
FULL COMMUNICATIONS

ZOOLOGY

ZO
O

LO
G

Y

Even one tardigrade is enough. Molecular 
methods revealed presence of pantropical 
species Echiniscus lineatus (Heterotardigrada, 
Echiniscidae) in the fauna of Seychelles

Denis Tumanov1,2 and Valeriia Khabibulina1

1Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, 
Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation
2Marine Research Laboratory, Zoological Institute, Russian Academy of Sciences, 
Universitetskaya nab., 1, Saint Petersburg, 199034, Russian Federation

Address correspondence and requests for materials to Denis Tumanov, d.tumanov@spbu.ru

Abstract

A brief report on the tardigrade species Echiniscus lineatus discovered in a moss 
cushion collected in Seychelles is given. The species represents a new pantropi-
cal element in the tardigrade fauna of Seychelles. With this record the number 
of echiniscid tardigrade species in Seychelles has reached five. Morphological 
identification of the species is supported with the analysis of obtained sequenc-
es of nuclear and mitochondrial DNA barcode genes (ITS-1, ITS-2 and COI). Anal-
ysis of the genetic data using the method of TCS haplotype networks revealed 
separated position of the Seychellian population of E. lineatus and supported 
the hypothesis of independent colonisation of Seychelles.
Keywords: distribution, zoogeography, genetic variability, COI, ITS-1, ITS-2, TCS 
haplotype networks, Echiniscidae 

Introduction

Phylum Tardigrada Doyère, 1840 is a group of microscopical metazoans, widely 
distributed in nature. They inhabit marine and freshwater basins as well as terres-
trial environments, which contain (constantly or temporarily) free water (Nelson, 
Bartels, and Guil, 2018). More than 1400 species of tardigrades are described up 
to date (Degma and Guidetti, 2023), but the real taxonomic richness of this group 
is still underestimated, because of the small number of active taxonomists as well 
as methodological difficulties (Guil and Cabrero-Sañudo, 2007; Bartels, Apodaca, 
Mora, and Nelson, 2016).

Tardigrades are well-known for their cryptobiotic abilities, especially for the 
possibility to endure desiccation of the inhabited substrates in anhydrobiotic state. 
This adaptation allowed them to populate habitats that temporarily contains water — 
cushions of moss and lichens, soil, and leaf litter. Most of the tardigrade’s species 
diversity is connected with this kind of habitats (Nelson, Bartels, and Guil, 2018). 

Extreme tolerance of the anhydrobiotic tardigrade stage was considered 
for the long time as the evidence of the high dispersal possibilities of this group 
(McInnes, 1994; Nelson, Bartels, and Guil, 2018). The dominating paradigm of 
pre-molecular period of tardigrade taxonomy was the presence of widely distrib-
uted polymorph species. Introduction of the molecular methods to the systemat-
ics of tardigrades revealed more complex situation. Most of “large” cosmopolitic 
or widely distributed old species were proved to be species complexes consisted 
of numerous local species, sometimes poorly morphologically differentiated (e. g. 
Kaczmarek et al., 2018; Guidetti et al., 2019; Grobys et al., 2020; Stec, Krzywański, 
Arakawa, and Michalczyk, 2020; Stec, 2023). On the other hand, some widely dis-
tributed species with limited morphological and genetic variability were also dis-
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covered (Jørgensen et al., 2013; Kaczmarek et al., 2020). 
Reasons for these differences of the species distribution 
are currently poorly understood.

One of the most intriguing cases of coexistence of 
different biogeographical patterns within a pair of cryp-
tic species is the recently studied Echiniscus lineatus/
Echiniscus virginicus species complex. These species are 
extremely close in morphology, being indistinguishable 
with light microscopy. The only distinctive morphologi-
cal difference between these species (pores vs pseudo-
pores on dorsal cuticular plates) may be detectable with 
SEM only (Gąsiorek et al., 2019). Thus the molecular 
method of species identification (DNA barcoding) is 
the most reliable way for the investigation of the spe-
cies distribution. It was recently shown that E. virginicus 
Riggin, 1962 has limited distribution within temperate 
Nearctic locales, while E. lineatus Pilato, Fontoura, Lisi, 
and Beasley, 2008 is a species with pantropical distribu-
tion (Gąsiorek et al., 2019).

Seychelles is an archipelagic state in the Indian 
Ocean with tropical rain forest climate. Tardigrade fauna 
of Seychelles is relatively well known. The first data on the 
tardigrades of the archipelago were obtained by Biserov 
(Biserov, 1994; Biserov and Gerlach, 1998) and resulted 
in the description of three new species. Later, a series of 
publications of Italian specialists (Binda and Pilato, 1995; 
Pilato, Binda, and Lisi, 2002, 2004, 2006; Pilato and Lisi, 
2009a, 2009b) devoted to the tardigrades of Seychelles was 
published. Current state of knowledge was summarized 
by Pilato with colleagues (Pilato, Lisi, and Binda, 2011). 
By now 34  tardigrade species are known for Seychelles, 
19 of them are endemic. Four other species (Paramacro-
biotus richtersi, Minibiotus intermedius, Diphascon pingue, 
and Milnesium tardigradum) need reinvestigation, using 
methods of molecular taxonomy, because the recent stud-
ies revealed hidden diversity within these morphological 
species (Guidetti et al., 2019; Morek, Surmacz, López-
López, and Michalczyk, 2021; Tumanov, Androsova, 
Avdeeva, and Leontev, 2022).

In winter 2023, a single juvenile specimen of a spe-
cies, belonging to the genus Echiniscus (Heterotardi-
grada, Echiniscidae) was found in a moss sample from 
Seychelles. In order to determine the taxonomical status 
of this species, sequences of three fast-evolving genetic 
markers (mitochondrial  — COI gene and nuclear  — 
ITS-1 and ITS-2) were obtained and compared with the 
available data on the genus Echiniscus.

Materials and methods

Sampling

The moss sample was collected by E. Korf and A. Run-
ov from a tree trunk in Morne Seychelles National 
Park (Mahé island, Seychelles) (approx 4°39' 06.2" S, 

55°26' 42.4" E), on February 11, 2023. Material was 
stored in a plastic container at room temperature. Tar-
digrade specimen was extracted from rehydrated sam-
ples using the standard technique of washing through 
two sieves (first with ≈ 1 mm mesh size and second with 
35 μm mesh size; Tumanov, 2018). The contents of the 
finer sieve were examined under a Leica M205C stereo-
microscope. The found tardigrade specimen was fixed in 
RNAlater® (Qiagen, Hilden, Germany) solution.

Genotyping and gene analisys

DNA was extracted from the single individual animal us-
ing QuickExtract™ DNA Extraction Solution (Lucigen 
Corporation, USA) using the protocol described in Tu-
manov, 2020. The exoskeleton was collected and mounted 
on a microscope slide in Hoyer’s medium and retained as 
the hologenophore (Pleijel et al., 2008). Permanent slide is 
preserved in the tardigrades collection of the Department 
of Invertebrate Zoology, Faculty of Biology, Saint Peters-
burg State University, slide number 332(001). 

Three barcode markers were sequenced: internal 
transcribed spacers (ITS-1 and ITS-2, nuclear), and the 
cytochrome oxidase subunit I gene (COI, mitochondri-
al). PCR reactions included 2 μl template DNA, 1 μl of 
each primer, 0.5 μl dNTP, 5 μl EncycloRed Buffer (5x), 
and 0.5 μl Encyclo Polymerase (Evrogen™) in a final vol-
ume of 25 μl. The primers and PCR programs used are 
provided in Table. The PCR products were visualised in 
1 % agarose gel stained with ethidium bromide. All am-
plicons were sequenced directly using the ABI PRISM 
Big Dye Terminator Cycle Sequencing Kit (Applied Bio-
systems, Foster City, CA, USA) with the help of an ABI 
Prism 310 Genetic Analyzer in the Core Facilities Centre 
“Centre for Molecular and Cell Technologies” of St Pe-
tersburg State University. Sequences were edited and 
assembled using ChromasPro software (Technelysium, 
USA). The COI sequences were translated to amino ac-
ids using the invertebrate mitochondrial code, in order 
to check for the presence of stop codons and therefore of 
pseudogenes.

All available sequences of the same markers for the 
species E. lineatus available in GenBank were used for 
the comparison. Sequences were automatically aligned 
with the MAFFT algorithm (Katoh, Misawa, Kuma, and 
Miyata, 2002) with the software AliView version  1.27 
(Larsson, 2014); the alignments were cropped to a 
length of 572 bp for COI, 625 bp for ITS-1, and 406 bp 
for ITS‑2. Uncorrected pairwise distances were cal-
culated using MEGA11 (Tamura, Stecher, and Kumar, 
2021) with gaps/missing data treatment set to “pairwise 
deletion”. Separate single-gene TCS haplotype networks 
(Clement et al., 2002) were generated in PopART ver.1.7 
(Leigh and Bryant, 2015) for all three markers, using all 
available haplotypes.
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Microscopy and imaging

Permanent slide was examined under a Leica DM2500 
microscope equipped with phase contrast (PhC) and dif-
ferential interference contrast (DIC). Photographs were 
made using a Nikon DS-Fi3 digital camera with NIS-
Elements™ software (Nikon, Japan). Trank appendages 
designations are given according Vicente et al. (2013).

Results 
Molecular data

Sequences of all three barcode markers (COI gene 
(677 bp; GenBank accession number OR271985), ITS‑1 
(681  bp; GenBank accession number OR284830), and 
ITS‑2 (406 bp; GenBank accession number OR345153) 
were obtained.

Homology comparison of the obtained COI se-
quence with the GenBank records (available on July 14, 
2023) using BLASTn algorithm indicated high confor-
mity to the species E. lineatus. Percent identity was 99.48 
to 97.55 % (query coverage was 83 %, E value 0.00). The 
specimen analyzed in our study has unique COI hap-
lotype, which do not match any of 28  mitochondrial 
haplotypes known for E. lineatus. Comparison of the ob-
tained sequence with the full set of COI sequences for 
E. lineatus (obtained from GeneBank) using uncorrect-
ed p-distance value revealed distant position of the Sey-
chellian material from the African haplotypes (Tanzania 
and Madagascar; p-distances 1.59–1.06 %) in relation to 
some Asian haplotypes (Taiwan, Vietnam, Indonesia, 
also Brazil and USA; p-distances 0.88–0.53 % (Supple-
mentary material 1).

TCS haplotype network for the COI gene con-
structed in our study (Fig. 1) conforms to the results ob-
tained by Gąsiorek et al. (2019). Analysis of the relation-
ships of the Seychellian material confirmed the distant 
position from the “African” cluster of haplotypes, which 

includes sequences from Tanzania and Madagascar, as 
well as several sequences from Indonesia. Instead, the 
Seychellian specimen belongs to the haplotype cluster 
that incorporates sequences from Indonesia, Vietnam 
and USA.

Homology comparison of the obtained ITS-1 se-
quence with the GenBank records (available on 14 July 
2023) using BLASTn algorithm indicated high confor-
mity to the species E. lineatus. Percent identity was 99.84 
to 99.52 % (query coverage was 91 %, E‑value  0.00). 
Comparison of the obtained sequence with the full 
set of ITS-1 sequences for E. lineatus (kindly provided 
by Piotr Gąsiorek) using uncorrected p-distance value 
revealed full identity of the Seychellian material to the 
haplotypes from Taiwan, Northern and Central Su-
lawesi (Indonesia) (Supplementary material 1). Identity 
of our material with one of two haplotypes from Bali is 
an artifact associated with the inability of the PopART 
algorithm to take into account presence of indels in the 
compared sequences (haplotype from Bali have a small 
insert two basepairs long). “African” cluster of haplo-
types (Tanzania and Madagascar, as well as several se-
quences from Indonesia) was among the most remote 
(p-distance = 0.48 %). The most remote haplotype came 
from Brazil (p-distance = 0.49 %).

TCS haplotype network for the ITS-1  marker con-
structed in our study (Fig.  2) conforms to the results 
obtained by Gąsiorek et al. (2019). Analysis of the rela-
tionships of the Seychellian material supported its distant 
position from the “African” cluster of haplotypes, and 
similarity to the Asian group of haplotypes. Our analysis 
also revealed some inaccuracies in the interpretation of 
the ITS-1 diversity presented by Gąsiorek et al. (2019). In 
the Figure 1A legend haplotypes from Northern Moluc-
cas, Tidore were shown as belonging to the three groups 
of haplotypes, while in the Supplementary material 2 (Ta-
ble  S2.1) haplotypes from this locality were assigned to 
the groups B and C only. In fact, haplotypes from North-

Table. Primers and PCR programs used for amplification of the gene fragments sequenced in the study

Gene Primer name Primer 
direction Primer sequence (5’–3’) Primer source PCR programme

COI LCO1490-JJ forward CHACWAAYCATAAAGATATYGG Astrin and Stüben, 
2008

Michalczyk, Wełnicz, Frohme, 
and Kaczmarek, 2012HCO2198-JJ reverse AWACTTCVGGRTGVCCAAARAATCA

ITS-1 ITS1_Echi_F forward CCGTCGCTACTACCGATTGG
Gąsiorek et al., 2018

Stec, Morek, Gąsiorek, and 
Michalczyk, 2018

ITS1_Echi_R reverse GTTCAGAAAACCCTGCAATTCACG

ITS-2 ITS2_Eutar_Ff forward CGTAACGTGAATTGCAGGAC Stec, Morek, Gąsiorek, 
and Michalczyk, 2018ITS2_Eutar_Rr reverse TGATATGCTTAAGTTCAGCGG

ITS3 forward GCATCGATGAAGAACGCAGC
Wełnicz et al., 2011

ITS4 reverse TCCTCCGCTTATTGATATGC
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ern Moluccas should be attributed to the two groups — 
group  B (which includes also haplotypes from Central 
Sulawesi, Madagascar and Tanzania), and unnamed sepa-
rate group which includes only single haplotype from 
Northern Moluccas. Also, the Bali haplotype attributed 
by Gąsiorek et al. (2019) to the largest C  group (which 
includes haplotypes from Central and Northern Sulawesi, 

Taiwan, and Seychelles) should be in a separate group be-
cause the presence of the small insert (see above). 

Homology comparison of the obtained ITS-2 se-
quence with the GenBank records (available on July 22, 
2023) using BLASTn algorithm indicated high confor-
mity to the species E. lineatus. Percent identity was 99.74 
to 98.71 % (query coverage was 95 %, E‑value  0.00).  

Fig. 1. TCS haplotype network for Echiniscus lineatus, COI marker (N = 29). Black circles represent putative haplotypes required to join the de-
tected haplotypes. Transverse striae at connecting lines indicate mutations between the haplotypes.
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Fig. 2. TCS haplotype network for Echiniscus lineatus, ITS-1 marker (N = 40). The size of circles is correlated with the number of individuals repre-
senting a single haplotype. Black circles represent putative haplotypes required to join the detected haplotypes. Transverse striae at connecting 
lines indicate mutations between the haplotypes.

Fig. 3. TCS haplotype network for Echiniscus lineatus, ITS-2 marker (N = 42). The size of circles is correlated with the number of individuals repre-
senting a single haplotype. Transverse striae at connecting lines indicate mutations between the haplotypes.
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Fig. 4. Echiniscus lineatus, details of morphology. A — total view (DIC); B — total view (PhC); C — total view of the living specimen (dark field); 
D — cuticular sculpture of the scapular plate (PhC); E — cuticular sculpture of the caudal plate (PhC); F — median plate 2, black arrow indi-
cates spine Cd (DIC); G — posterior margins of the paired segmental plates 2 with spines Dd (PhC). White arrrowheads indicate epicuticular 
elements, black arrowheads indicate pores/pseudopores. Scale bars: A, B — 20 µm, C — 50 µm, D, F, G — 10 µm, E — 5 µm.
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Comparison of the obtained sequence with the full set of 
ITS-2 sequences for E. lineatus (kindly provided by Piotr 
Gąsiorek) using uncorrected p-distance value revealed 
full identity of the Seychellian material to the haplotypes 
from Northern Sulawesi (Indonesia) and the most re-
mote position of the “African” group of haplotypes (Sup-
plementary material 1).

TCS haplotype network for the ITS-2 marker con-
structed in our study (Fig. 3) also supported the results 
of Gąsiorek et al. (2019). Analysis of the relationships 
of the Seychellian material revealed the identity to the 
E. lineatus haplotypes from Kali Terjun, Northern Su-
lawesi and supported its distant position from the “Af-
rican” cluster of haplotypes, and similarity to the Asian 
group of haplotypes (which includes haplotypes from 
Madagascar, Tanzania, and Central Sulawesi).

Morphological data

The obtained specimen was a premature female with 
underdeveloped rosette-like structure and without 
gonopore opening (Fig. 5A). Since no data on the mor-
phology of immature studies of E. lineatus are current-
ly available we provide here a brief description of our 
specimen. 

Living specimen was intensively red with dark-
green gut content (Fig.  4C). Dorsal cuticle with well-
developed cuticular plates of Echiniscus-type, the third 
median plate was indeterminable because of the body 
contraction (Fig.  4A,  B). Dorsal plates sculpture typi-
cal to the E. virginicus species complex (sensu Gasiorek, 
et al., 2019) with developed intracuticular pillars, vis-
ible in PhC as numerous dark dots or polygons all over 
the dorsal surface (Fig. 4D–G). In scapular and caudal 
plates, where the pillars are most developed, they often 
seem to be connected with thin striae being star-like in 
shape (Fig. 4E). The plates’ surface bears three types of 
sculpture: (1) ridge-like elevations on the scapular and 
caudal plates (Fig.  4D); (2)  epicuticular elements vis-

ible in PhC as partially fused dark granules arranged 
in lines along anterior and posterior margins of paired 
segmental plates 1 and 2 (Fig. 4D, G, white arrowheads); 
and (3) pores (or pseudopores, those structures can be 
differentiated with SEM only) developed on all dorsal 
plates (Fig. 4D, E, G, black arrowheads).

Our immature specimen differs from adults (see 
Pilato, et al., 2008) by complete absence of lateral ap-
pendages B (presence or absence of the spine B was 
also mentioned as polymorphous feature by Gąsiorek, 
Vončina, and Michalczyk (2020)). Lateral append-
ages  C,  D,  E have form of thin sharp rigid spines 
(Fig.  4A,  B, 15.01, 19.07, and 16.71  µm length respec-
tively), spines Cd are very small (3.17 µm), poorly dis-
tinguishable (Fig. 4F, black arrow), spines Dd are mas-
sive, dagger-shaped with thinned base and well-visible 
internal structure (Fig. 4G, 17.32 µm). Contrary to the 
original description, two distinct genital plates are pres-
ent on the ventral body surface (Fig. 5A). These struc-
tures were not previously mentioned for E. lineatus, 
but are known for two other species of E. virginicus 
species complex: Echiniscus clevelandi Beasley, 1999 
(Gąsiorek, Vončina, Kristensen, and Michalczyk, 2021) 
and E. masculinus (Gąsiorek, Vončina, and Michal- 
czyk, 2020). 

Legs I–III with clearly delineated separate coxal 
and femoral plates (Fig. 5B, black and white arrowheads 
respectively). Both plates with developed intracuticu-
lar pillars, without epicuticular elements, and with rare 
small pores (or pseudopores) on femoral plates. 

Other morphological details conforms to the origi-
nal description (Pilato, Fontoura, Lisi, and Beasley, 2008). 

Discussion

Our ideas about the pattern of tardigrade species dis-
tribution have undergone significant changes in the last 
decade. For a long time, presence of highly sustainable 
cryptobiotic stage in semiterrestrial tardigrades was 

Fig. 5. Echiniscus lineatus, details of morphology. A — genital plates, black arrowhead indicates underdeveloped genital structures (DIC); B — leg 
plates, black arrowhead indicates coxal plate, white arrowhead indicates femoral plate (PhC). Scale bars: A–B — 10 µm.
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considered as an argument for their easy distribution 
with air currents (Kinchin, 1994; Fontaneto, 2019). This 
hypothesis was a base for the taxonomical concept of 
presence of widely distributed polymorphous tardigrade 
species (Artois et al., 2011). Incorporation of molecu-
lar techniques into taxonomic and zoogeographic in-
vestigations in the last decade leaded to the shift of the 
paradigm. It was shown that most of widely distributed 
species of temperate zones and high latitudes are in fact 
complexes of morphologically similar (sometimes cryp-
tic or semicryptic) species clearly separated genetically 
(e. g. Kaczmarek et al., 2018; Guidetti et al., 2019; Grobys 
et al., 2020; Stec, Krzywański, Arakawa, and Michalczyk, 
2020; Stec, 2023). Only very few semiterrestrial tardi-
grade species have really wide or even cosmopolitic dis-
tribution (Jørgensen et al., 2013; Kaczmarek et al., 2020). 
Such pattern of species distribution questions the signif-
icance of the air flow for the long-range distribution of 
tardigrades.

On the other hand, study of the tropical fauna of 
semiterrestrial tardigrades revealed presence of species 
with pantropical distribution within several phyloge-
netically distant taxa (Gąsiorek et al., 2019; Gąsiorek, 
Vončina, Zając, and Michalczyk, 2021). Presence of such 
species was considered as evidence for the possibility of 
long-distance wind transport of cryptobiotic tardigrades 
by strong constant trade winds. This mode of distribu-
tion was supposed for E. lineatus, the first revealed pan-
tropical tardigrade species (Gąsiorek et al., 2019). Our 
data provides new confirmation for this hypothesis. De-
spite the geographical proximity of Seychelles to Mada-
gascar and Tanzania, the tardigrade specimen investi-
gated by us is more closely related to Asian populations 
than to African ones. This seems to be likely the result 
of independent colonization of Seychelles by E. lineatus 
carried out by wind transfer. 

Our finding adds a new species of the family 
Echiniscidae to the tardigrade fauna of Seychelles. Until 
now only 4 echiniscid species were recorded for the ar-
chipelago: Claxtonia malpighii (Biserov, 1994) (endemic 
species; Biserov, 1994), Kristenseniscus tessellatus (Mur-
ray, 1910) (species recorded from Australia and Bali; 
Murray, 1910; Pilato and Binda, 1990; Pilato, Lisi, and 
Binda, 2011), Echinscus testudo (Doyère, 1840) (widely 
distributed Palaearctic species, records from outside 
Palaearctic are possibly results of the anthropogenic 
introduction; Gąsiorek, Stec, Morek, and Michalczyk, 
2017; Gąsiorek, Vončina, and Michalczyk, 2019), and 
Echinicus tropicalis Binda and Pilato, 1995 (endemic 
species; Pilato, Lisi, and Binda, 2011). Putting aside the 
endemic and possibly introduced species we once again 
observe the proximity of Seychellian tardigrade fauna to 
the fauna of tropical Asian regions. In our opinion it can 
be considered as additional evidence of the trade wind 
transfer hypothesis. 
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