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Abstract

Using the normalized difference vegetation index (NDVI) as a proxy for soil fertil-
ity would be highly useful for adapting no-tillage to specific environmental con-
ditions and for monitoring soil quality. Therefore, our study aimed to evaluate 
the relationship between satellite-based NDVI (May-August 2022) and soil fertil-
ity under no-tillage in the forest-steppe of Russia, considering different Cherno-
zems (Haplic and Luvic) and treatments (none / with microbial inoculation and 
irrigation). Among the soil fertility indices (0–10 cm), content of organic and in-
organic C (SOC and Cinorg), total N, available P and K, SOC : N, pH, microbial bio-
mass (MBC) and respiration were assessed. Overall, soil nutrient dependence 
of NDVI was found for Luvic Chernozem in both microbe-inoculated (SOC, N, K 
with R2 = 0.72 – 0.95) and untreated sites (SOC, SOC:N with R2 = 0.58 – 0.66). For 
Haplic Chernozem, only a negative relationship between NDVI and Cinorg was 
found (R2 = 0.47) at an untreated site, which was eliminated by using irrigation 
with microbial inoculation. Thus, NDVI can be a robust tool for predicting soil 
nutrient levels for no-tilled Luvic Chernozem, but not for Haplic Chernozem. At 
the same time, applied treatments can significantly change the specifics of this 
relationship, which is important to consider in remote sensing of soil fertility.
Keywords: microbial inoculants, irrigation, Haplic / Luvic Chernozems, soil nu-
trient levels, microbial biomass, inorganic carbon.

Introduction

The normalized difference vegetation index (NDVI) is a widely used remote sensing 
spectral approach representing the difference between red (chlorophyll absorbed) 
and near‑infrared (photosynthetically useless) image bands (Rouse, Haas, Schell, 
and Deering, 1974). Essentially, the index rising shows an increase in photosyn‑
thetically active biomass (Tucker, 1979; Goswami, Gamon, Vargas, and Tweedie, 
2015; Barboza et al., 2023). Therefore, NDVI has been successfully applied to study 
the spatio‑temporal variability of vegetation productivity and plant species distri‑
bution depending on various natural and anthropogenic factors (Pettorelli et al., 
2005). Specifically, this indicator is actively used in agricultural practice to moni‑
tor crop growth, phenology and health (Rahman, Islam, and Rahman, 2004; Funk 
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and Budde, 2009; Shafi et al., 2020), and to timely identify 
water and nutrient requirements (Cabrera‑Bosquet et al., 
2011; Prakasha, Somashekar, and Shivanand, 2020; Kima‑
ro et al., 2023). In precision agriculture, NDVI remains 
the most frequently used vegetation index (Radočaj, 
Šiljeg, Marinović, and Jurišić, 2023). This has resulted in a 
well‑developed commercial market for NDVI estimation 
for farmers based on satellite or drone imagery and hand‑
held sensors (e. g., “GreenSeeker” and “Crop Circle”). 
Thus, NDVI is a widely recognized and readily available 
tool for rapidly assessing the spatial heterogeneity of veg‑
etation productivity characteristics.

As plant productivity is largely related to soil fertil‑
ity, NDVI is also a good predictor of the spatial distri‑
bution of nutrient availability and stocks (such as total/
organic carbon, nitrogen, phosphorus and potassium) 
for different agricultural soils (Sumfleth and Duttmann, 
2008; Whetton, Zhao, Shaddad, and Mouazen, 2017; Liu 
et al., 2018; Zhang et al., 2019) including arable Cherno‑
zems in some Russian regions (Gopp et al., 2017; Gopp 
and Savenkov, 2019; Suleymanov et al., 2021). This rela‑
tionship could be useful in understanding the effective‑
ness of different agricultural practices in improving soil 
quality, including carbon stocks. The latter is particu‑
larly relevant for the implementation of the “4 per 1000” 
initiative (www.4p1000.org), which aims to develop car‑
bon sequestration farming to mitigate climate change 
and improve food security (Chabbi et al., 2017). In this 
context, a no‑till system that follows natural principles 
(i. e., no/minimal soil mechanical disturbance; continu‑
ous crop residue coverage; diverse crop rotation) can be 
promising (Ogle et al., 2019; Kan et al., 2022). According 
to a recent review by Kassam, Friedrich, and Derpsch 
(2019), no‑till land accounts for about 180 million hect‑
ares worldwide (12.5 % of the total global cropland), 
with an annual expansion of 10.5 million hectares. De‑
spite this, Russian farmers remain extremely skeptical 
about this agricultural practice due to its complex and 
costly adaptation to different soil and climate condi‑
tions, as well as potential yield losses. Therefore, the no‑
till land in Russia is only 1.5–2 million hectares, located 
mainly in the forest‑steppe and steppe regions with 
Chernozems (Cherkasov, Pykhtin, and Gostev, 2017; 
Turin, 2020). Thus, the applicability of remote sensing 
for predicting spatial changes in soil fertility indices un‑
der no‑tillage can greatly facilitate (i)  its adaptation to 
specific environmental conditions, (ii)  monitoring soil 
quality, especially carbon stock dynamics, and (iii)  the 
further expansion of this practice across Russia.

There is a well‑known problem of achieving effec‑
tive weed control under no‑tillage, which can be exacer‑
bated by environmental policies aimed at reducing pes‑
ticide usage (Soane et al., 2012). Therefore, some farmers 
use various microbial inoculants to reduce dependence 
on pesticides as well as chemical fertilizers. At the same 

time, such biological treatments can alter the function‑
ing of soil microbial communities and the resulting 
soil‑plant‑microbe interactions in unpredictable ways 
(Vázquez, César, Azcón, and Barea, 2000; Trabelsi and 
Mhamdi, 2013; Cassan and Diaz‑Zorita, 2016). This, in 
turn, may be reflected in the relationship between crop 
productivity (NDVI) and soil nutrient variability. In this 
regard, our study aimed to investigate the predictive 
power of NDVI on the spatial variability of soil fertility 
indices (including nutrient levels and microbial activity) 
in no‑till farming, considering the effects of different ap‑
plied treatments on Haplic and Luvic Chernozems.

Materials and methods

Study sites and sampling design

The study was carried out at a private no‑till farm of “Or‑
lovka  — Agro‑Innovation Center” LLC located in the 
Samara region of Russia (53°49′N / 51°55′E). This area 
belongs to the forest‑steppe with a warm‑summer humid 
continental climate (Dfb according to the Köppen climate 
classification). The mean annual temperature is 4.7 °C, 
and the mean annual precipitation is 459 mm, of which 
130 mm falls in the summer (1991–2020; data from the 
closest WMO weather station “28806 Buguruslan”). The 
history of agricultural use of the area goes back about a 
century (recorded since 1929). The current farm was pre‑
ceded by another crop farm, JSC “Soviet Russia”. Prior 
to no‑till farming, conventional tillage (plowing to 23–
25 cm) was used in this area. The dominant soil subtypes 
are Haplic and Luvic Chernozems, formed on brown clays 
and clay marls. The farm area (approx. 4,000 ha) is slightly 
undulating, with elevation ranging from 55 to 217 m a. s. l. 
(average 120  m a. s. l. according to Copernicus GLO‑30 
DEM). Currently, the farm crop rotation includes spring 
wheat, sunflower, soybean and flax.

In 2022, Haplic Chernozem (5‑year no‑till) and 
Luvic Chernozem (8‑year no‑till) sites were surveyed 
on the farm. Within each site, different treatments were 
considered: none / with microbial inoculation and ir‑
rigation for Haplic Chernozem; none / with microbial 
inoculation for Luvic Chernozem (Table  1). Non‑irri‑
gated and non‑microbe‑inoculated soils were hereafter 
referred to as “untreated” soils. In the study year, spring 
wheat and flax were cultivated on Haplic and Luvic 
Chernozem sites, respectively.

Microbial inoculants used for Haplic Chernozem 
were a fungal control agent (Trichoderma harzianum 
with 1 × 1010  UFC  g–1 and 0.08  L  ha–1; Russian “Agro‑
BioTechnology” LLC) and a straw‑decomposing ac‑
celerator (combination of Trichoderma, Bacillus, Acti-
nomyces, nitrogen‑fixing and lactic acid bacteria with 
1 × 109 UFC g–1 and 2.5 L ha–1; Russian “Scientific Re‑
search Institute Biopreparaty” LLC). Microbial treat‑

http://www.4p1000.org


BIOLOGICAL COMMUNICATIONS, vol. 69, issue 4, October–December, 2024 | https://doi.org/10.21638/spbu03.2024.405 251

SO
IL

 
SC

IE
N

CE

ments were applied annually before sowing and after 
harvesting for five years (2018–2022). Irrigation was 
carried out using a center pivot system. In addition, ni‑
trogen fertilizers (34–86 kg N ha–1 at sowing) and hu‑
mic fertilizers (4 L ha–1 at heading stage) were applied 
to both Haplic Chernozem sites (the microbial / irriga‑
tion treated and the untreated). Pesticide treatments for 
wheat included herbicides (2,4‑D 2‑ethylhexyl ester  + 
florasulam; tribenuron‑methyl), fungicides (pyraclos‑
trobin + epoxiconazole; propiconazole + tebuconazole) 
and insecticides (alpha‑cypermethrin; thiamethoxam).

The microbial inoculant for Luvic Chernozem was 
Azospirillum  sp. (2 × 109  UFC  g–1 and 0.5  L  ha–1; Rus‑
sian “Ecos” LLC), which was used once (in 2022) dur‑
ing the budding phase to promote flax growth. Nitrogen 
fertilizers (34 kg N ha–1 at sowing) were applied to both 
Luvic Chernozem sites (the microbial treated and the 
untreated). Pesticide treatments for flax included only 
herbicides (dimethylamino + sodium + potassium salt 
mixture; clopyralid‑olamine; clethodim). 

In October 2022, soil samples were taken from the 
upper 0–10  cm layer at 10  spatially distributed points 
per site. Within the individual Haplic Chernozem site, 
the point locations were evenly distributed across two 
one‑hectare squares (in the corners and in the cen‑
ter), somewhat approximating a grid sampling design 
(Fig.  1). Within the Luvic Chernozem site, the points 
were randomly distributed across ~2 ha sampling area 
with a minimum spacing of 30 m to match the spatial 
resolution of the Landsat 8–9 imagery. Totally, 40 freshly 
collected samples (4 fields × 10  sampling points) were 
transported to the laboratory for the immediate micro‑
bial and chemical testing.

Soil analysis

The soil samples were sieved through a 2 mm mesh to 
exclude stones and roots. Then, one portion of the sam‑
ples was air‑dried and used for chemical analysis. The 

Table	1.	Applied	treatments	and	cultivated	crops	 
(2022)	at	Haplic	and	Luvic	Chernozem	(CH)	sites	 
under	no-tillage

Site Mic Irr HS  
(L ha–1)

NF  
(kg N ha–1) Crop S/H  

(dd.mm)

Haplic CH 
(untreated)

No No 4 34 Wheat 09.05/30.08

Haplic CH 
+ Mic&Irr

Yes Yes 4 86 Wheat 08.05/22.08

Luvic CH 
(untreated)

No No No 34 Flax 03.06/11.09

Luvic  
CH + Mic

Yes No No 34 Flax 03.06/11.09

Notes: Mic, microbial inoculation; Irr, irrigation; HS, humic substanc-
es; NF, nitrogen fertilizers; S/H, sowing and harvesting dates.

Fig. 1. Scheme of soil sampling for no-tilled Haplic and Luvic Chernozems (CH) on the untreated, microbe-inoculated (Mic) and irrigated (Irr) 
sites. Only 7 points are shown for “Luvic CH + Mic” site as the remaining coordinates are not available.
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remaining portion of fresh soil samples was moistened 
up to 55–65 % water‑holding capacity, pre‑incubated at 
25 °C for 72 hours (Jones, Verheijen, Reuter, and Jones, 
2008), and then used for microbial analysis. Soil pH 
was measured in 1 N potassium chloride solution (soil : 
KCl solution  = 1 : 2.5) using a pH‑meter (“Ionometric 
converter I‑500”, Russia). Soil organic carbon (SOC) 
content was determined by the dichromate oxidation 
technique followed by colorimetry (FAO, 2019). Soil 
total carbon (Ctot) and nitrogen (N) were analyzed by 
the dry combustion method using a CHNS analyzer 
(“Vario EL III”, Germany). Inorganic carbon (Cinorg) was 
calculated from the difference between Ctot and SOC. 
Available phosphorus (P) and potassium (K) contents 
were determined by soil extraction with dilute hydro‑
chloric acid (0.2  M HCl) and then quantified with a 
photoelectric colorimeter/flame photometer. Microbial 
biomass carbon (MBC) was measured by the substrate‑
induced respiration method (Anderson and Domsch, 
1978; ISO 1997). Basal respiration (BR) was measured 
as the rate of soil CO2 release using gas chromatography 
(“ KrystaLLyuks‑4000 M”, Russia) (ISO 2002). The MBC 
and BR values were determined under optimum hydro‑
thermal conditions for the microorganisms: 22 °C and 
55–65 % water holding capacity.

NDVI calculation

Landsat 8–9  satellite imagery of the study area with a 
spatial resolution of 30  m were derived from USGS 
EarthExplorer (https://earthexplorer.usgs.gov/). Only 
cloud‑free remote imagery from May to October 2022 
were selected, including 14 dates (dd.mm): 07.05; 08.05; 
24.05; 25.06; 02.07; 10.07; 11.07; 18.07; 11.08; 12.08; 
19.08; 20.08; 28.08, 13.09. Pre‑processing of the im‑
age dataset included radiometric calibration and at‑
mospheric correction (Vermote, Roger, Franch, and 
Skakun, 2018). NDVI was calculated by the equation 
(Rouse, Haas, Schell, and Deering, 1974):

( ) ,
( )
NIR RNDVI
NIR R

-
=

+

where NIR is near‑infrared reflection; R is visible red 
reflection. The NIR band for Landsat 8–9 imagery is 
851–879 nm, and the R band is 636–673 nm.

Statistical analysis

The spatial variability of the soil fertility indices was 
quantified by the coefficient of variation (CV, %), which 
is the ratio of the standard deviation to the mean. The 
significance of differences between two independent 
groups (untreated and treated sites) was tested using 

the Welch’s t‑test. Simple linear regression was used to 
test the significance of NDVI in predicting the spatial 
variability of soil fertility indices for each Chernozem 
site individually. Prior to the statistical analysis, the 
variable distribution was checked with the Shapiro‑
Wilk normality test. Box‑Cox transformation was per‑
formed for variables with non‑normal distribution. Sta‑
tistical analysis and results visualization were carried 
out in the R software system (version 4.1.2) (RStudio  
Team, 2023).

Results

Spatial variability of soil fertility indices

The main difference between the studied Chernozems 
(CH) was pH value, which was higher for Haplic CH 
(slightly alkaline) than for Luvic CH (neutral) (Table 2). 
Within each soil subtype, the elevation and some soil 
properties varied significantly between the untreated 
and the treated sites. For Haplic CH, the microbe‑inoc‑
ulated and irrigated site was located about 130 m lower 
than the untreated site and had higher SOC, P and, con‑
versely, lower Cinorg. Moreover, the spatial variability of 
most soil properties (except P and K contents) in the 
treated site was 1.5–3.0 times lower than at the untreat‑
ed one. In the case of Luvic CH, the microbe‑inoculated 
site was located 5 m higher than the untreated site and 
had lower pH, P, K and MBC and BR. At the same time, 
the spatial variability of soil properties was mainly the 
same at both Luvic CH sites. 

Table	2.	Elevation	and	soil	properties	(0–10 cm)	for	
no-till	Haplic	and	Luvic	Chernozems	(CH)	on	untreated,	
microbe-inoculated	(Mic)	and	irrigated	(Irr)	sites

Property Haplic CH
(untreated)

Haplic CH
+ Mic&Irr

Luvic CH
(untreated)

Luvic CH
+ Mic

Elevation  
(m a. s. l.)

198 (1) 64 (4)*** 151 (1) 156 (1)***

рНKCl 6.8 (6) 6.9 (3) 5.6 (4) 5.3 (3)**

Сinorg (%) 1.06 (84) 0.42 (57)* 0.39 (36) 0.37 (41)

SOC (%) 3.75 (24) 4.42 (8)* 4.52 (6) 4.52 (5)

N (%) 0.34 (27) 0.39 (9) 0.37 (5) 0.38 (5)

SOC:N 11.3 (9) 11.5 (6) 12.2 (4) 12.1 (3)

P (mg kg–1) 95 (30) 151 (28)*** 104 (26) 69 (23)**

K (mg kg–1) 218 (27) 183 (24) 235 (12) 163 (23)**

MBC (µg g–1) 708 (53) 833 (23) 916 (34) 560 (26)**

BR (µg C g–1 h–1) 0.39 (55) 0.45 (23) 0.62 (45) 0.42 (40)*

Notes: SOC, soil organic carbon; Cinorg, inorganic carbon; N, total nitro-
gen; P, available phosphorus; K, available potassium; MBC, microbial 
biomass carbon; BR, basal respiration.
Data are mean values with coefficient of variation (%) in parentheses 
(n = 10; *p ≤ 0.05, **0.01, ***0.001 for Welch’s t-test).
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Changes in NDVI values

Regardless of the soil subtypes and applied treatments, 
the NDVI values changed similarly throughout the ob‑
served growing season (Fig. 2). The index was low at the 
beginning and the end of the season, with a peak in the 
middle (0.60–0.87  in June‑July). As expected, using ad‑
ditional ameliorative treatments significantly increased 
crop productivity and consequently NDVI. In the case of 
Haplic CH with wheat, the NDVI means for the growing 
season were 0.49 and 0.58 for the untreated and the mi‑
crobe‑inoculated + irrigated sites, respectively (p < 0.001 
for Welch’s t‑test). For Luvic CH with flax, the means were 
0.48 and 0.52 for the untreated and the microbe‑inoculat‑
ed sites, respectively (p < 0.001 for Welch’s t‑test).

Relationship between NDVI and soil fertility 
indices

Simple linear regression has shown different drivers of 
NDVI variability depending on the soil subtypes and 
the applied treatments (Fig. 3). For the untreated Haplic 

CH, the spatial variability of NDVI averaged over the 
growing season (May‑August) was determined by Cinorg 
content (negative relationship; R2 = 0.47). However, for 
the microbe‑inoculated and irrigated Haplic CH, NDVI 
was positively associated with elevation (R2 = 0.78) 
and negatively associated with MBC (R2 = 0.80). In the 
case of Luvic CH, the mean NDVI variability (June‑
August) at the untreated site was determined by SOC 
and SOC : N values (positive relationships; R2 = 0.66 and 
0.58, respectively). Applying microbial inoculation for 
Luvic CH only increased the dependence of NDVI on 
SOC (R2 = 0.73), as well as other nutrients — N and K 
(positive relationships; R2 = 0.95 and 0.72, respectively). 

Discussion

NDVI-nutrient relationship: different soil 
subtypes and agricultural treatments

This study did not show a general trend between spatial 
changes in NDVI and soil fertility indices for different 
soil subtypes and applied treatments. In particular, SOC 

Fig. 2. Temporal dynamics of monthly average normalized difference vegetation index (NDVI) for wheat at Haplic Chernozem (a) and flax at 
Luvic Chernozem (b) under no-tillage of untreated, microbe-inoculated (Mic) and irrigated (Irr) sites. Line shows the mean with 95 % confidence 
interval (n = 10 and †n = 7).

Fig. 3. Heatmap showing coefficient of determination (R2) of linear regression between normalized difference vegetation index (NDVI) averaged 
over the growing season, elevation (elev) and Chernozem properties (CH; 0–10 cm) under no-tillage of untreated, microbe-inoculated (Mic) and 
irrigated (Irr) sites (*p ≤ 0.05, **0.01, ***0.001; n = 10 and †n = 7).



254 BIOLOGICAL COMMUNICATIONS, vol. 69, issue 4, October–December, 2024 | https://doi.org/10.21638/spbu03.2024.405

content played a more important role in determining 
NDVI variability for Luvic CH than for Haplic CH. This 
can be related to the fact that SOC provides a slow and 
continuous supply of essential nutrients to plants, reduc‑
ing their leaching along both the soil profile and slope 
(Wander, 2004). The latter could be particularly relevant 
for Luvic CH, as evidenced by higher levels of labile P 
and K at the lower site than at the upper site (Table 2). 
Moreover, inoculation with Azospirillum, well‑known as 
a plant growth promoter, only increased the nutrient de‑
pendence of NDVI (Fig. 3). Azospirillum’s ability to bio‑
logically fix N and produce phytohormones can improve 
nutrient use efficiency in crops (Cassan and Diaz‑Zorita, 
2016; Zeffa et al., 2019). 

At the same time, for the slightly alkaline and non‑
irrigated Haplic CH, NDVI was negatively associated 
with Cinorg content, which largely determines the avail‑
ability of some macro‑ and micronutrients to plants 
(such as P, K, Fe and Zn) (Wahba, Labib, and Zaghloul, 
2019). As a result, crops grown on calcareous soils (rich 
in Cinorg) have reduced levels of chlorophyll, endogenous 
growth promoters (auxins, gibberellins and cytokinins) 
and subsequent crop productivity (Shukry, Khattab, and 
EL‑Bassiouny, 2007). However, irrigation can mitigate 
the inhibitory effect of excess Cinorg on plant growth and 
development (Shukry, Khattab, and EL‑Bassiouny, 2007; 
Wahba, Labib, and Zaghloul, 2019) due to its leaching 
from the upper soil horizon (Khokhlova, Arlashina, 
and Kovalevskaya, 1997; de Soto et al., 2017). This ef‑
fect was also consistent with our results: the Cinorg in the 
irrigated Haplic CH was half that of the non‑irrigated 
one (Table 2). Interestingly, there was a strong negative 
relationship between NDVI and MBC in the microbe‑
inoculated and irrigated Haplic CH, which could be ex‑
plained by plant‑microbe competition for the nutrients 
under developing abundant monocrop biomass (Kuzya‑
kov, 2002). In addition, a strong positive relationship 
between NDVI and elevation variability for irrigated 
Haplic CH was found (Fig.  3). A possible explanation 
for the sensitivity of NDVI to topography under irriga‑
tion could be related to the uneven spatial redistribution 
of water across the field, leading to unfavorable excess 
moisture in lower areas. This indicative ability of NDVI 
in assessing irrigation efficiency has been often used to 
develop irrigation management strategies (Hunsaker et 
al., 2007; Poudel, Stephen, and Ahmad, 2021; Yousaf et 
al., 2021).

Prospects of using NDVI as a proxy of 
Chernozem’s fertility

NDVI, along with the soil type and some climatic and 
topographic variables, is one of the most informative 
and widely used predictors in the digital mapping of 
SOC content and stocks (Gopp et al., 2023). Regarding 

the Chernozem zone in Russia, a significant positive re‑
lationship between NDVI and SOC content in the plow 
layers (0–10/0–30 cm layers) was shown for the Novo‑
sibirsk region (R2 = 0.52; Gopp et al., 2017) and for the 
Republic of Bashkortostan (R2 = 0.46; Suleymanov et al., 
2021). However, other studies conducted in the Novo‑
sibirsk region found no such relationship (Gopp et al., 
2019a; 2019b). Similarly ambiguous results have been 
observed in relation to predicting other Chernozems 
fertility indices (e. g., N and P levels) (Gopp et al., 2017; 
Gopp and Savenkov, 2019), which is generally consis‑
tent with our results (Fig.  3). Such differences in the 
predictive ability of NDVI for understanding the spa‑
tial distribution of soil properties can be explained by 
the interaction of different factors: relief characteristics 
and the development of erosion processes (Gopp et al., 
2017; Gopp and Savenkov, 2019), meteorological con‑
ditions in a particular year (Whetton, Zhao, Shaddad, 
and Mouazen, 2017), variability range of soil property 
and individual limiting factors (Verhulst et al., 2009), 
time series of used satellite imagery (Zhang et al., 2019), 
applied agricultural treatments and so on. Identifying 
clear patterns of relationships between remote sensing 
data and soil properties for the Chernozem zone under 
different agro‑ecological conditions requires further in‑
vestigation. Moreover, the collection of additional data 
is necessary for the development of more accurate soil 
modelling and digital mapping, which is particularly re‑
levant for the vast territory of Russia (Suleymanov, Ar‑
rouays, and Savin, 2024).

Conclusion

This study examined the predictive power of NDVI in 
understanding the spatial variability of soil fertility un‑
der no‑tillage with different soil subtypes (Haplic and 
Luvic Chernozems) and treatments (microbial inocula‑
tion, irrigation). In general, SOC was a more important 
factor in NDVI variability for Luvic Chernozem (CH) 
than for Haplic CH, regardless of applied treatments. 
The application of microbial inoculation (Azospirillum 
sp.) in Luvic CH only increased nutrient dependence of 
NDVI, especially for N and K. For Haplic CH, NDVI 
was negatively associated with Cinorg, which was elimi‑
nated by using irrigation. Additionally, irrigation and 
microbial inoculation (Trichoderma, Bacillus, Actinomy-
ces, etc.) in Haplic CH induced the highest NDVI among 
all studied sites, which was negatively correlated with 
MBC due to possible microbial‑plant competition. Thus, 
our results demonstrate the ambiguity of using easily ac‑
cessible NDVI as a proxy for spatial variability in soil 
fertility under no‑tillage with different soils and treat‑
ments. Generally, this index can be a more reliable tool 
for understanding the spatial variability of soil fertility 
in the case of no‑tilled Luvic CH than in the case of Hap‑
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lic CH. At the same time, applied treatments can signifi‑
cantly change the specifics of this relationship, which is 
important to consider in remote sensing of soil fertility.
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