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Abstract 

This paper seeks to shed light on the primary causes of the latitudinal cline in 
species diversity, the asymmetry in species richness between the northern and 
southern hemispheres, and various patterns of species richness along moun-
tain and continental slopes, which are at present of central interest in ecol-
ogy. To that end, we restate, further develop and unify Janzen’s ideas about 
the higher fidelity of tropical organisms to their habitats; the notions of Sand-
ers on temporal and spatial variations of environment and their impact on the 
breadth of species adaptations; the hypothesis of latitude-niche breadth and 
niche overlap; the theories of climatic stability, competitive exclusion and com-
petitive divergence with the incorporation of some elements of the gradient 
model of diversification. We argue that during adaptation to a wide range of 
the same environmental factors in time, the high latitude species also become 
adapted to a wide range of those factors in space. As a result, they form not 
only very wide, but also widely overlapping ecological niches. This eventually 
leads to the competitive extinction of many species and a general impoverish-
ment of biota. In contrast, relatively stable environments allow species to move 
more and more towards specialization with a simultaneous narrowing of their 
ecological niches that in turn leads to a reduction of niche overlap and greater 
species packing in communities. In tropical mountains and on the continental 
slope, where the environment is stable enough, the degree of its differentiation 
depends mainly on the steepness of slope. And since the steepest slopes tend 
to be located at intermediate elevations and intermediate bathyal depths, it is 
there that there are conditions for the highest specialization. These ideas can 
provide a framework for new approaches to biodiversity conservation of differ-
ent regions.
Keywords: competitive divergence, competitive extinction, environmental vari-
ability, niche overlap, specialization, species packing, species richness

Introduction

The overall increase in species richness from high latitude to the equatorial re-
gion, which is more pronounced in the forest communities (Wallace, 1878; 
Dobzhansky, 1950) and shallow coastal and shelf areas (Roy, Jablonski, Valentine, 
and Rosenberg, 1998), is one of the longest standing, most well-known and highly 
general spatial patterns of ecology. This increase, however, is not always mono-
tonic (Roy, Jablonski, Valentine, and Rosenberg, 1998; Crame, 2000) and is often 
seriously disturbed by various factors. On land, among the most important of 
such factors are water deficit and extreme temperatures (O’Brien, 1993; Buckley 
and Jetz, 2007; Smith, de Oca, Reeder, and Wiens, 2007); in oceans―dissolved 
oxygen shortage (Levin, 2003), oceanic currents (Owen, 1981  and references 
therein; Veron, 1995), upwelling processes (Owen, 1981 and references therein; 
Macpherson, 2002) and large river outflow (Veron, 1995; Macpherson, 2002). In 
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addition, the latitudinal change in species diversity may 
be different for different taxa (Macpherson, 2002; Pow-
ney et al., 2010), and some rare taxa. For example, true 
seals (Wilson and Reeder, 2005), penguins (Williams, 
1995), auks (Gaston and Jones, 1998), sandpipers (John-
sgard, 1981; Colwell, 2010), lampropeltinines snakes 
(Pyron and Burbrink, 2009) and freshwater amphipods 
(Väinölä et al., 2008), due to the peculiarities of their 
natural history and biology, show a directly opposite 
tendency. Some groups of marine zooplankton (Boltovs-
koy, Gibbons, Hutchings, and Binet, 1999 and references 
therein; Boltovskoy, D’Hondt, and Prell, 1999), para-
sitic wasps of the family Ichneumonidae (Janzen, 1981), 
burying beetles (Peck and Kaulbars, 1987), eared seals 
(Wilson and Reeder, 2005) and some others reach their 
peak of species diversity in middle latitudes. Neverthe-
less, a latitudinal cline in species richness is detected in 
all main habitats, including freshwaters (France, 1992; 
Pringle, 2000) and the open-ocean pelagic zone (Angel, 
1993; Macpherson, 2002), and is observed both in plants 
and exothermic and endothermic animals (Rosenzweig, 
1995). It has been established even in marine bacterial 
plankton (Fuhrman et al., 2008) and within some wide-
spread families and genera (Slansky, 1972; Scriber, 1973; 
Dodge and Marshall, 1994). Furthermore, in the case of 
birds it has been shown that not only species diversity, 
but also the number of subspecies within species and 
phenotypic differentiation of populations are greater at 
lower latitudes (Martin and Tewksbury, 2008). 

By now, an extensive body of literature has been de-
voted to the study and description of latitudinal species 
diversity patterns, and many competing or complemen-
tary explanatory hypotheses have been proposed (see, 
e.g., Pianka, 1966; MacArthur, 1972; Pielou, 1979; Hus-
ton, 1994; Wright, 2002; Willig, Kaufman, and Stevens, 
2003; Evans et al., 2005; Mittelbach et al., 2007; Bukva-
reva and Aleshchenko, 2013). Gaston (2000) gracefully 
presented more than two dozen hypotheses in one work 
and outlined the questions for the solution of this ques-
tion. Willig, Kaufman, and Stevens (2003)  provided a 
classification of the over 30 hypotheses advanced to ac-
count for the latitudinal gradient: abiotic-biotic, ambi-
ent energy, environmental predictability, seasonality, 
environmental stability, evolutionary rates, extinction 
rate and origination rate, evolutionary speed, geograph-
ic area, geometric constraints, interspecific interaction, 
competition, niche width, population growth rate and 
population size, productivity, Rapoport’s rule, spatial 
heterogeneity, time, etc., and a forward-looking synthe-
sis and list of fertile areas for future research. Lomolimo, 
Riddle, Whittaker, and Brown (2010) identified three 
blocks of hypotheses for the Geography of Diversity: 
ultimate drivers  ― primary abiotic factors, ecological 
feedback (intensifies, obfuscates, or otherwise modifies 
the latitudinal gradient), and null models, and he named 

28 hypotheses. However, the definitive solution to this 
problem remains elusive. Furthermore, at the end of the 
twentieth ― the beginning of the twenty-first century, 
the rather enigmatic problem of hump-shaped patterns 
of species richness along elevation and depth gradients 
has been added to this problem space. Here we seek to 
shed light on the main factors and processes determin-
ing the patterns of species diversity. We follow Willig, 
Kaufman, and Stevens (2003) in discussing the hypoth-
eses most promising for promoting ecological, biogeo-
graphical and evolutionary understanding. We do not 
claim this to be a comprehensive review of all the hy-
potheses of biodiversity formation; rather, we describe 
different hypotheses and the ideas around them in the 
framework of general theory. It seems reliable and con-
vincing and unites the hypotheses associated with the 
processes of adaptation and speciation in space and time.

The range of seasonal climate variability 
and the breadth of species niches

At first glance, an explanation of the latitudinal diversity 
patterns seems rather obvious: on moving from poles 
to equator, the environment become more favorable for 
living things, first of all, in regard to such important cli-
matic factors as solar radiation and temperature. These 
factors, in combination with sufficient water availabil-
ity, could (in the absence of other limitations) lead to 
an increase in primary productivity. More productive 
areas can support a larger number of individuals of both 
plants and animals that depend on plant resources, and 
as a result, more species may be able to maintain viable 
populations. Similar views have a long history. Two cen-
turies ago Alexander von Humboldt (1808) wrote that 
with the increase of invigorating heat from the poles 
toward the equator, organic strength and vitality also 
gradually increase. This explanation, with different ad-
ditions and modifications, has gained wide acceptance 
among ecologists and biogeographers in the last several 
decades (see, e.g., Hutchinson, 1959; Cousins, 1989; 
Wright, Currie, and Maurer, 1993; Rosenzweig, 1995; 
Evans, Warren, and Gaston, 2005). 

In many studies, a significantly positive correla-
tion between solar energy input (estimated directly 
or through various proxies, such as ambient tempera-
ture, annual evapotranspiration, primary productiv-
ity, biomass) and species diversity has indeed been 
found (Turner, Gatehouse, and Corey, 1987; Currie, 
1991; Roy, Jablonski, Valentine, and Rosenberg, 1998; 
Schmit, 2005; Luo et al., 2012). However, when the data 
used were collected from a larger number of case stud-
ies, which represented various climatic zones and eco-
systems of the world as well as various spatial patterns, 
the shape of the relationship between productivity (or 
biomass) and species richness was variable and could be 
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any of the following: linear positive, unimodal, multi-
modal, U-shaped, linear negative, or non-existent (Mit-
telbach et al., 2001; Gillman and Wright, 2006; Pärtel, 
Laanisto, and Zobel, 2007; Adler et al., 2011). So, the 
most productive regions, as, for example, the Pacific 
coast of the southern hemisphere between 10° and 40° 
S (Valdovinos, Navarette, and Marquet, 2003), may have 
rather low species diversity. Angel (1993) has also stated 
that high species richness in the open oceans tends to 
be associated with regions of low productivity. Thus, it 
appears that the ultimate cause of species abundance in 
nature is substantially different from that of species di-
versity. The amount of available energy, water, minerals, 
and the like directly influences the primary productiv-
ity of ecosystems and the total biomass of the organisms 
inhabiting a given area, which changes as a result of a 
change in the number of individuals of existing species 
(Cousins, 1989; Clarke and Gaston, 2006; Rex and Etter, 
2010) rather than as a result of a change in the number of 
species owing to increased diversification rates (Wiens, 
2007), alien introductions, or extinction of some rare 
species (Hutchinson, 1959) and species with higher 
energy demands under conditions of energy limitation 
(Cousins, 1989).

Many researchers (Dobzhansky, 1950; Klopfer, 
1959; Janzen, 1967; Slobodkin and Sanders, 1969; Ma-
cArthur, 1972; Scriber, 1973; Pielou, 1979; Stevens, 1989) 
share the opinion that the major importance is not so 
much environmental favorability as low climate variabil-
ity. Their views are that: the less stable and predictable 
physical environment of high and temperate latitudes 
prevents species from specializing ― i.e., induces selec-
tion for a wider environmental niche breadth; on the 
contrary, the steady, much more predictable, diverse and 
competitive environment of low latitudes favors greater 
specialization and allows species to have narrow niche 
breadth. This statement at one time had a profound im-
pact on researchers, but it needs some elaboration. 

As pointed out by Schmalhausen (1949) and then 
substantiated by MacArthur and Wilson (1967) and Pi-
anka (1970), unpredictable changes in the physical en-
vironment and the catastrophic elimination caused by 
them are responsible mainly for the generation of some 
particular features of r-organisms, such as a high repro-
duction rate, accelerated development, and a short life 
expectancy, but exert only minimal influence on ecolog-
ical niche width. However, organisms generally are able 
to adapt quite easily to predictable (regular) or frequent-
ly repeated (in comparison with the length of their gen-
eration intervals) environmental changes that can cause 
long-term trends in natural selection. Having enough 
time for adaptation, living beings can show a surprising 
ability to gradually improve their conditions of existence 
in such environments, even if the environments become 
more hostile, or seem completely uninhabitable for any 

forms of life (Kolomiytsev and Poddubnaya, 2007), for 
example, in hypersaline lakes, hyperthermal springs, 
and on the coast of Antarctica. Therefore, species’ envi-
ronmental niche breadth is, in the first instance, deter-
mined by periodic environmental fluctuations caused by 
the lunar rotation around the Earth and the Earth rota-
tions around its axis and around the sun. In the hierar-
chy of such oscillations, the seasonal climate variability, 
being the largest-scale periodic phenomenon in nature, 
must play a dominant role. 

In order to survive and reproduce at high latitudes, 
any species must be well enough adapted to all variations 
in the environment that it meets both during the year 
and during its lifetime (Dobzhansky, 1950). But when 
temperate and high latitude species adapt to a wide range 
of temporal variations of environmental factors, they 
also become adapted to a wide variety of environments 
in space (Janzen, 1967; Sanders, 1968; Stevens, 1989; 
Ghalambor et al., 2006) ― i.e., they become more gen-
eralized (Pielou, 1979; Stevens, 1989). In doing so, they 
not only greatly expand their climatic and physiological 
tolerances (Stevens, 1989; Addo-Bediako, Chown, and 
Gaston, 2000), and often geographic ranges, especially 
in the meridional direction (Rapoport, 1982; Stevens, 
1989; Ruggiero, 1994; Floeter and Soares-Gomes, 1999), 
but they also have an opportunity to occupy practically 
the whole set of habitats within their ranges (Sanders, 
1968; Stevens, 1989) and expand their diets (MacArthur, 
1972), biocenotic relationships and range of behavioural 
reactions. Thus, during adaptation to a wide variety of 
environment in time, temperate and high latitude spe-
cies expand their ecological niches as a whole, and ow-
ing to large seasonal variations in environmental pa-
rameters, the niche spaces are used by them quite evenly 
(Fig. 1A). The arctic willow, dwarf birch, larch, willow 
ptarmigan, caribou, wolverine, arctic fox, ermine and 
lemming are examples of such species.

In contrast, a small range of seasonal variations in 
the environment, which can be quite harsh, rather than 
‘biological stress’ (Sanders, 1968, p. 252)  or increased 
availability of favoured resources (Emlin, 1966; Evans, 
Warren, and Gaston, 2005) should open up possibilities 
for species to increase not only their fidelity to their hab-
itats (Janzen, 1967), but also to perfect their adaptations, 
because specialization is assumed to enable species to 
utilize their resources more efficiently (MacArthur, 
1955; Morse, 1971), allowing them to outcompete others 
(Dobzhansky, 1950; MacArthur, 1955; Scriber, 1973). In 
such a situation, natural selection could be expected to 
favor individuals that possess narrower but more perfect 
adaptations to the most common parameters of their en-
vironment. As a result, the species would gain maximum 
advantage over their competitors in the core of their 
ecological requirements, but inevitably would weaken 
their positions on the periphery of their niches. In other 
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words, in areas with low seasonal climate, species use the 
central zones of their ecological niches more intensively 
than the peripheries, that is, their use of niche spaces 
should approximate a normal probability density distri-
bution, but with a narrower, in comparison with polar 
and temperate species, zone of intensive use (Fig. 1B). 
Specialization in such conditions may be enhanced not 
just by species transitioning from utilization of a wide 
array of resources to using only their preferred ones (Ev-
ans, Warren, and Gaston, 2005), but also by deepening 
the species adaptations to any available resources and 
thus transferring them from the category of secondary 
or accidental to the category of favoured. Therefore, with 
decreasing climatic seasonality, the tendency for species 
to narrow their niches and promote their specialization 

is quite predictable (Klopfer, 1959; MacArthur, 1972). 
Indeed, it has been found that tropical species inhabit 
significantly narrower temperature regimes than tem-
perate ones (Kozak and Wiens, 2007; Hua and Wiens, 
2010; Cadena et al., 2011), and allopatric sister species 
in the tropics show greater climatic specialization than 
those in the temperate zone (Scriber, 1973; Dyer et al., 
2007; Kozak and Wiens, 2007, 2010; Fig. 2). However, 
it is necessary to note that the return tendency when, 
for example, plant–pollinator interactions become more 
specialized with the increase of latitude, is also observed 
in studies (Ollerton and Cranmer, 2002; Slove and Janz, 
2010). These facts may be explained by the progressive 
impoverishment of the flora moving north. At the same 
time, generalization of those insect pollinators in rela-

A

B

Fig. 1. The evolutionary results of interspecific competition in depending on the degree of species niche overlap: in the case of a large overlap 
between the niches in the environments with a large range of regular variability in time (A), in the case of a small niche overlap in the relatively 
stable environments (B)
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tion to many other environmental factors must, to all 
appearances, be maintained at high latitudes, as it is im-
portant to their survival. Thus, the relatively stable (non-
seasonal) climate favors segregation and narrowing of 
species’ ecological niches (Fig. 1B), and interspecif﻿﻿﻿﻿ic in-
teractions, especially competition, that always take place 
within the biological communities, may additionally in-
tensify this process by means of ‘divergence of character’ 
(Darwin, 1872), now termed ‘character displacement’ 
(Brown and Wilson, 1956; Hutchinson, 1959). 

The degree of niches overlap and the 
species richness of a region 

Contrary to some authors (e.g., Klopfer and MacArthur, 
1961) who believed that species subjected to a narrow 
range of seasonal climate variability must have more 
niche overlap and ‘less exclusive requirements’, we pro-
pose that reduced niche-breadths and specialization in-
evitably generate reduced niche overlapping (Fig. 1B). 
This is partly supported by the studies of Hua and Wiens 
(2010). Therefore, the statement that in the tropics there 
are extremely keen competition and other biotic inter-
actions among the inhabitants (Dobzhansky, 1950; Wil-
liams, 1964; Sanders, 1968) also seems not indisputable. 

The narrowing of many plant and animal niches 
and the segregation of them―‘species’ fidelity to their 
habitats’ or species’ ‘biotic fidelity’ according to Janzen’s 
(1963) terminology ― would allow a larger number of 
species to coexist in a community (Klopfer, 1959), that 
is, would lead to an increase in species diversity at low 
latitudes. The reality of the above scenario has been 
confirmed by a number of field and theoretical studies 
(Hessler and Sander, 1967; Sanders, 1968; MacArthur, 

1975; Angel, 1993; O’Brien, 1993; Archibald, Bossert, 
Greenwood, and Farell, 2010; Luo et al., 2012). Jungles, 
tropical coral reefs, the great lakes of tropical Africa and 
the deep-sea floor, with their very stable environments, 
are famous for their enormous species diversity. It is in-
teresting to notice that on subtropical mountains, the 
elevational bands with highest seasonality have fewer 
species than areas with less seasonality (Wu et al., 2013).

At low latitudes, the narrowing and segregation of 
ecological niches occurs at the levels of subspecies and 
populations as well. This is indicated by both the re-
duced gene flow between tropical populations and their 
greater isolation by distance (Ogden and Thorpe, 2002; 
Martin and McKay, 2004), as well as the lesser degree 
of geographical overlap between the distributions of 
subspecies of the same species (Rapoport, 1982). This 
sets up conditions favorable for allopatric and parapat-
ric speciation (Cadena et al., 2011), as a result of which 
communities in the tropical belt may become quickly 
saturated with species.

The trend towards decreasing mean geographic 
range size is also manifested at low latitudes (Stevens, 
1989; France, 1992; Letcher and Harvey, 1994; Rug-
giero, 1994). However, a direct relationship between the 
range size of species and their niche breadth may not 
exist (Ricklefs and Latham, 1992; Williams et al., 2006), 
and although a relationship between the sizes of species 
ranges and the species richness of a community has been 
detected, the strength of this correlation is not strong 
(Orme et al., 2006). The latter is perfectly understand-
able: sympatric species may have well-segregated niches 
and occupy different habitats or microhabitats within 
the same area. And since the climate and other envi-
ronmental factors in the tropics are very uniform over 

Fig. 2. Latitudinal gradients in species richness (solid circles) and feeding specialization (open circles) of the 
butterflies of family Papilionidae. The data are pooled by bins of 10°; the value for each latitudinal segment 
is plotted at the middle of that segment. Negative latitudes are in the southern hemisphere. Modified from 
Scriber (1973)
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large areas, many tropical species have rather extensive 
distributions that are of﻿﻿ten not smaller than those of 
high-latitude species (Platnick, 1991; de Oliveira, 1994; 
Gaston and Chown, 1999; Gardner, 2007). It should be 
noted that generalization in the tropics is not as impos-
sible as specialization in the polar areas. In the tropical 
zone, species with broad environmental tolerances often 
coexist with habitat specialists without reducing rich-
ness in jointly occupied habitats (Kolasa, Hewitt, and 
Drake, 1998).

At high latitudes the situation is different. Various 
species living there are forced to adapt to a wide range 
of seasonal variations in the same abiotic and associated 
biotic variables. As a result, they have not only very wide 
(Dobzhansky, 1950; Klopfer, 1959), but also widely over-
lapping ecological niches (Letcher and Harvey, 1994). 
Grinnell and Storer (1924) came to the conclusion that 
if two species of the same ecologic predilections are 
thrown into the same environment, one or the other 
will quickly disappear through the drastic process which 
they have called ‘competitive replacement’. Since in most 
cases the high latitude species are not able to avoid inter-
specific competition or weaken it through competitive 
divergence ― ‘divergent character displacement’ (Brown 
and Wilson, 1956; Grant, 1972) ― because their envi-
ronment lacks the habitats or niches where interspecific 
competition is weak, and into which competing species 
could retreat and become established, the competition 
at high latitudes often results in ‘competitive exclusion’ 
(Gause, 1934)  in the form of competitive extinction 
(Fig. 1A). The high seasonal and inter-annual environ-
mental variability periodically makes interspecific com-
petition especially keen; Darwin (1872, p. 54) consid-
ered it the most effective of all checks. Therefore, only 
a very few, the most robust and adapted species, have 
been able to survive in such harsh ecosystems, and the 
species diversity of this zone has undergone a strong re-
duction (Huston, 1979; Letcher and Harvey, 1994). This 
is the answer to Hutchinson’s (1959, p. 150) question: ‘If 
we can have one or two species of a large family adapted 
to the rigors of Arctic existence, why can we not have 
more?’ 

But because the range of seasonal variations in the 
most important climatic factors (solar radiation, envi-
ronmental temperature) decreases on a gradient from 
the poles to the equator, the species richness of com-
munities increases on a gradient in the same direction. 
The latitudinal species diversity gradient could be even 
steeper, but the decline of species diversity in temperate 
and especially arctic regions is softened by periods of re-
stricted activity by many organisms and the evolution of 
migration strategies in birds, some mammals and a few 
insects (Mani, 1968; Ghalambor et al., 2006; Newton, 
2008; Hoare, 2009; Jonzen, Knudsen, Holt, and Saether, 
2011). 

Due to the high degree of generalization, the high-
latitude species that survive are able to occupy almost 
every available habitat, and as a result tend to have large 
ranges and a considerable number of individuals (Pielou, 
1979). In addition, the rigorous selection caused by both 
harsh abiotic factors and intense biotic interactions could 
lead to an accelerated adaptive evolution of high-latitude 
organisms, and could therefore favor the formation of 
mature equilibrium communities in the polar and mid-
latitude regions at a rate faster than imagined by some 
authors (e.g., Fischer, 1960). Recently, it has been shown 
that the fastest rates of speciation occur in species-poor 
regions outside the tropics, and that high-latitude fish 
lineages form new species at much faster rates than their 
tropical counterparts (Rabosky et al., 2018).

In the upper stratum of the oceans, where seasonal 
variations, though less pronounced, still hold, the species 
diversity shows a clear latitudinal gradient (Roy, Jablon-
ski, Valentine, and Rosenberg, 1998; Woodd-Walker, 
Ward, and Clarke, 2002). Deep-sea environments are 
relatively well insulated from surface seasonal climatic 
changes by a thick water cover; therefore, seasonal varia-
tions there are generally weak (Nybakken and Bertness, 
2004). But such a significant factor as the flux of organic 
material from the photic zone that changes with season-
al fluctuations in the primary productivity of the surface 
water shows a quite distinct latitudinal gradient in the 
amplitude of seasonal variability (Billet, Lampitt, Rice, 
and Mantoura, 1983). This seems enough to form the 
latitudinal gradients in species richness of the deep sea 
that have been detected in some studies (Rex, Stuart, and 
Coyne, 2000).

Since the southern hemisphere has significantly 
more ocean and much less land than the northern hemi-
sphere, its climate is more equable and less seasonal at 
equivalent latitudes, even though it may be humid and 
less warm (Darwin, 1845/2008; Hartmann, 1994; Gas-
ton and Chown, 1999). Accordingly, peaks of species 
richness of some taxa in the southern hemisphere are 
displaced from equatorial ranges to the south, and over-
all species diversity decreases more slowly towards the 
South Pole (Darwin, 1845/2008; Platnick, 1991; Eggle-
ton, 1994; Blackburn and Gaston, 1996). In other words, 
the Earth is ‘pear-shaped’ in biodiversity (Platnick, 
1991).

Factors additionally contributing to 
increase of species diversity in relatively 
stable environments 

According to the ideas that have been developed above, 
the particularly narrow and most segregated niches are 
most likely to be created by species in those areas where 
the environment is most stable, or where relatively small 
amplitude of environmental fluctuations in time is com-
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bined with heterogeneity of physical environment in 
space. In the second case, the discussion should consider 
not only topographical heterogeneity, creating physical 
(Mayr, 1963) or physiological (Janzen, 1967; Fjeldså and 
Rahbek, 2006; Ghalambor et al., 2006; Kozak and Wiens, 
2006) barriers to dispersal of organisms ― which are not 
often insuperable (Chettri, Bhupathy, and Acharya, 2010; 
Fjeldså et al., 2010)  ― but first of all should consider 
spatial heterogeneity of the influence of physiologically 
important factors that in relatively stable environments 
may form an evolutionary trend toward increasing spe-
cialization and differentiation of groups of organisms, 
thereby increasing the opportunities for parapatric and 
allopatric speciation (Cadena et al., 2011), regardless of 
the organism’s ability to overcome certain geographi-
cal or physiological obstacles. These processes are ac-
companied by the narrowing of ecological niches (see 
previous parts). Increased environmental heterogeneity 
allows, furthermore, a greater number of species to find 
the proper conditions for existence (MacArthur and 
MacArthur, 1961). All this may result in greater species 
packing within communities.

The combination of a small amplitude of environ-
mental fluctuations in time and heterogeneity of physical 
environment in space occur, for example, on the slopes of 
tropical mountains where there are elevational gradients 
of such factors as temperature, solar radiation, the par-
tial pressure of oxygen and carbon dioxide; or in tropi-
cal lakes, rivers and shallow ocean waters where there 
are depth gradients of decreasing light, temperature, 
and oxygen concentration; or in the deep sea where the 
gradients of hydrostatic pressure are ubiquitous. Indeed, 
many biodiversity and endemism hotspots in the trop-
ics are found in montane regions (Blackburn and Gas-
ton, 1996; Rahbek and Graves, 2001; de Klerk, Crowe, 
Fjeldså, and Burgess, 2002; Barthlott et al., 2005; Davies 
et al., 2007), and it is such regions that hold the greatest 
number of young sister species (Roy, 1997; Hall, 2005). 
We can expect that the steeper the mountain slope, and 
hence the greater the rate of environmental changes per 
unit of slope length (or horizontal distance), the higher 
the regional species diversity. This is confirmed by field 
observations. So, in tropical and subtropical mountains 
the species richness of different organisms  ― such as 
various plants, insects, freshwater fishes, amphibians, 
reptiles, birds, and mammals ― along the slopes shows, 
with very few notable exceptions (Graham, 1990), the 
characteristic hump-shaped patterns with peaks at 
some intermediate elevations mostly between 500  and 
2000  m above sea level (Heaney, 2001; Goodman and 
Rasolonandrasana, 2001; Nor, 2001; Küper et al., 2004; 
Herzog, Kessler, and Bach, 2005; Oömmen and Shanker, 
2005; Smith, de Oca, Reeder, and Wiens, 2007; Li et al., 
2009; Chettri, Bhupathy, and Acharya, 2010; Acharya, 
Sanders, Vijayan, and Chettri, 2011; Larsen, Escobar, 

and Armbrecht, 2011) ― i.e., exactly where the slope is 
often the steepest and, accordingly, the environmental 
dif﻿﻿ferentiation is the greatest. Other elevational trends in 
species richness, such as a high-elevation plateau, a small 
second hump and so on (Herzog, Kessler, and Bach, 
2005; McCain and Grytnes, 2010), might possibly be 
explained by the specific mountain profiles. Ecological 
characteristics of taxa (Graham, 1990; Nor, 2001; Good-
man and Rasolonandrasana, 2001; Küper et al., 2004; 
Chettri, Bhupathy, and Acharya, 2010) and regional and 
local climatic differences (Rahbek, 1995) may also con-
tribute to the shape of the relationship between species 
richness and altitude. The increase in species richness at 
intermediate elevations of tropical mountains is accom-
panied by an increase in the number of range-restricted 
species (Renjifo et al., 1997; Acharya, Sanders, Vijayan, 
and Chettri, 2011)  and habitat specialists (Acharya, 
Sanders, Vijayan, and Chettri, 2011). 

Upon reaching a certain elevation, the effect of 
environmental heterogeneity in space on species rich-
ness begins to be overlapped by the effect of diurnal en-
vironmental variation that can be similar to the effect 
of annual environmental variability (Sarmiento, 1986; 
Ghalambor et al., 2006). Along with that, organisms have 
to expand their physiological tolerance range (Ghalam-
bor et al., 2006) and, in some instances, elevational 
ranges (McCain, 2009; Chettri, Bhupathy, and Acharya, 
2010) ― that is, to expand their ecological niches. And 
the expansion of ecological niches occupied by species 
and the increase in their overlap should, in turn, lead to 
increased interspecific competition, followed by extinc-
tion of some species and decline of species diversity, as 
takes place at high latitudes (Fig. 1A). A reduction with 
elevation of the fitness of environment for a number of 
taxa (see, e.g., McCain, 2009; Chettri, Bhupathy, and 
Acharya, 2010) appears to further enhance this effect.

Somewhat earlier (Rex, 1973), hump-shaped diver-
sity patterns, similar to elevational ones, were found in 
benthic fauna along the depth gradient in the bathyal 
zone, where the environment is aphotic, there are al-
most no seasonal temperature variations, and hydro-
static pressure dominates in the determination of physi-
ological barriers to the dispersal of organisms, acting 
analogously to temperature in the mountain ranges 
of the terrestrial parts of the world. Later it was found 
that different benthic organisms such as nematodes, 
polychaetes, molluscs, crustaceans, echinoderms and 
fishes show maximum diversity at intermediate depths 
of 500 to 4000 m, generally between 1000 and 3000 m 
(Haedrich, Rowe, and Polloni, 1980; Rex, 1981; Boucher 
and Lambshead, 1995; Olabarria, 2006). Benthic species 
are strictly associated with seabed surface and have an 
environment whose stratification increases directly with 
an increase in the slope of the seabed, and the slopes be-
tween 500 and 4000 m are confined to the area of the con-
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tinental margin between the shelf break and the abyssal 
plain (Menzies, George, and Rowe, 1973) ― that is, to 
the places where the ocean floor has the steepest slopes. 
Therefore, there is a steep pressure gradient that results 
in the maximum vertical stratification of the habitat of 
benthic organisms. Many other environmental factors 
no doubt have a modifying effect on the deep patterns 
of species diversity; ecological features of organisms also 
play important roles in the formation of these patterns. 
For all of these reasons, different taxa in the same space 
(Haedrich, Rowe, and Polloni, 1980; Rex, 1981; Olabar-
ria, 2006) and the same taxa in different regions (Stuart, 
Rex, and Etter, 2003) may reach their peak diversity at 

different depths. Just like at the middle belt of moun-
tains, an increase in species richness at intermediate 
depths is accompanied by an increase in the number of 
endemics and species with narrow and discrete ranges 
(Jones and Sanders, 1972). 

In the relatively stable aquatic environment, peaks 
in species richness may be a result of not only the in-
creased gradient of hydrostatic pressure, but also the 
increased gradients of other factors. So, in light-depen-
dent coral communities, the sharp increase of diversity 
of coral and other sessile organisms from the surface 
to 5 to 10 m (Huston, 1985a) may result from overlap-
ping gradients of wave-disturbance and light availability, 

Fig. 3. The relationship between the species richness of all sessile organisms (solid line with cir-
cles) on the forereef at Discovery Bay, Jamaica, and the steepness of the reef slopes (dashed line 
with triangles). Graphs at the top are for the relatively gentle slope of the eastern side of the 
forereef. Graphs below are for the steeper slope of the western side of the forereef. Modif﻿﻿ied 
from Huston (1985b)
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while the highest levels of their diversity that occur in 
the depth range of 15 to 30 m (Sheppard, 1980; Huston, 
1985b) is largely determined by light availability and the 
reef profile (Fig. 3).

Conclusion 

Thus, both the latitudinal cline in species diversity and 
the asymmetry in species richness between the north-
ern and southern hemispheres, along with various spe-
cies richness patterns along mountain and continental 
slopes, can be quite plausibly explained by dif﻿﻿﻿﻿ferences in 
species’ adaptive strategies and the different outcomes of 
interspecific competition in environments with different 
ranges of regular variability in time and a different degree 
of spatial differentiation. A relatively stable environment 
allows species to move more and more towards special-
ization with a simultaneous narrowing of their ecological 
niches that in turn leads to a reduction of niche overlap 
and greater species packing in communities. Interspecific 
competition and spatial differentiation of an environment 
may additionally intensify these processes. 

In contrast, a wide range of periodic environmental 
changes in time will cause various species to have not 
only very large, but also widely overlapping ecological 
niches. As a result, interspecific competition in such en-
vironments tends to be more intense because the envi-
ronments commonly lack habitats or niches into which 
competing species could retreat and become established. 
The outcome of interspecific competition under such 
conditions inevitably will be competitive extinction 
(Grinnell and Storer, 1924; Gause, 1934) of many species 
and a general impoverishment of biota (Huston, 1979; 
Letcher and Harvey, 1994).

In tropical mountains and on the continental slope, 
where the environment is stable enough in time, the de-
gree of its differentiation depends mainly on the steep-
ness of slope. And since the steepest slopes tend to be 
located at intermediate elevations and intermediate 
bathyal depths, it is there that conditions exist for the 
highest specialization and closest possible packing of 
species. This, in combination with increased opportu-
nities for parapatric and allopatric speciation (Cadena 
et al., 2011), may result in a large amount of coexisting 
species in these areas ― i.e., in the formation of humps 
of species richness. 

These ideas may be referred to as the ‘temporal-spa-
tial adaptation theory’. It will hopefully allow us to ex-
pand our understanding of the main underlying mecha-
nisms responsible for species richness patterns, prompt 
researchers to test an association between the elevational 
and bathymetric diversity patterns and the angle of incli-
nation of the mountain side or the seabed, and provide a 
framework for new approaches to biodiversity conserva-
tion of both different regions and the planet as a whole.
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