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Abstract

The polyfunctionality of the liver and the high level of regeneration explain 
the enormous interest in the study of regeneration mechanisms, which have 
been largely studied in mammals. At the same time, the study of regeneration 
mechanisms in lower vertebrates, such as fish, provides important informa-
tion regarding the conserved mechanisms also present in higher vertebrates. 
The present study focuses on the role of stem potential in liver regeneration 
of fish species Cyprinus carpio under physiological normal conditions during 
post-embryogenesis. From the first to the third year of postembryogenesis, a 
significant decrease in the number of haematopoietic stem CD34+CD45+ cells 
(haematopoietic progenitor cell population) was detected, whereas the number 
of CD34+CD45– cells (haemangioblast population) remains relatively constant. 
From the first to the third year of postembryogenesis, the number of intrahe-
patic stem cell precursors CK19+ cells (intrahepatic progenitor cells) increases.
Keywords: oval cells, liver progenitor cells, regeneration, fish, postembryogen-
esis, stem cells, immunophenotyping, immunohistochemistry, hepatocyte, he-
patic acinus.

Introduction

The liver, a polyfunctional and structurally heterogeneous organ, is a central reg‑
ulator of metabolism, detoxification, functions as a ‘peripheral integrator’ of the 
energy needs of the body in this regard, ensures the maintenance of homeostasis 
of the body as a whole (Gernhöfer et al., 2001; Young, Woodford, and O’Dowd, 
2013; López-Luque and Fabregat, 2018; Akulenko et al., 2019; Gardner, Laurin, and 
Organ, 2020; So, Kim, Lee, and Shin, 2020; Leão et al., 2021; Gao and Peng, 2021). 

A distinctive feature of the organ is its high ability to regenerate. Regenera‑
tion of the liver, on the one hand, is a long-standing and widely studied process, 
but on the other hand, it is still unknown. In this regard, the regenerative po‑
tential of the liver is an inexhaustible source for scientific research, which finds 
its application in fundamental and applied aspects (Choi, Ninov, Stainier, and 
Shin, 2014; He, Lu, Zou, and Luo, 2014; Lemaigre, 2015; King et al., 2017; Siapati, 
Roubelakis, and Vassilopoulos, 2022; Oderberg and Goessling, 2023).

The first studies of liver regeneration are directly related to the introduction 
of resection of part of the organ into medical practice at the turn of the 19th and 
20th centuries (Kordes and Haussinger, 2013). In the course of numerous experi‑
ments in 1931 G. Higgins and R. Anderson developed a classic surgical model — 
partial (68–75 %) hepatectomy  — which is still widely used in studies of liver 
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regeneration mechanisms (Castorina et al., 2008; Zhang, 
Theise, Chua, and Reid, 2008; Onishchenko et al., 2011; 
Vestentoft, 2013). Removal of two-thirds of the liver re‑
sults in compensatory hyperplasia and hypertrophy of 
the remaining lobes to restore the original liver mass in 
rodents; this proliferative response is maintained in fish 
(Hong, Li, and Hong, 2011; López-Luque and Fabregat, 
2018; Bram et al., 2021).

The mechanism of liver regeneration in lower ver‑
tebrate fish and amphibians (cold-blooded/ectother‑
mic animals), in contrast to higher vertebrate mam‑
mals (warm-blooded/endothermic animals), has not 
been studied in such detail (Akiyoshi and Inoue, 2004; 
Antonova, Omarova, Firsova, and Krasnikova, 2024). 
Whereas the analysis of the stem regenerative potential 
of fish liver will largely expand the significance of the 
evolutionary factors responsible for the formation of 
high regenerative capacity of the liver as an example of 
the complexity of structural and functional organisation 
of organs. It will also expand the understanding of such 
a fundamental problem of biology as the analysis of reg‑
ularities of formation of reactivity and plasticity of func‑
tionally similar tissues in evolution from the position of 
the theory of parallelism (Pritchard, 2002; Scholz, 2002).

In the evolution of various species, temperature is 
one of the factors that ensures the development, growth, 
proliferation, function and cell death in the whole or‑
ganism system in ecto- and endothermic animals (Shah‑
bazov, 2001; Bayne, 2004; Vinogradov, 2005; Frampton 
et al., 2006). Studies on lower vertebrates provide impor‑
tant information regarding the conserved mechanisms 
of liver regeneration also present in higher vertebrates.

Most of the works are focused on modelling liver 
injuries and studying the regenerative potential on the 
example of various diseases of higher vertebrates (Wang 
et al., 2015). The activation of both hepatocytes of differ‑
ent subtypes and liver progenitor cells (LPCs) has been 
observed in various models of liver injury. At the same 
time there are not enough studies on the analysis of 
mechanisms and sources of liver regeneration in lower 
vertebrates under physiological normal conditions. In 
this regard, it is relevant to study the role of LPCs in the 
processes of physiological regeneration (So, Kim, Lee, 
and Shin, 2020; Miyajima, Tanaka, and Itoh, 2014; Dun‑
can, Dorrell, and Grompe, 2009).

Regeneration proceeds in several phases  — prim‑
ing, progression, termination, remodelling of liver pa‑
renchyma (Yanger et al., 2014; López-Luque and Fabre‑
gat, 2018). Two pathways can be distinguished to trigger 
liver regeneration. The first one — through hepatocyte 
proliferation (considered the main one). The second 
pathway involves both intrahepatic and haematopoi‑
etic LPCs, which includes triggering mechanisms such 
as dedifferentiation of biliary epithelial cells (BECs) or 
hepatocytes into LPCs; proliferation of LPCs and subse‑

quent differentiation of LPCs into hepatocytes. The sec‑
ond pathway is usually triggered when the first pathway 
fails to work efficiently (Mancino et al., 2007; Chen et al., 
2012; Shin and Monga, 2013; Font-Burgada at el., 2015; 
Wang et al., 2015; Lopez-Luque and Fabregat, 2018; So 
at el., 2020; Bruno et al., 2021; Oderberg and Goessling, 
2023).

LPCs are variously called oval cells because of the 
large ratio of nuclei to cytoplasm and the oval shape 
of the nuclei (Farber, 1956; Tatematsu et al., 1984), he‑
patic progenitor cells, hepatic stem cells, and ductal cells 
because they are located in Goring’s canals. When the 
first regeneration mode is ineffective, activation of the 
second regeneration mode triggers dedifferentiation of 
progenitor cells into hepatocytes. It is also known that 
CK19-positive portal cells migrate along connective 
tissue septa and differentiate into cells of two lineages: 
cholangiocytes forming interval bile ducts and hepato‑
cytes (Kowalik et al., 2015; Lebedeva, 2021). More re‑
cent studies have shown that “oval cells” are EpCAM+ 
(Suzuki et al., 2008; Okabe et al., 2009), marked expres‑
sion of marker genes TROP2 and Folx1, which were al‑
most undetectable in intact liver (Sackett et al., 2009). 
EpCAM+–positive cells isolated from damaged liver can 
proliferate with colony formation and differentiate into 
both hepatocytes (Alb+, Afp+) and Ck7+– and Ck19+–
positive BECs. The origin of LPCs from BECs has been 
confirmed in various models of liver injury (Yanger et 
al., 2014; Raven et al., 2017). It has been shown that 
BECs dedifferentiate into LPCs, and LPCs can differen‑
tiate into hepatocytes, a population of which, at the end 
of liver regeneration, differentiates again into LPCs. In 
severe liver injury, dedifferentiation of BECs-to-LPCs is 
noted, and LPCs then differentiate into either hepato‑
cytes or BECs. These mechanisms identified in human 
liver are supported by studies in mice and Danio rerio 
(Choi, Ninov, Stainier, and Shin, 2014; He, Lu, Zou, and 
Luo, 2014; Huang et al., 2014; Stueck and Wanless, 2015; 
Russell et al., 2019; Manco et al., 2019).

Despite the lack of LPCs-specific markers that are 
expressed in LPCs but not in BECs, BECs are thought to 
be the source of LPCs because of their phenotypic simi‑
larity and topographic proximity in the acinus (Fausto 
and Campbell, 2003; Tarlow et al., 2014; Raven et al., 
2017). The fact that the activated LPCs differentiated 
into hepatocytes indicates that hepatocytes may be an 
additional source of LPCs (Yanger et al., 2014), which 
is supported by overexpression of constitutively active 
YAP1 (Yimlamai, 2014) or Notch (Yanger et al., 2013; 
Tarlow, Finegold, and Grompe, 2014). Inhibition of YAP 
or Notch signalling in hepatocytes suppresses their de‑
differentiation into LPCs, which was shown on the ex‑
ample of Danio rerio (So, Kim, Lee, and Shin, 2020).

LPCs express both hepatocyte markers  — KRT8, 
KRT18 and albumin Ov6 (Li et al., 2014; Ma et al., 2019) 
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and BECs  — KRT7, KRT19, EpCAM and SOX9 (Fu‑
ruyama et al., 2011). Thus, in particular, Sox9-positive 
hepatocytes are localised in the portal tract region (peri‑
portal hepatocyte population, hybrid) (Font-Burgada et 
al., 2015; Li et al., 2019). Axin2-positive cells are local‑
ised in the central vein region and represent a universal 
transcriptional target of β-catenin-dependent Wnt sig‑
nal transduction, as evidenced by the exclusive expres‑
sion of Wnt2 and Wnt9b in central vein endothelial cells 
(Wang et al., 2015).

This result suggests that Axin2-positive pericentral 
vein hepatocytes are not highly capable of regeneration 
(Sun et al., 2020; Chen et al., 2020).

Depending on the nature of the injury, LPCs can 
express hepatoblast marker α-fetoprotein (AFP), haema‑
topoietic markers such as CD34, CD90, CD133, c-Kit, 
CXCR4 and Sca1 (Cardinale et al., 2011). Mesenchymal 
stem/stromal cell markers include CD29, CD44, CD73, 
CD90, HLA class I (Kholodenko et al., 2019), hemato‑
poietic/endothelial cell markers include CD11b, CD14, 
CD19, CD31, CD34, CD45, CD79β, CD117, CD133, 
CD144, and HLA-DR (Bruno et al., 2021). Depend‑
ing on the damage conditions, LPCs can also express 
the hepatoblast marker α-fetoprotein and the haema‑
topoietic markers CD34, CD90, CD133, c-Kit, CXCR4 
and Sca1 (Durnez et al., 2006). This broad spectrum of 
marker expression in LPCs reflects their heterogeneous 
nature (Cardinale et al., 2011; Dorrell et al., 2011; Fu‑
ruyama et al., 2011; Li et al., 2014; Pepe-Mooney et al., 
2019; Planas-Paz et al., 2019).

The interactions of LPCs with the liver microenvi‑
ronment during regeneration are provided by paracrine 
mechanisms. In particular, the possibility that liver Ito 
stellate cells (HSCs) are a source of LPCs and regener‑
ated hepatocytes has been considered; other sources do 
not support this possibility, which increases the uncer‑
tainty about HSCs as a source of LPCs (Mederacke et 
al., 2013; Kordes et al., 2014; Schaub, Malato, Gormond, 
and Willenbring, 2014; Swiderska-Syn et al., 2014). In 
addition, organ-specific liver macrophages (Kupffer 
cells) are known to participate in the activation of LPCs 
during regeneration by overexpressing tumour necrosis 
factor-like TWEAK in hepatocytes, which stimulates 
the proliferation of LPCs through the nuclear factor-κB 
(NF‑κB) signalling pathway (Tirnitz-Parker et al., 2010).

In addition to the liver injury model in higher verte‑
brates, various models of liver injury in Danio rerio have 
been established, including partial hepatectomy of one 
third (Goessling et al., 2008; Oderberg and Goessling, 
2021), ethanol treatment (Huang et al., 2014), oncogene-
induced liver cancer (Wang et al., 2017), and hepatocyte 
ablation to study regeneration mechanisms (Wei et al., 
2021; Oderberg and Goessling, 2023; Cox et al., 2014).

In a model of severe hepatocyte injury in adult Da-
nio rerio, BECs act as facultative liver stem cells in an 

EGFR-PI3K-mTOR-dependent manner (Clevers and 
Watt, 2018; Oderberg and Goessling, 2023), activating 
hepatocyte proliferation (He, Lu, Zou, and Luo, 2014; He 
et al., 2019; Michalopoulos and Bhushan, 2021). BECs 
of two types are identified in Danio rerio: intrahepatic, 
in close proximity to hepatocytes (Ellis et al., 2018), and 
extrahepatic, located in the ducts draining bile from the 
liver. Due to this, intrahepatic BECs may be the equiva‑
lent of oval cells in Danio rerio, they express transcription 
factors associated with hepatoblast identity (Oderberg 
and Goessling, 2023). At the same time, inhibition of the 
differentiation process of LPCs negatively affected the 
processes of liver regeneration and repair (Ko et al., 2019).

The aim of this study is to investigate the role of 
liver stem cells in Cyprinus carpio fish as a source of re‑
generation during post-embryonic development under 
normal physiological conditions.

Materials and methods

The study was conducted on 90 male individuals of the 
Cyprinus carpio species, aged one (0+), two (1+), and 
three (2+) years post-embryogenesis, with 30 individu‑
als per period. The fish were raised under standard con‑
ditions at the “Fish place” fish farm (Omsk, Russia). For 
each post-embryogenesis period, 30 liver samples were 
collected. The fish weighed 23.3 g at one year, 710.5 g at 
two years, and 1107.4 g at three years. Studies were car‑
ried out after anaesthesia with lidocaine (C14H22N2O) 
(0.4 g/L) with a dose of 0.08 g, by applying the anaes‑
thetic in a bath of water, to irrigate the gills.

The liver for research was fixed in 10 % neutral buff‑
ered formalin (LLC “Ergo production”, Russia), and se‑
rial sections were made with hematoxylin-eosin staining 
using the standard methodology (Mishhenko, Petrova, 
and Medvedeva, 2017) for further morphological analy‑
sis of liver histotopography.

The analysis of intrahepatic and haematopoietic 
markers was conducted using immunohistochemistry 
and immunophenotyping methods. To investigate the 
expression of markers for liver progenitor cells and he‑
matopoietic stem cells, antibodies against CK19 were 
used as a marker for oval cells (intrahepatic ductular 
structures in the area of the canal of Hering) and CD34 
and CD45 were used as markers for stem cells/precur‑
sors of hematopoietic precursor cells, according to the 
laboratory-optimized protocol.

Immunohistochemical analysis of liver sections was 
performed. The CD34 antigen clone RAM34 (Invitrogen, 
USA) and CK19 antigen clone RCK108 (Abcam, UK) 
were detected after HIAR demasking. Liver histological 
sections were deparaffinized and dehydrated, then incu‑
bated with primary and subsequently with biotinylated 
secondary antibodies (Link, PrimeBioMed LSAB+Kit 
Peroxidase). The sample was washed and incubated 
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with streptavidin conjugated to horseradish peroxidase 
(Streptavidin, PraimBioMed, LSAB+Kit Peroxidase). 
A solution of aminoethylcarbazole and hydrogen perox‑
ide was used as the substrate for the peroxidase reaction.

Morphological analysis of histological specimens 
was performed using the AxioImagerA1 light micro‑
scope (Carl Zeiss, Germany). Histological sections were 
digitized using the Pannoramic SCAN scanning micro‑
scope (3DHISTECH, Hungary) and processed using the 
ZEN software (Carl Zeiss, Germany).

Immunophenotyping markers study

Immunophenotyping was performed on a flow cytom‑
eter (Partec CyFlow space, Germany) according to the 
recommendations and protocols of the EuroFlow con‑
sortium (Kalina et al., 2012; Beznos et al., 2017). Mono‑
clonal antibodies against CK19 (Beckman Coulter, 
USA), CD34, and CD45 (Beckman Coulter, USA) were 
used to study the expression of markers of liver progeni‑
tor cells and hematopoietic stem cells by immunophe‑
notyping. The histograms were analysed using FloMax 
software (Germany). Two sources of radiation were used 
simultaneously — a blue laser at 488 nm and a red laser 
at 638 nm; 4 colours (FL1–FL3+FL4).

Statistical analysis of the obtained data was per‑
formed using Prism 8.0.1 software package (Graphpad, 
USA). The main statistical characteristics of the studied 
parameters (mean, median, variance) were determined 
in the first stage of data analysis. Normality of data dis‑
tribution was assessed according to the Shapiro — Wilk 
hypothesis. The significance of differences between in‑
dependent samples was evaluated using the Mann  — 
Whitney U test. Differences were considered significant 
at a level of p < 0.05 (Kremer, 2004).

Results and discussion

The liver parenchyma consists of parenchymal cells (he‑
patocytes) and non-parenchymal cells. Hepatocytes are 
irregularly shaped, pentagonal or hexagonal, with an 
expanded basal portion and a narrowed apical portion, 
resembling truncated pyramids (Fig. 1). Hepatocytes are 
arranged radially around the perifocal central vein. The 
parenchymal hepatocytes are represented by trabecu‑
lae, which form tubular structures surrounded by sinu‑
soidal capillaries, consistent with the literature (Akoul 
and AL‑Jowari, 2019). The sinusoids form tubular-loop 
structures, with the central lumen being surrounded by 
more than six hepatocytes. 

The bile duct is present both within the portal tract 
(portal-tract type) and separately in the parenchyma — 
isolated type (Fig. 2).

The liver parenchyma contains the pancreas in the 
form of an acinar structure, separated from the liver pa‑

renchyma by a thin layer of connective tissue. The pan‑
creatic islets are located around blood vessels of vary‑
ing sizes and shapes, sometimes associated with the bile 
duct (Fig. 1).

The immunohistochemical study revealed the pres‑
ence of CD34-positive hematopoietic stem cells and 
CK19-positive cells in all zones of the acinus (periportal, 
perivenular, and centrilobular) as well as in the area of 
the bile duct, both in the portal tract and in the isolated 
type of the bile duct. The localization of these cells does 
not exhibit zonality.

Based on the results of the immunophenotyping of 
liver stem cells (Figs 3–5), the following was identified:
—	 during the first three years of post-embryonic devel‑

opment, there is a statistically significant decrease 
in the number of CD34+ CD45+ cells. Specifical‑
ly, there is a 5 % decrease (p = 0.39) from the first 
to the second year, and a 37 % decrease (779 ± 61, 
p < 0.0001) from the second to the third year. Over‑
all, there is a 40 % decrease (881 ± 104, p < 0.0001) in 
the number of CD34+ CD45+ cells from the first to 
the third year of post-embryonic development;

—	 during the first three years of post-embryogene‑
sis, there is an increase in the number of CD34+ 
CD45– cells by 6 % (p = 0.52), with a slight decrease 
in the second year compared to the first year by 
23 % (783 ± 326, p = 0.02). By the third year, there 
is an increase of 37 % (985 ± 123, p < 0.0001) com‑
pared to the second year;

—	 from the first to the third year of post-embryonic 
development, there is a statistically significant in‑
crease in the number of CK19+ cells: in the sec‑
ond year, it increases by 15 % (1,451 ± 616, p = 0.02) 
compared to the first year, and by the third year, 
it increases by 14 % (1,374 ± 570, p = 0.02) com‑
pared to the second year. The overall increase in 
the number of CK19+ cells from year 1 to year 3 of 
post-embryonic development is 25 % (2,824 ± 659, 
p = 0.0001).
It is widely recognized that the liver mass is main‑

tained within a very narrow range relative to the total 
body mass, known as the hepatic index, which is main‑
tained by tissue homeostasis mechanisms — cell death 
and proliferation (Cienfuegos et al., 2014). This unique 
interrelation is called the “hepatostat” (Delgado-Coello, 
2021). Our study highlights the involvement of stem cell 
potential in maintaining this ratio under conditions of 
physiological normality in fish.

Liver progenitor cells create a niche within the 
zones of the hepatic acinus (Dollé et al., 2010). This 
niche is a specialized microenvironment consisting of 
parenchymal and non-parenchymal cells that release 
growth factors and cytokines, receive signals, and in‑
teract through the extracellular matrix (ECM), growth 
factors (GFs), and signaling pathways (Chen et al., 
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2012; Vestentoft, 2013; Chen et al., 2017; López-Luque 
and Fabregat, 2018). In our study, we examined several 
niches, including the canals of Hering, intrahepatic bile 
ducts as a portal-tract type of bile duct, as well as iso‑
lated perivenular and centrilobular zones of the hepatic 
acinus. Thus, within the hepatic acinus of Cyprinus car-
pio fish, all zones serve as niches for both hematopoietic 
and intrahepatic stem precursor cells. The niches of liver 

precursor cells support and regulate stem cells to ensure 
organ homeostasis and regeneration (Dollé et al., 2010).

Cytokeratin 19 is considered one of the molecular 
markers of oval cells, which provide oval cell prolifera‑
tion (Jensen et al., 2004; Duret et al., 2007; Castorina et 
al., 2008; Dollé et al., 2010; Miyajima, Tanaka, and Itoh, 
2014; Szücs et al., 2020). The expression of both hepato‑
cyte and biliary markers reflects the bipotential nature 

Fig. 1. Section of the fish liver of the species Cyprinus carpio. Haematoxylineosin staining. Magnification of figures: A, B, C, D — 50 µm; AI, AII, 
AIII — 20 µm. A — liver acinus: I — periportal zone; II — centrilobular zone; III — perivenular zone. AI — periportal zone of hepatic acinus (BD — 
portal-tract type of bile duct; A — arteriole; HC — haematopoietic cells; Vl — venule. AII — bile duct group — BD; AIII — portal tract of hepatic 
acinus; B — centrilobular zone with pancreatic duct; C — perivenular zone of the hepatic acinus (CV — central vein); D — centrilobular zone of 
hepatic acinus (BD — isolated type of bile duct; SC — sinusoid capillaries).
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Fig. 2. Section of the liver of fish of the species Cyprinus carpio. A, C, D, E, F — 50 µm; B — 100 µm. A — Isolated type of bile duct in the centrolobu-
lar zone of the hepatic acinus. CK19-positive cells; B — Parenchyma of the hepatic acinus. CK19-positive cells; C — Parenchyma of the hepatic 
acinus. CD34-positive cells; D — Parenchyma of the hepatic acinus. CD34-positive cells; E — Portal tract area. CD34-positive cells; F — Central 
vein area. CD34-positive cells.

Fig. 3. Immunophenotyping of the liver stem potential of fish species Cyprinus carpio. 
Note: the differences were considered significant at the significance level: * — р < 0.05, ** — р < 0.01, *** — р < 0.001, **** — р < 0.0001.
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of liver stem cells with respect to both the hepatic and 
biliary lineages, according to their immature and bipo‑
tential phenotype (Gaudio et al., 2009). The acquisition 
of an intermediate transamplifying phenotype involves 
the progressive loss of biliary cytokeratins, particularly 
during differentiation towards the hepatocytic lineage. 
Finally, complete maturation into hepatocytes is charac‑
terized by the complete disappearance of biliary mark‑
ers. In contrast, immature cholangiocytes maintain 
CK‑19 expression until full differentiation into mature 
cells. Our research has shown that during the three years 
of post-embryonic liver development in fish, a high level 

of CK19-positive cells is maintained from the first to the 
third year, and by the third year, they become the main 
precursor cells compared to hematopoietic sources. Ad‑
ditionally, it is currently believed that in the adult liver, 
CK19+ liver progenitor cells represent remnants of the 
fetal ductal plate. The hepatic progenitor cells arise dur‑
ing the process of liver development as a part of angio‑
genesis/vasculogenesis. They are formed from primi‑
tive hepatoblasts that are adjacent to the mesenchyme 
around the vessels of the portal zone. The ductal plate, 
which is detected in the liver during embryonic develop‑
ment and the first year of post-embryonic development, 

Fig. 4. Flow cytofluorimetry. Dynamics of the number of cells with CD34+CD45+, CD34+CD45–, CD19+ — positive immunophenotype cells in the 
first year of postembryogenesis in the liver of fish species Cyprinus carpio.
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transforms into the canals of Hering and is observed in 
the liver during later stages of post-embryonic develop‑
ment. Therefore, the canals of Hering can be considered 
as remnants of the ductal plate. The text describes the 
origin of bipotent liver precursor cells, known as CK19+ 
cells, which are pluripotent stem cells and hepatoblasts. 
These cells are the source of mature hepatocytes (Casto‑
rina et al., 2008; Gaudio et al., 2009; Dollé et al., 2010; 
Kang, Mars, and Michalopoulos, 2012; Yin et al., 2014; 
Itoh, 2016; Chen et al., 2017; López-Luque and Fabregat, 
2018; Huang, Zhang, Gracia-Sancho, and Xie, 2022).

Currently, there is an opinion that stem cells from 
extraliver sites, particularly the bone marrow, may con‑
tribute to liver regeneration (Theise et al., 2000). Since 
the liver is itself a hematopoietic organ during embryo‑
genesis, hematopoietic (mesenchymal) stemness mark‑
ers — CD34 and CD45, which are selectively expressed 
in hematopoietic precursor cells, play an important 
role in maintaining the organ’s cellular homeostasis 
(Castorina et al., 2008). In our research, the number 
of CD34+CD45+ cells decreases from the first to the 
third year of post-embryogenesis, while the number of 
CD34+CD45– cells remains relatively constant (Omori 
et al., 1997; Duret et al., 2007; Gaudio et al., 2009; Dollé 
et.al., 2010; Vestentoft, 2013; Yin et al., 2014; Hsieh et al., 
2020; Bram et al., 2021; Choi et al., 2021).

The identified characteristics of the dynamics of the 
analyzed indicators may be related to the living condi‑
tions of fish and the development of “hypoxic stress” — 
when hypoxic conditions are replaced by hyperoxic ones, 
a functional load on mitochondria increases due to re‑
oxygenation, which can be a source of hepatocyte dam‑
age (Voejkov, 2001; Danielson, 2002; Hahn and Wray, 

2002; Baker, 2003; Nelson et al., 2003; Jayatri, 2006), a 
mechanism of thermoregulation (Budd and Jensen, 
2000; Conway, 2000; Rome and Swank, 2001; Fischer, 
Koenig, Eckhart, and Tschachler, 2002; Schleucher and 
Withers, 2002; Angilletta, Wilson, Navas, and James, 
2003; Litzgus and Hopkins, 2003; Angilletta, Steury, and 
Sears, 2004).

Conclusions

The study found that the liver parenchyma is composed 
of hepatocyte trabeculae, which form tubular structures 
surrounded by sinusoidal capillaries. The sinusoids form 
tubular-loop structures, with a central lumen bounded 
by more than six hepatocytes. The bile duct is present 
both within the portal tract (the portal-tract type) and 
separately in the parenchyma — the isolated type. The 
liver parenchyma contains the pancreas in the form of 
an acinar structure, separated from the liver parenchy‑
ma by a thin layer of connective tissue.

According to the results of the immunohistochemi‑
cal study, it was determined that intrahepatic and hema‑
topoietic stem cell precursors are not zonally localized 
and are present in all acinus zones (periportal, perivenu‑
lar, centrilobular), in the area of the bile duct as a part of 
the portal tract, as well as in the area of the isolated type 
of bile duct. 

Immunophenotyping revealed that the number 
of CD34+CD45+ cells decreases from the first to the 
third year of post-embryogenesis, while the number 
of CD34+CD45– cells remains relatively constant. The 
number of intrahepatic CK19+ precursor stem cells in‑
creases from the first to the third year of post-embryo‑

Fig. 5. Dynamics of liver stem potential indicators of fish species Cyprinus carpio.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_AbstractPlus&term=
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genesis. Thus, the participation of both hematopoietic 
and intrahepatic sources of hepatocytes in liver paren‑
chyma regeneration is observed during post-embryo‑
genesis.
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