenesis, to be 
used in the future toward the development of novel ther-
apeutic approaches (Cao et al., 2018; Murase et al., 2016; 
Zboray et al., 2018).

One possible approach for studying the biology of 
SGCs and developing new therapeutic strategies is the 
use of mouse models (Zboray et al., 2018). Previous re-
search showed that submandibular gland-derived tumor 
cell lines present characteristics of differentiated epithe-
lial cells and can be used to study proliferation signaling 
pathways and their regulation (Trzaskawka et al., 2000; 
Español et al., 2012). Still, surprisingly, murine cell lines 
used as models for human SGCs have not yet been very 
well characterized genetically for their tumor-associated 
alterations. 

Fluorescence in situ hybridization (FISH) and 
microarray-based comparative genomic hybridization 
(array CGH) were used in this study to determine the 
genomic aberrations of the two murine SGC cell lines 
WR21 and SCA-9. WR21 was first described by Young 
et al. (2006) as being derived from a salivary tumor in 
a male wap-ras subline 69-2 (C57BL/6, SJL) transgenic 
mouse; it was already established in 1989. Such tumors 
are described as extremely aggressive and as express-
ing high levels of oncogenic ras-protein from the acti-
vated human H-RAS transgene (Nielsen et al., 1994). 
SCA-9  was already established in 1980  (Barka, 1980; 
Barka et al., 2005) and was derived from a carcinogen 
(7,12-dimethylbenz(a)anthracene) -induced tumor 
of a male Swiss-Webster mouse submandibular gland. 
Both cell lines have only been applied in 10 published 
studies (see Pubmed: https://www.ncbi.nlm.nih.gov/
pubmed/?term=wr21 and https://www.ncbi.nlm.nih.
gov/pubmed/?term=SCA-9+mouse), which may also be 
due to the fact that their genetics had not been studied in 
detail. Here, we analyzed WR21 and SCA-9 cell lines by 
FISH-banding and aCGH and aligned them with their 
human SGC subtypes.

Material and Methods 

CELL LINES

The cell lines WR21  and SCA-9  were obtained from 
American Type Culture Collection (ATCC® CRL-2189™, 
ATCC® CRL-1734™; Middlesex, UK). They are indicated 
there as ‘not further characterized salivary tumor lines’ 

to be grown adherently in DMEM medium contain-
ing 10 % fetal calf serum in the presence of antibiotics. 
For this study, cells were worked up cytogenetically as 
previously reported (Rhode et al., 2018) and in parallel 
whole genomic DNA was extracted using the Blood & 
Cell Culture DNA Midi Kit (Qiagen; Hilden, Germany) 
according to the manufacturer’s instructions and de-
scribed elsewhere (Kubikova et al., 2017). We conducted 
molecular cytogenetic analyses on the cell line-derived 
chromosomes and aCGH analyses on the extracted 
DNA (see below).

According to the ethical committee (medical facul-
ty) and the Animal Experimentation Commission of the 
Friedrich Schiller University, there are no ethical agree-
ments necessary for studies involving murine tumor cell 
lines like WR21 and SCA-9.

MOLECULAR CYTOGENETICS

FISH was performed as previously described (Kubikova 
et al., 2017). Whole chromosome paints (“SkyPaintTM 
DNA Kit M-10  for Mouse Chromosomes”, Applied 
Spectral Imaging, Edingen-Neckarhausen, Germany) 
were used for multicolor-FISH (mFISH), and murine 
chromosome-specific multicolor banding (mcb) probe 
mixes for FISH-banding (Liehr et al., 2006). At least 
30 metaphases were documented and analyzed for each 
probe set ((including using SkyPaintTM) Zeiss Axioplan 
microscopy, equipped with ISIS software (MetaSystems, 
Altlussheim, Germany)). Array-based comparative ge-
nomic hybridization (aCGH) was done according to 
standard procedures by “SurePrint G3 Mouse CGH Mi-
croarray, 4×180K” (Agilent Technologies) (Kubikova et 
al., 2017).

DATA ANALYSIS

The breakpoints and imbalances of WR21  and SCA-9 
were determined after analyses of aCGH and mcb data, 
and aligned to human homologous regions using En-
sembl and the UCSC Genome Browser, as previously 
described (Leibiger et al., 2013). The obtained data were 
compared to genetic changes known from human SGCs 
according to Fowler et al. (2006), Rao et al. (2008), Pers-
son et al. (2009), Vekony et al. (2009), Jee et al. (2013) 
and Matse et al. (2017).

Results

WR21  is mitotically relatively stable, and the near-
diploid karyotype has an overall low rate of single cell 
aberrations; still, it developed two main clones. Clone 
1  represents 16.6 % of the cells and has the karyo-
type 44,XY,+Y,+inv(4)(A1C4),+8,der(9)(A1->E2::E1-
qter),der(12)(A1->F2::F1->qter),+19. Clone 2  together 
with one subclone was found in 83.4 % of the cells. Main-

https://www.ncbi.nlm.nih.gov/pubmed/?term=wr21
https://www.ncbi.nlm.nih.gov/pubmed/?term=wr21
https://www.ncbi.nlm.nih.gov/pubmed/?term=SCA-9+mouse
https://www.ncbi.nlm.nih.gov/pubmed/?term=SCA-9+mouse
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Fig. 1. Murine multicolor banding (mcb) was applied on chromosomes of SGC cell line WR21. Typical pseudocolor banding for all 21 different 
murine chromosomes is shown for clone 2. This figure depicts the summary of 21 chromosome-specific FISH-experiments. One derivative chro-
mosome consisting of two different chromosomes is highlighted by frames and shown twice in this summarizing karyogram.

Fig. 2. mcb-results for SGC cell line SCA-9 cell line are shown. Four derivative chromosomes are highlighted by blue frames and shown twice in 
this summarizing karyogram; the derivative chromosome 5 is highlighted by a yellow frame.
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clone of clone 2 revealed the karyotype 43,XY,+Y,inv(4)
(A1C4),+der(4)t(4;8)(:4C4->4A4::A1-E2),+19  and was 
present in 77 % of all cells (Fig.  1). In the remaining 
6.4 % of the cells, clone 2 further acquired a loss in one 
of the Y-chromosomes; i.e., there was a del(Y)  — this 
subset was called clone 2a.

In SCA-9 most chromosomes are tetraploid and the 
cell line is chromosomally instable, as reflected by many sin-
gle cell aberrations: 62~76,XX,-1,-2,idic(4)(A1;A1),del(4)
(C1),del(4)(C1),der(5)(A1->G3::G3->G2:),der(5)t(5;8)
(5A1->5G3::5G3->5G2::8B1->8E2),+6,-7,-8,-8,-9,-12,-
12,-13,der(14)t(14;8)(C1;A1)x2, der(18)t(18;12)(D;E),-18

Table 1. Imbalances larger than one cytoband present in WR21 were translated to their corresponding homologous regions 
in human karyotype (see Suppl. 1) and are listed in the first column. Those are compared to four common types of human 
SGCs

Chr. region in human WR21 Adenoid cystic 
carcinoma Myoepitheliomas pleomorphic 

adenoma Mucoepidermoid

11q13.3 Gain Gain

19p13.2-p13.12 Gain Gain

11q12.1-q13.3 Gain Gain Gain Gain

8p23.3-p21.3 Gain Gain Loss Loss

13q33.1-q34 Gain Gain Gain

22q12.3 Gain Gain

8p12-p11.21 Gain Gain

2q22.1-q32.1 Loss Gain

19p13.12-p13.11 Gain Gain

3q25.1-q26.2 Gain Gain

Overall agreement 3/10 4/10 1/10 4/10

Table 2. Imbalances larger than one cytoband present in SCA-9 were translated to their corresponding homologous regions 
in human karyotype (see Suppl. 2) and are listed in the first column. Those are compared to 4 human SCG-subtypes

Chr. region in 
human

SCA-9 copy 
numbers

Adenoid cystic 
carcinoma Myoepitheliomas pleomorphic 

adenoma Mucoepidermoid

16p altered Gain Gain

9q33.3-q34.3 altered Gain

11q23.3 altered Gain

19q13.3-p13.11 altered Gain Gain

21q22.3 altered Gain

13q21-q22 altered Loss Gain Gain

1p32-p36 altered Loss Loss

5q13.2-q15 altered Loss

3p21.3 altered Loss

11pter–p14.3 altered Loss

15q25~qter altered Gain

6p22~q24 altered Gain

5pter-p15.31 altered Gain

9q33.3-q34.3 altered Gain

18q12.2-qter altered Gain

12p13.2 altered Loss

Overall agreement 7/16 1/16 2/16 11/16
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Most data from the mFISH and mcb for the WR21 
and SCA-9 (Table 1) agreed with the aCGH data; the re-
sults are shown in Figs. 3 and 4. Some small deletions 
in murine chromosome 2 and gains in murine chromo-
somes 3  and 4 (here 4A4  to 4C4, clearly visible mcb) 
were missed in aCGH. These results were translated to 
the human genome in the same figures. For this study, 
imbalances larger than 3.5 megabase pairs were includ-
ed in the evaluation.

According to the corresponding homologous re-
gions in the human karyotype, we compared the results 
for both cell lines (Table 1 and 2) with the imbalances 
for four (adenoid cystic carcinoma, myoepitheliomas, 
pleomorphic adenoma and mucoepidermoid) of the 
most common types of SGCs. The highest concordance 
was found with SGCs of myoepitheliomas and muco-
epidermoid for WR21, and of mucoepidermoid for  
SCA-9. 

Fig. 3. Imbalances present in WR21 are summarized with respect to a diploid basic karyotype. Gains are depicted as green bars, losses as red 
bars. In upper part the results are shown for the murine karyotype and in the lower part the translation to human genome. The dark green 
labeled region of gain at murine chromosome 4 was not detected in aCGH and also not translated to human karyotype.
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Discussion 

Both the low incidence and heterogeneity of pathology 
in SGCs explain why this tumor is one of the least stud-
ied human cancer types (Seethala, 2017). SGCs present 
a diverse range of histological and clinical characteristics 
(Sood et al., 2018). In the literature, there is also signifi-
cant heterogeneity in the aberrant genetic and molecular 
pathways described contributing to the development of 
SGCs (Müller, 2013; Yin and Ha, 2016).

The two murine tumor cell lines which we examined, 
commercially available as model systems for SGCs, were 
successfully studied using molecular cytogenetics (mFISH, 
mcb and aCGH) to provide a comprehensive cytogenetic 
description regarding ploidy, numerical and structural ab-
errations and tumor-associated breakpoints, as previously 
done for other murine tumor cell lines (Leibiger et al., 2013; 
Kubicova et al., 2017; Guja et al., 2017; Rhode et al., 2018).

In our results, clonal changes with few aberrations 
from the main clone were observed in both cell lines, 

Fig. 4. Imbalances present in SCA 9 are summarized with respect to a tetraploid basic karyotype. Remainder figure as described in legend for 
Fig. 3.
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even though two small subclones (denominated as 1 and 
2a) were characterizable in WR21 besides one mainline 
(clone 2). As these cell lines were not karyotyped at the 
time of establishing, nothing can be stated about karyo-
typic evolution since then. Considering our own previ-
ous studies in other, several decades-old cell lines with 
known original chromosomal content (Leibiger et al., 
2013; Kubicova et al., 2017; Guja et al., 2017; Rhode et 
al., 2018), all of those were surprisingly stable compared 
to the original description of the chromosome sets. 

Overall, WR21  showed clearly a less aberrant 
karyotype than SCA-9. Compared to most other solid 
epithelial tumors, SGCs often were correlated with a 
normal karyotype or small numbers of chromosomal 
aberrations (Martins et al., 1995; El Naggar et al., 1997; 
Hungermann et al., 2002; Vekony et al., 2009), and as 
expected, salvia carcinomas displayed more chromo-
somal events than benign tumors from this tissue (Ve-
kony et al., 2009). Thus, WR21 may represent a benign 
or less advanced cell line than SCA-9. This view is also 
supported by the fact that polyploidization, i.e. a basic 
tetraploid karyotype, was observed only in SCA-9, while 
WR21 was diploid with a gain of only three (derivative) 
chromosomes. This could be related to telomere-driven 
tetraploidization in the context of tumor progression 
(Davoli and de Lange, 2012), but could also be just a cell 
culture effect (Mastromonaco et al., 2006).

Gains of copy number were observed in both stud-
ied cell lines; while gains were more frequent than loss 
for WR21, the data interpretation used for SCA-9 seems 
to show a loss rather than a gain of copy numbers. How-
ever, this is due to the fact that SCA-9 was interpreted 
as basically tetraploid — so the high frequency of losses 
as given in Fig. 4 must consider that this cell line has a 
massive gain of copy numbers along the entire genome, 
and the summary in Fig. 4 rather highlights the genomic 
instability of this cell line. 

According to the characterization of WR21  and 
SCA-9, neither cell line is a model for adenoid cystic car-
cinomas or pleomorphic adenomas, but most likely for 
mucoepidermoid SGCs (SCA-9, WR21) and/or myoepi-
theliomas (WR21 — see Tabs. 1–2).

Interestingly, the breakpoint 13D2  observed in 
WR21  comprises the gene FGF10  (see suppl. Tab.  1), 
which has been associated with salivary gland develop-
ment (Krejci et al., 2009) and breast cancer (Itoh and Ohta, 
2014). Maybe this is a hint that this gene also plays a role in 
SGCs. For SCA-9 similarly a breakpoint in 8A1 could be 
associated with the gene ELAVL1, also called HUR, being 
described as playing a role in salvia metabolism (Palanisa-
my et al., 2008) and mucoepidermoid SGC (Cho et al., 
2007). The latter confirms that SCA-9 is a model for ad-
vanced mucoepidermoid SGC. Another breakpoint (12E) 
including gene SEL1 plays a role in the salivary glands of 
Sjögren’s syndrome patients (Barrera et al., 2016).

In conclusion, the present study narrowed down 
the subtypes of two long established murine cancer cell 
lines to SGCs of mucoepidermoid (SCA-9, WR21) and/
or myoepithelioma (WR21)  subtypes and identified 
three oncogenes potentially playing a role in SGC de-
velopment. FGF10, ELAVL1/HUR and SEL1  should 
be further studied with special attention in SGCs. The 
chromosomal content of the cells should certainly be 
controlled before doing extensive further studies, to ex-
clude studying subclones with potentially different and/
or advanced karyotypic evolution. 
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Supplement 1. Translation of murine to human data for WR21

region gain 
homologue region in human

cytoband position (GRCh37/hg19)

3D-E3 X1 3q25.1-q26.2 3:149055816-167822106

3C X1 4q27-q31.1 4:122242382-141190230

8A1–E2 X1 19p13.2
13q33.1-q34
8p23.3-p23.2
8p23.2-p23.1

gap
13q14.3

8p11.23-p11.21
8p11.21

8p12
8p23.1

8p23.1-p22
4q32.2-q35.2
8p22-p21.3

19p13.12-p13.11
22q12.3

4q31.1-q31.23
19p13.2-p13.12
16q11.2-q22.1
16q22.1-q24.3
1q42.13-q42.3

10p11.22-p11.21

19:7112183-8071013
13:103533915-115092930

8:591286-5358752
8:5368147-6693649

13:52435459-53211718
8:36716542-42505949
8:42691750-43058925
8:29190466-36677574

8:8108776-9640417
8:12579073-17958954

4:163504024-190884657
8:18227877-20177976

19:16163040-19774937
22:33658332-35953121

4:141251922-150892329
19:12745060-14683008
16:46693273-69976105
16:70109527-90110030

1:229404294-235324774
10:33112469-35152269

9E1-E2 X1 6q13-q14.3 6:74104388-86360515

12F1-F2 X1 No discerption (Gap) No discerption (Gap)

19A-D X1 11q12.1-q13.3
9q21.11-q21.31

2q13
9p24.3-p24.1

10q11.23-q21.1

11:57844834-68709722
9:69086307-82777364

2:114171139-114321953
9:51374-6659223

10:51917603-54540082

17E5 X1 18p11.32 18:861722-2534400

region loss 
homologue region in human

cytoband position (GRCh37/hg19)

2C3 X1 2q22.1-q32.1 2:139292421-187530602

region breakpoint homologue region in human

cytoband potential tumor associated genes 

4C4 inv. 9p22.3~22.2 PSIP1

8A1 t 19p13.2 ADGRE4P

13D2 add 5p12 FGF10



252	 BIOLOGICAL  COMMUNICATIONS,  vol. 63,  issue 4,  October–December,  2018 | https://doi.org/10.21638/spbu03.2018.403

Supplement 2. Translation of murine to human data for SCA-9

region gain 
homologue region in human

cytoband position (GRCh37/hg19)

4A5-B3 X1 9q22.33-q33.2
9p13.1-p21.2

9:100037894-123488942
9:27325073-38472099

5G2-G3 X2 13q12.13-q13.2
7q21.1-q21.3 

13:26784894-34260463
7:97598308-99229367

6A1–qter x1 7p21.3-p22.1
7q21.2-q21.3

12p11.21
12p11.21

12p11.22-p13.31
12p13.31- p13.33

12p13.31
12p13.33

10q11.21-q11.22
4q27

4q22.1-q22.3
3p25.2-ptr

3p12.3-p14.1
3q21.3

3p25.1-p25.2
3q21.3-q22.1
2p11.2-p13.3

2p11.2
1p31.1

7p14.3-p15.3
7q31.1-q36.1

7q36.1
22q11.11-q11.21

7:7132996-12536829
7:92745197-97502117

12:30985917-31165338
12:31424829-32537434
12:9901365-30943693
12:2903120-7695890
12:8071763-9214464

12:66113-2823666
10:43277986-46218167

4:121018693-122194687
4:89178698-95273100

3:61304-12897767
3:64017713-75322601

3:125725101-129038484
3:12939278-15163105

3:129094932-129632650
2:68715037-87095119
2:88302422-89174373
1:67631910-68317098
7:23254035-33103246

7:112138919-149583263
7:150032467-150558657
22:17565811-18659740

8A4-E2 X1 4q32.2-qtr
4q31.1-q31.23
16q22.1-q24.3
16q11.2-q22.1
1q42.13-q42.3

10q11.21-q11.22
19p13.11-p13.12
19p13.12-p13.2

22q12.3
8p22-23.1

4:163504024-190884657
4:141251922-150892329
16:70109527-90110030
16:46693273-69976105

1:229404294-235324774
10:33112469-35152269
19:16163040-19774937
19:12745060-14683008
22:33658332-35953121
8:12579073-17958954

region loss 
homologue region in human

cytoband position (GRCh37/hg19)

1A2-H6 x1 8q11.21-q12.1
8q13.1-q21.11
6p12.3-p12.2

6q11-q13
6p12.1-p11.2
2q14.3-q21.1
2q11.2-q12.2

13q33.1
2q32.1-q32.2
2q32.2-q37.3

5q21.1
18q21.32-q22.1

2q14.3
2q14.1-q14.3
2q21.2-q22.1
1q32.1-q32.2

1q21.1
1p11.2

1q23.1-q32.1
Yq11.23

1q43-q44
4q26

1q32.2-q42.13

8:50767106-56535248
8:67336477-76107163
6:49796129-52568703
6:61967179-73920868
6:56223874-58686221

2:128848553-131914911
2:97151065-106819719

13:103237605-103533914
2:189007277-190504466
2:190506076-242812118
5:98439740-102728411
18:58351903-65328593

2:122585948-126347698
2:114436107-122578025
2:133138389-138607743
1:206075775-207534964
1:143881371-144095755
1:120754434-120887322
1:158516903-205922697

Y:28358518-28544030
1:240253393-247125743
4:119339188-119512723
1:207575939-227644727
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2A1–A3 X1 10q12.1-q15 10:5915452-27157072

2B X4 2q22.1-q32.1 2:140065297-188395329

2C1-H4 X1 20p13-p11.21
20p13

20q11.21-q13.32
20q13.32-q13.33

15q13.3-q21.2
11q12.1
11q11

11p11.12
11p14.2-p11.2
2q11.1-q11.2

2q13
2p11.2
2q13

20:1736101-25606620
20:102147-1447942

20:29933153-58056214
20:58148222-62907435
15:32906987-51298173
11:56082416-57753858
11:55080583-55323018
11:51377850-51539057
11:26296397-48658712
2:95642277-97040617

2:111483204-112960231
2:87345633-87996071

2:112973390-113650007

4C5-E1 X1 1p32.1-p31.3
1p36.33-p32.2~1

1:59120351-67562260
1:894315-59012766

7A1-F3 X1 19q13.42-q13.43
19q13.43

19q13.31-q13.33
19q12-q13.31

19q12
19q13.33-q13.41

16p13.11
11p15.1-p14.3

15q11.2
15q11.2-q13.1
15q13.1-q13.3

15q26.3
15q26.1-q26.3
15q25.3-q26.1
15q25.1-q25.3

11p11.12
11q13.4-q14.3

10p11.21
11p15.4-p15.1

16p13.11
16p13.11-p12.3
16p12.3-p12.2
16p12.2-p11.2

16p11.2
16p11.2

19:54368915-57485284
19:58523795-59089552
19:45010010-48707700
19:30093064-44860951
19:28589680-30085362
19:48800017-51921957
16:16252815-16388674
11:17403485-25251145
15:22833222-23086601
15:23914751-28586067
15:29107424-32578594

15:99080385-102265870
15:91593058-99078056
15:85829657-91565912
15:80253398-85682414
11:49250334-49827246
11:71627032-89350901
10:37191655-37402201
11:3631069-17360027

16:15260325-15369270
16:16681590-18325190
16:18608156-21351663
16:21572755-28339524
16:28390845-29030948
16:29661006-31520748

9A1-F4 11q14.3-q22.3
19p13.2

7p14.3-p14.2
11q22.3-q25

15q21.2
15q21.2-q25.1
6p12.2-p12.1
6q13-q14.3

15q25.1
3q22.3-q24

3q22.1-q22.3
3p21.31-p21.1
3p24.1-p22.2

3p22.2-p21.31

11:89860533-107436639
19:8919008-11689880
7:33134362-36494039

11:107452617-134843539
15:51349622-51942502
15:51961808-78956872
6:52656530-55784577
6:74104388-86360515

15:79042978-80196839
3:138372654-148087492
3:129931635-138353358

3:46446256-52346387
3:27753690-37261140
3:37269243-46423369

12A1-E X2 2p25.1-p23.3
2p25.1
2p25.1

2p25.3-p25.1
7q22.3-q31.1
7p21.3-p21.1

7q31.1
14q12-q22.1

2:10303009-26361943
2:9354723-9994801

2:9996101-10284917
2:140908-9278318

7:105210238-107772185
7:12561752-19748810

7:107772206-112136146
14:25157192-52251174

12E–F1 X1 14q23.1-q32.33 14:58666612-106375879

12F1-F2 X2 7q36.3
7p21.1-p15.3

7:157225645-158937901
7:19761201-22528893
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13A1-qter X1 10p15.3-p15.1
1q42.3-q43
7p14.2-p13

6p22.3-p22.1
6p25.3-p23
6p23-p22.3

9q22.1-q22.32
5q35.2-q35.3
5q31.1-q31.2

9q21.32-q21.33
9q22.32-q22.33

9p13.1
9q12-q13

9p11.2
8q22.1

5p15.33-p15.31
5q14.3-q15

5q13.2-q14.3
5q11.1-q13.2

1p11.2
5p12

10:138698-5865622
1:235330060-240084659

7:36524506-43605930
6:20065223-28502803

6:181261-15099150
6:15104709-20060798
9:91031851-97067712

5:173750964-177039611
5:134073478-137090938

9:86231955-90340399
9:97320957-99417669
9:38810965-40707569
9:65585614-65901647
9:43623473-43941731
8:97247028-97373828

5:191425-7935441
5:84566270-96144383
5:70265557-84371909
5:49569996-68922426

1:121149401-121350677
5:43446298-46118514

14C1-E5 X2 14q22.1-q23.1
14q11.2-q12

14q12
13q12.12
13q12.11
13q14.2

13q12.13
13q12.12

13q14.2-q14.3
8p23.1

8p21.3-p12
13q14.11-q14.2
13q14.3-q33.1

14:52688635-58629894
14:20211286-24987352
14:25040539-25149959
13:25188452-25511922
13:20207279-23370461
13:49821990-50161404
13:25685086-26668986
13:23853398-24896355
13:50192169-52356487

8:9744629-11737304
8:20206584-29151199

13:41469941-49799059
13:53226033-103089581

16pter-qter X1 16p13.3-p13.11
16p13.11
8q11.21

12p11.21
22q11.21

3q27.1-q29
3q29

3q11.1-q21.2
3p12.3-p11.1

21q11.2-q22.3
21q11.2

18p11.21
2q21.1

16:3283710-15197331
16:15478874-16187414
8:48206338-49865275

12:32634919-33054761
22:19010381-22338262

3:182965714-195325931
3:195428230-197771581
3:93527487-125343459
3:75865702-90309600

21:15515528-43438088
21:14535253-14714360
18:15016525-15155234

2:132604281-132757591

17A1-E5 X1 6q27
6q25.3-q27

6q27
5q15-q21.1

16p13.3
5q35.1

6p21.32-p21.2
21q22.3

19p13.12
19p13.2

6p22.1-p21.32
6p21.2-p12.3
3p25.1-p24.3
2q12.2-q12.3

19p13.3
5q21.1-q22.1

18p11.32-p11.22
2p23.2-p16.3
2p16.3-p16.2

18p11.32

6:167120855-167552070
6:160103032-166797236
6:167859539-170893754

5:96202316-98405239
16:222880-3208490

5:171946752-172722349
6:33359177-39058058

21:43490502-45122943
19:15270296-15808207

19:8366687-8811037
6:29322703-33297218
6:39266498-49681826
3:16307846-20231899

2:107383985-108798215
19:4229082-6862967

5:102759315-110063021
18:2534401-9972541

2:29033520-51699597
2:51709987-53282184

18:861722-2534400
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18A1–D3 X1 10p11.21
10p12.1-p11.22

10p12.1
10p11.21
18p11.32

18q11.1-q12.3
2q14.3

5q22.1-q22.2
5q31.2-q32

5q22.2-q23.3

10:35284099-35521818
10:28950711-32678701
10:27747786-28722506
10:35676708-37094546

18:112543-599224
18:18528605-41073893

2:127805408-128786667
5:110280120-112296881
5:137225085-147624774
5:112310736-130339352

18D3-qter X2 5q32-q33.1
18p11.22-p11.21
18q21.31-q21.32

18p11.21
18q12.3-q21.31

18q22.1-q23

5:147647374-150177176
18:10202644-11518916
18:54267924-58201586
18:11649353-13871680
18:41355914-54244819
18:66339761-78010601

region breakpoint 
homologue region in human

cytoband potential tumor associated genes 

4C1 del 9q31.3 AKAP2/ C9orf84

5G3 dup, inv 7q21.3 ASNS / BAIAP2L1

5G2 dup 7q21.3 ASNS / BAIAP2L1

8A1 t 19p13.2 ELAVL1 also called HUR / FCER2

8B1 t 4q34.2  ASB5

12E t 14q31.1 SEL1L / TSHR

14C1 t 14q22.2 CGRRF1 / CNIH1 / GCH1 / GMFB 

18D t 5q23.1 LOX / FTMT


