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Abstract

The “Ladoga” carbon supersite is part of the All-Russian carbon monitoring na-
tional system, it is located in the Boreal coniferous forest zone, and work is 
underway here to implement measures to control the emission of greenhouse 
gases. This study reports data on the total and carbon-associated diversity of 
the soil microbes of reference soils. We obtained 729 amplicon sequence vari-
ants from 35 soil samples. Total diversity is represented by 11 phyla of bacteria 
and 1 phylum of methanogenic archaea (for Histosol). Carbon-cycling bacteria 
diversity is represented by six phyla (Actinobacteriota; Proteobacteria; Acidobac-
teriota; Bacteroiodota; Firmicutes; and Verrucomicrobiota). The dominant carbon-
cycling bacteria in the studied soils are Actinobacteriota and Proteobacteria. The 
analysis of α- and β-diversity allowed us to identify three clusters of microbiota 
different in taxonomic composition — these are topsoil of Podzol and subsoil 
of Podzol (statistically significant (p < 0.05) differences in abundance for Pro-
teobacteria and Verrucomicrobiota were revealed). Histosol is distinguished in a 
separate cluster of microbial diversity; it differs from Podzol in the abundance 
of carbon-cycling bacteria by Proteobacteria and Bacteroiodota (p < 0.0001). Fur-
ther studies of the soil microbiome of the “Ladoga” carbon supersite should be 
focused on the study of functionally specialized groups of carbon and nitrogen 
cycle microbes and their ecosystem functions.
Keywords: carbon supersite, soil microbiota, 16S rDNA amplicon sequencing, 
high-throughput sequencing, Podzol, Histosol.

Introduction 

Soil microorganisms play an important role in the global biosphere-atmosphere 
carbon cycle (Naylor et al., 2020; Vasar et al., 2022; Wu et al., 2024). Bacteria 
play a major role in the decomposition of organic matter of mortmass from 
dead plants, animals, and fungi (Barbato et al., 2022; Baldrian, López-Mondéjar, 
and Kohout, 2023; Wu et al., 2024). Various phyla of the soil core microbiota 
are involved in the processes of carbon transformation in terrestrial ecosystems 
(Morten Dencker et al., 2019; Varsadiya, Urich, Hugelius, and Bárta, 2021; Xue 
et al., 2023; Wu et al., 2024). Currently, several important phyla are identified 
as responsible for organic matter recycling processes: Actinobacteriota, Proteo-
bacteria, Cyanobacteria, Acidobacteriota, Myxococcota, Bacteroiodota, Firmicutes, 
Verrucomicrobiota, Bdellovibrionota (Xue et al., 2023). These bacterial phyla are 
divided into functional groups based on their metabolic processes in nutrient 
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transformation differences that may influence soil or-
ganic carbon (SOC) storage and soil organic matter 
transformation processes (Jeewani et al., 2020; Naylor et 
al., 2020; Fu et al., 2022). It is crucial to understand the 
performance of the carbon cycle at the micro-level in the 
context of global climate change (Schimel and Schaeffer, 
2012; Domeignoz-Horta et al., 2020; Naylor et al., 2020). 
In Russia, a network of carbon measurement supersites 
(hereinafter “carbon supersite”) has been organized to 
study climate-related processes of carbon cycle trans-
formation in terrestrial and aquatic ecosystems. Carbon 
supersites will cover all climatic and ecological zones on 
the territory of Russia and will conduct (and are already 
conducting) research aimed at fundamental and applied 
tasks necessary to combat climate change on the planet 
(Abakumov, Polyakov, and Chukov, 2022). Studies of soil 
microbiota at carbon supersites have so far not received 
enough attention. Therefore, the purpose of this work is 
to obtain the first data on the taxonomic composition of 
the microbiome of reference soils of the “Ladoga” car-
bon supersite (Leningrad region). In addition, using sta-
tistical and bioinformatics methods, we aim to assess the 
α- and β-diversity of soil microorganisms and to detect 

the abundance of important phyla as responsible for soil 
organic carbon cycling processes.

Materials and methods 

Soil survey and main study area settings

The area of the “Ladoga carbon” supersite is located 
in the Leningrad Region (Fig. 1), Voeikovo settlement 
(59.948001N, 30.717330E). The territory belongs to the 
Boreal coniferous (southern taiga) forest zone (FAO, 
2012) with a Warm-summer Humid Continental (Dfb) 
Climate (Peel, Finlayson, and McMahon, 2007). An av-
erage annual temperature is +5.6 °C and an average an-
nual precipitation is 707 mm (Suleymanov et al., 2023). 
The relief is composed of fluvioglacial sediments of 
the Valdai glaciation and is represented by Esker and 
Kame formations (Makarova et al., 2023). Dominant 
vegetation types in projective cover are: Pinus sylves-
tris, Vaccínium myrtíllus, Vaccíniumvítis-idaéa, Athy-
rium filix-femina  — at high elevation; Betula pendula, 
Calamagrostis arun-dinacea, Sphagnum platyphyllum, 
Vaccíniumvítis-idaéa  — at peatlands (Makarova et al., 

Fig. 1. Location of the “Ladoga” carbon measurement supersite on a global (black markers) and regional scale. Blue markers indicate the sam-
pling locations for the corresponding soils.
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2023; Suleymanov et al., 2023). The dominant soils (ac-
cording to WRB (2022) classification) are Entic Podzols, 
Folic Podzols, Hortic/Plaggic Podzols (on the territory 
of old fields) and different types of Histosols (Fibric, He-
mic, Sapric) (Makarova et al., 2023; Polyakov et al., 2023; 
Suleymanov et al., 2023). Samples for microbiological 
analysis were collected from the two most common soils 
in the area (without obvious anthropogenic impact) — 
Folic Podzol (Oi-Oe (0–2 cm) — AhE  (2–13 cm) — Bs 
(13–34 cm) — BC/C (34–100 cm)) and Fibric Histosol 
(He (0–50 cm) — Ha (50–… cm)). The chemical prop-
erties of these soils are described in details in (Makaro-
va et al., 2023; Polyakov et al., 2023; Suleymanov et al., 
2023). Basic chemical properties: Folic Podzol —  pHwater 
5.6 — 6.0, SOC — 7.5 % in Oi-Oe horizon; 3.3 % — in 
AhE horizon; in deeper horizons 0.6  — 0.2 %. Fibric 
Histosol — pHwater 4.7 — 5.3 in He horizon; 3.7 — 4.1 
in Ha horizon; SOC — 38–47 % in profile (Polyakov et 
al., 2023; Abakumov et al., 2024). Samples for microbio-
logical analysis were taken from each soil horizon. After 
sampling, all soil samples were transported at +4 °C and 
stored at –20 °C.

DNA Extraction 

The total soil DNA was extracted by using the pro-
tocol described in (Pinaev et al., 2022). Quality con-
trol was carried out by PCR and agarose gel electro-
phoresis. The sequencing of the V4 variable region 
of the 16S rRNA gene was performed on the Illumina 
MiSEQ sequencer (Illumina, San Diego, CA, USA) 
at the Centre for Genomic Technologies, Proteomics 
and Cell Biology ( ARRIAM, Russia), using the prim-
ers 515f (GTGCCAGCMGCCGCGGTAA) and 806r  
( GGACTACVSGGGTATCTAAT) (Caporaso et al., 2011).

Bioinformatics analysis

The general processing of sequences was carried out in 
R 4.0 (R Core Team, 2013), using dada2 (v. 1.28.0) (Cal-
lahan et al., 2016) and phyloseq (v. 1.44.0) (McMurdie 
and Holmes, 2013) packages, according to the author’s 
choice of working pipeline. The 16S rDNA amplicon se-
quences were processed according to the dada2 pipeline. 
Sequences were trimmed by length (minimum 280 bp 
for forward and 210  bp for reverse reads) and quality 
(absence of N, maximum error rates maxEE were 2 for 
both forward and reverse reads). Amplicon sequences 
variants (ASVs) were determined according to the 
dada2 algorithm, and chimeric ASVs were removed by 
the “consensus” method. The taxonomic annotation was 
performed by the naive Bayesian classifier (provided 
in the dada2 package, default settings), with the SILVA 
138 database (Quast et al., 2012) used as the training set; 
phyla names were corrected according to LPSN (Parte 

et al., 2020). The α–diversity (observed ASV and Simp-
son indices) and β-diversity (Bray  — Curtis distance) 
metrics were calculated using “phyloseq” and “vegan” 
(Oksanen et al., 2018) packages. The NMDS ordination 
of Bray — Curtis distances were drawn using the “phy-
loseq” package. The PERMANOVA analysis was carried 
out using the “vegan” package.

Results and discussion 

After the bioinformatic processing was completed, 
729  ASVs from 35  samples were obtained. The mini-
mum read count per library was 1244, maximum 12787, 
mean — 3444. After rarefaction for α-diversity analysis 
depth of sequencing was 1244 sequences per sample. 

Major phyla observed were Proteobacteria, Actino-
bacteria, and Bacteroidetes followed by Acidobacteria, 
Verrucomicrobia, Planctomycetes, Gemmatimonadetes, 
Euryarchaeota, and Firmicutes (Fig. 2A). According to 
the bar graphs, the relative abundance of phyla in Podzol 
reflects the differences between topsoil (Oi-Oe and AhE 
horizons) and subsoil (Bs and BC/C horizons). For the 
first two horizons of topsoil (Oi-Oe and AhE) of Podzol 
the dominance of representatives of the Proteobacteria 
phyla (40.9  — 56.5 %) is noted. Samples from deeper 
parts of the soil section (Bs) demonstrated the high val-
ues of the phyla Gemmatimonadetes (18.5 — 30.2 %). For 
parent material (BC/C), the absence of Verrucomicrobia 
(1.0  — 3.3 %) and lower values of Gemmatimonadetes 
(3.7  — 14.5 %) are noticeable. The bacteria phylum’s 
typical for Podzols include the phyla Proteobacteria 
(mainly Rhodoplanes and Xanthomonadales), Acidobac-
teria, Actinobacteria, Bacteroidetes (Evdokimova et al., 
2020; Manucharova et al., 2021; Trifonova et al., 2021). 
It is shown in Fig. 2B that in topsoil (Oi-Oe and AhE 
horizons) among Proteobacteria phyla nitrite-oxidizing 
bacteria Nitrobacter — chemoautotrophic organisms re-
lated to nitrification processes are especially abundant 
(Laffite et al., 2020). The proportion of Verrucomicrobia 
phyla decreases further down the Podzol profile (Oi-
Oe  — 6.5 ± 3.3 %; AhE  — 8.1±2.2 %; Bs  — 3.1 ± 1.2 %; 
BC/C  — 1.2 ± 1.6 %) since these phyla are cosmopoli-
tans of the rhizosphere (Bünger et al., 2020) and are 
related to soil fertility conditions (Dash, Nayak, Pahari, 
and Nayak, 2020). The high abundance of Gemmati-
monadetes (25.5 ± 4.2 %) in the Bs horizon is explained 
by the genesis of this horizon, it is well drained since 
it is composed of fine sands, while the phyla of Gem-
matimonadetes shows good adaptation to the conditions 
of low moisture (Singh et al., 2023). Therefore, Gemma-
timonadetes abundance decreases (8.9 ± 3.6 %) in more 
humid parent material (BC/C horizon). In subsoil close 
to parent material (BC/C) an increase in the abundance 
of Actinobacteria in the total microbiome pool was ob-
served (31.5 ± 6.4 %), among this phylum an increase 
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in the abundance of Mycobacterium  — environmental 
nontuberculous mycobacteria was observed. According 
to Glickman et al. (2020), the growth of Mycobacterium 
chimaera is inhibited in the presence of a mineral form 
of aluminum hydroxide and manganese-containing 
mineral. The increased abundance of Mycobacterium 
can be linked to the processes of illuviation of Al-Fe 
compounds across the soil profile and beyond its limits, 
which is typical for Podzols in this region.

The major bacteria found in peat soils are Proteobac-
teria (Tsitko et al., 2014; Christiansen, Green, Fryirs, and 
Hose, 2022), Acidobacteria (Rakitin et al., 2022), Chloro-
flexi (Christiansen, Green, Fryirs, and Hose, 2022), Ver-
rucomicrobia (Aksenov et al., 2021), also the presence 
of Bacteroidetes and Actinobacteria (Serkebaeva, Kim, 
Liesack, and Dedysh, 2013), Planctomycetes (Kulichevs-
kaya, Pankratov, and Dedysh, 2006) is noted. As for His-
tosols microbiota (Fig. 2A), there is a high abundance of 
Bacteroidetes (He  — 20.2 ± 0.4 %; Ha  — 25.2 ± 16.2 %), 
as well as the presence of Firmicutes and Planctomycetes 
in each sample. In addition, for the peat deposit (Ha ho-
rizon), it is possible to note the presence of representa-
tives of the phylum Euryarchaeota (2.6 ± 2.3 %), which 
are methanogenic archaea.

From the total microbiome diversity, the abundance 
of bacterial phylum working in carbon cycling was iso-
lated (Fig. 2B). The diversity of the carbon cycling phy-
lum was recalculated as a proportion of the total abun-
dance. The bacteria working for carbon cycling were 
identified as Actinobacteriota; Proteobacteria; Acido-
bacteriota; Bacteroiodota; Firmicutes; Verrucomicrobiota 
(Cyanobacteria, Myxococcota and Bdellovibrionota were 
not included as they were < 0.01 % of the total abun-
dance). Proteobacteria and Acidobacteriota phyla hold a 
significant part of the whole abundance among carbon 
cycling bacteria in Pozdol. A paired comparison of phy-
lum abundance using Sidak multiple comparisons tests 
showed that there are not many significant similarities 
in bacterial abundance for carbon cycling. In the topsoil 
of Podzol, there were statistically significant differences 
in abundance for Proteobacteria (p < 0.01) and Acidobac-
teriota (p < 0.001). In the subsoil of Podzol, statistically 
significant differences in abundance were found only 
for Actinobacteriota (p < 0.0001). Among the phylum of 
carbon-cycling bacteria in Histosol, the dominant phyla 
were Actinobacteriota, Proteobacteria, and Bacteroiodo-
ta. The differences in the abundance of Proteobacteria 
phylum (p < 0.05) between He and Ha horizons were sta-
tistically significant.

According to the one-way ANOVA (Fig.  3A,  B), 
for all observed ASVs (Df1 = 5, Df2 = 29, F = 2.6715, 
p < 0.01), Simpson (Df1 = 5, Df2 = 29, F = 5.049, p < 0.01) 
and Shannon (Df1 = 5, Df2 = 29, F = 3.6097, p < 0.01) 
indices, the soil horizon was a significant predictor of 
α-diversity. Data on α-diversity of the soil microbiomes 

showed that Podzol is completely different from Histo-
sols in terms of microorganism biodiversity. Thus, the 
highest number of ASVs was in the Oi-Oe horizon of 
the Podzol from the monitored site. The lowest number 
of ASVs was found in the parent material, particular-
ly on the BC/C horizons, which is in accordance with 
the fact that in-depth microbial biodiversity decreases. 
The richness of topsoil samples was presumably higher 
than that of subsoil. The Histosol samples had the lowest 
value of richness, according to the observed ASV index. 
It was significantly lower than the ones obtained from 
the He horizon, but mostly both peat sections had lower 
richness in comparison with Podzol samples. A signifi-
cant difference in evenness (according to the Simpson 
index) has been discovered between the Histosol and 
Podzol, as well as between different horizons of the Pod-
zol soil profile (especially between topsoil and subsoil). 
In general, the highest evenness was characterized for 
the topsoil samples, whereas lower horizons had moder-
ate values. The α-diversity for the carbon cycle phylum’s 
(Fig. 3C, D) is similarly distributed. Podzol and Histolos 
are statistically different (F = 30.43. DF1 = 5, DF2 = 198, 
p < 0.0001). Statistically significant differences in micro-
bial diversity at carbon cycle phylum’s between topsoil 
(Oi-Oe and AhE horizons) and subsoil (Bs and BC/C 
horizons) of Podzol were also found (F = 9.20 DF1 = 5, 
DF2 = 132, p < 0.0001).

Taxonomic diversity of soil microbiome is strongly 
related to chemical properties and soil regimes (Philip-
pot et al., 2024). The soils we investigated are variable 
in genesis and in physicochemical properties. Podzols 
are characterized by lower content of SOC and they are 
more drained. Histosols are characterized by high mois-
ture and high content of organic carbon. We have previ-
ously noted that the core phyla of the microbial commu-
nity for both soils are Proteobacteria, Actinobacteria, and 
Bacteroidetes. However, the lower-level differences in the 
taxonomic composition of the microbial community are 
probably associated with the genesis of the soils and their 
physicochemical properties (Evdokimova et al., 2020; 
Rakitin et al., 2022). The β-diversity analysis also re-
vealed differences between samples in a defined manner. 
The association of the taxonomic composition of the mi-
crobiome with soil physicochemical properties should 
also be investigated, but we are already able to identify 
similar microbiome clusters based on β-diversity analy-
sis (Fig. 3). The results of the NMDS (beta-diversity, cal-
culated using Bray — Curtis distances) are presented in 
Fig. 3E, F. According to this data, the topsoil samples of 
Podzol had a unique microbial composition, clustered 
in NMDS, in their own, partly diverse, clusters. Samples 
from Bs and BC/C horizons were also grouped in clus-
ters, but much clearer ones. At the same time, samples 
from the Histosol clustered NMDS, but each in its 
unique group. According to the PERMANOVA, the soil 
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horizon was a significant factor of β-diversity (Df1 = 5, 
Df2 = 29, F = 8.1903, p < 0.001) for the Bray — Curtis dis-
tances. Therefore, according to β-diversity, it is possible 
to categorize the studied soils into three different groups 
(for total and carbon cycle phylum’s relative abundance) 
in terms of microbial diversity: 1  — topsoil of Podzol 
(Oi-Oe and AhE horizons); 2 — subsoil of Podzol (Bs 
and BC/C horizon); 3 — Histosol (He and Ha horizon).

Conclusions and outlook

Microbial diversity analysis identified 729 unique ASVs 
from 35 soil samples. A total of 11 phyla of bacteria and 
1 phylum of archaea were identified. The dominant bac-
terial phyla in Podzol and Histosol are Proteobacteria 
and Actinobacteria. The presence of a certain phylum 
and genus is associated with the features of soil genet-
ic horizons: Nitrobacter  — associated with the topsoil 
(Oi-AhE horizons) of Podzol; Verrucomicrobia — more 
often found in the topsoil, as they are cosmopolitans 
of the rhizosphere; Gemmatimonadetes  — which are 
adapted to low moisture, found in the drained horizon 
Bs composed by sands. For Histosol, a higher abun-
dance of Firmicutes was found and methanogenic ar-
chaea (Euryarchaeota) were identified in the deep Ha 
horizon. The total microbial diversity can be separated 
into three independent clusters: topsoil of Podzol; sub-
soil of Podzol; and Histosol. Although the list of phyla is 
common for both reference soils, we observe statistically 
significant differences in relative abundance between 
these two soils, and between parts of the soil profile 
(especially in Podzol). The main differences in micro-
biological diversity are related to the different genesis 
of reference soils: Podzols  — these are post lithogenic 
soils with organo-mineral matrix, where biogenic accu-
mulation and recycling of organic matter occurs mainly 
in topsoil. Histosols are organogenic soils composed of 
previously accumulated organic matter (peat) of various 
degrees of decomposition. In addition, these two soil 
types differ significantly in soil regimes (water, air, and 
thermal), so we found microorganisms associated with 
soil horizons with different parameters (e. g.: methano-
genic archaea (Euryarchaeota), which were found in the 
waterlogged and anaerobic horizon of Ha of Histosol). 
Of the prominent phylum of carbon cycle bacteria were 
identified: Actinobacteriota; Proteobacteria; Acidobacte-
riota; Bacteroiodota; Firmicutes; and Verrucomicrobiota, 
which are clustered similarly. The highest abundance 
among carbon cycling bacteria was revealed for Actino-
bacteriota, Proteobacteria in Podzol Actinobacteriota, 
Proteobacteria, and Bacteroiodota in Histosol. Statisti-
cally significant differences in the phylum abundance of 
carbon cycle bacteria between the two soils were found 
between Proteobacteria and Bacteroiodota (p < 0.0001). 
Further research should be focused on studying func-

tional groups related to carbon and nitrogen cycling in 
the bacterial communities and identifying their ecosys-
tem functions for different reference soils of the “Lado-
ga” carbon supersite.
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