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Abstract

The compact myelin sheath functions as an insulator for efficient conduction of 
nerve impulses. The formation of myelin sheaths around the axons of the most 
actively functioning neurons continues not only at the stage of brain develop-
ment, but also in the process of learning and acquiring certain skills. Pathologi-
cal or age-related disruption in myelin results in nerve conduction failure and 
neurodegeneration. Myelin Basic Protein (MBP) is the main constituent of the 
myelin sheath, representing about 30 % of the total myelin proteins in the cen-
tral nervous system. Deletion in the MBP coding gene in mutant mice causes a 
severe neurological phenotype associated with rapid death of newborns. In this 
review, we discuss the current understanding of the role of the MBP protein in 
the formation of compact myelin and in neurodegeneration associated with 
demyelination.
Keywords: myelin, MBP, multiple sclerosis, oligodendrocyte, axon, mammalian 
brain, amyloid

Introduction

Myelin is a specialized sheath that forms around the axons of many actively work-
ing neurons and functions as an insulator in conducting nerve impulses between 
the body of the neuron and its target (Hartline and Colman, 2007). Compact my-
elin sheaths are formed by specialized glial cells — oligodendrocytes in the cen-
tral nervous system (CNS) and Schwann cells in the peripheral nervous system 
(PNS). They are wrapped around the axon in a spiral fashion (Monje, 2018). My-
elin of the central and peripheral nervous systems are functionally and structur-
ally similar. The main difference between them is that in the PNS, one myelinating 
Schwann cell envelops one axon by itself; while in the CNS a single oligodendro-
cyte forms numerous flattened processes that can simultaneously myelinate dif-
ferent axons, while the bodies of the glial cells do not participate in myelination. 
Myelin of nerve fiber is not presented as a continuous sheath along the axon; in 
contrast, it forms separate segments or “internodes”. Each myelinated segment of 
axon is flanked by narrow portions uncovered by myelin, called nodes of Ranvier, 
which are critical to the nerve functioning (Nave and Werner, 2014) (Fig. 1A). 
Myelinated nerve fibers, along with other glial cells and blood vessels, form the 
so-called white matter (WM) of the brain. 

Myelin facilitates the conduction of nerve impulses by serving as an electri-
cal insulator. Unmyelinated fibers have voltage-gated sodium channels along the 
entire length of the membrane, so the action potential travels as local circuits 
of ion current continuously (de Col, Messlinger and Carr, 2008). In contrast, in 
myelinated axons, the axolemma of nodes of Rannier contains a high density of 
Na+-channels against a relatively small number of channels on the membrane 

Citation: Shenfeld, A. and Galkin, A. 
2022. Role of the MBP protein in myelin 
formation and degradation in the brain. 
Bio. Comm. 67(2): 127–138. https://doi.
org/10.21638/spbu03.2022.206

Authors’ information: Aleksandr Shenfeld, 
PhD Student, Research Assistant, orcid.
org/0000-0002-7286-2203; Alexey Galkin, Dr. 
of Sci. in Biology, Professor, orcid.org/0000-
0002-7362-8857

Manuscript Editor: Michael Firsov, 
Sechenov Institute of Evolutionary 
Physiology and Biochemistry, Russian 
Academy of Sciences, Saint Petersburg, 
Russia

Received: November 16, 2021; 

Revised: January 24, 2022; 

Accepted: February 1, 2022.

Copyright: © 2022 Shenfeld and Galkin. 
This is an open-access article distributed 
under the terms of the License Agreement 
with Saint Petersburg State University, 
which permits to the authors unrestricted 
distribution, and self-archiving free of 
charge.

Funding: No funding information provided.

Ethics statement: This paper does not 
contain any studies involving human 
participants or animals performed by any of 
the authors. 

Competing interests: The authors have 
declared that no competing interests exist.

mailto:apgalkin@mail.ru
https://doi.org/10.21638/spbu03.2022.206
https://doi.org/10.21638/spbu03.2022.206


128 BIOLOGICAL  COMMUNICATIONS,  vol. 67,  issue 2,  April–June,  2022 | https://doi.org/10.21638/spbu03.2022.206

of internodes. When the membrane at the node is ex-
cited, the local currents flow further to the axolemma in 
the internodes; here, due to the insulating properties of 
the myelin sheath, the impulse does not attenuate, but 
“jumps” to the membrane at the next node. Thus, high-
resistance sheath contributes to the preservation of the 
action potential in the nerve fiber, and the excess of Na+-
channels in the membrane of Ranvier’s nodes amplifies 
the transmitted signal each time, which leads to an in-
crease in the speed of local circuit spreading (Huxle and 
Stämpfli, 1949). Active excitation of the axonal mem-
brane jumps from one node to the next; this causes a 
fast saltatory propagation of the impulse (from the Latin 
saltare — “to jump”), in contrast to unmyelinated nerve 
fibers, where action potentials are transferred in orders 
of magnitude slower (Ritchie, 1982). 

According to transmission electron microscopy 
(TEM) data, mature myelin contains “compact” and 
“non-compact” areas (Stadelmann, Timmler, Barrantes-

Freer and Simons, 2019). Non-compact myelin is pres-
ent in the form of cytoplasm-filled membrane cavities 
in the outer and inner layers of the myelin sheaths as 
well as in the paranodal loops — specialized structures 
located on lateral margins of the myelin segments (Pe-
ters, 1960). These compartments perform a signaling 
and trophic function, supplying energy substrates from 
the myelin sheath to the axon, including lactate and py-
ruvate (Fünfschilling et al., 2012). Compact myelin is 
characterized by a unique molecular composition pro-
viding its insulating properties. The dry mass of myelin 
contains a high proportion of lipid (70–85 %), whereas 
the protein content is very low — 15–30 %, of which my-
elin basic protein (MBP) is one of the two most abun-
dant proteins (Norton and Cammer, 1984). In the CNS, 
MBP constitute about 30  % of total myelin protein by 
weight, while in the PNS its quantity is minimal, and its 
deficiency is compensated for by adhesive PNS-speci-
fic P0 protein (Martini et al., 1995). MBP is an essential 

Fig. 1. (A) The diagram showing compact myelin structure formed by the oligodendrocyte processes (blue) that are wrapped around the axon 
(purple). (B) Compact myelin is represented by a series of alternating major dense (MDL) and intraperiod (IPL) lines. (C) Proposed model of 
MBP binding to lipid bilayers within myelin composition. A cross section of a flattened process of an oligodendrocyte in the area of compact 
myelin formation is shown. The N and C-terminal sequences of MBP (red) bind to lipids (blue) of the opposite process membranes of the oli-
godendrocyte. (D) Amyloid model of MBP protein folding within myelin sheath. According to this model MBP molecules not only bind opposite 
membranes, but also form amyloid fibrils inside the process of the oligodendrocyte.
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structural component of mature compact myelin, since 
disruptions in its production cause severe demyelination 
of the CNS. For instance, a mouse shiverer mutation, 
which results from a large deletion in the MBP gene, im-
pairs the structural integrity of the myelin sheath and 
causes the classic symptoms of demyelination, accompa-
nied by whole body tremors, seizures, progressive atax-
ia, hindlimb paresis and early death (Bourre et al., 1980; 
Jacque, Delassalle, Raoul and Baumann, 1983; Fitzner et 
al., 2006). Similar myelin deficits also result from a rat 
Long Evans shaker (les) mutation upon the insertion of 
a 5.7 kb endogenous retrotransposon in the non-coding 
region (intron 3) of the MBP gene, which alters the nor-
mal splicing dynamics of MBP mRNA and decreases its 
expression level (O’Connor et al., 1999).

In TEM, a compact myelin sheath is visualized as 
a series of alternating dark and pale lines, separated by 
unstained lipid-rich layers (Fig. 1B) (Stoeckenius, 1959; 
Peters, 1960). A pale line, or intraperiod, corresponds to 
closely apposing extracellular surfaces of the oligoden-
drocyte plasma membrane. The dark, or major dense 
line (MDL) represents the inner protein-rich layer be-
tween the cytoplasmic sides of oligodendroglia mem-
branes. MBP is located between cytoplasmic membrane 
faces in MDL, stabilizing the multilayer myelin structure 
through its anchoring to opposite membrane sides with 
N- and C- termini (Fig. 1C) (Harauz and Libich, 2009). 
MBP is assumed to be retained within this layer by elec-
trostatic forces with membrane lipids. This molecule is 
characterized by a high positive net charge caused by its 
large number of charged residues throughout the pro-
tein’s sequence, mostly arginine and lysine (Boggs et al., 
2004). Its high overall positive charge and low hydro-
phobicity, which maximize intramolecular electrostatic 
repulsion, causes an internal conformational disorder of 
protein in solution, which allows it to interact with the 
negatively charged phospholipid-rich cytoplasmic sur-
face of myelin membranes (Raasakka et al., 2017). Thus, 
the adhesive role of MBP is supposed to be fundamental 
in myelin assembly.

Heterogeneity of MBP isoforms

Human MBP protein is produced by the Golli-MBP 
gene complex, which localizes on Chromosome 18q 
(de Ferra et al., 1985), consists of 11 exons and has two 
transcription initiation sites (Campagnoni et al., 1993). 
This gene produces two subfamilies of proteins  — the 
“classical” myelin-specific MBP isoforms which are 
present in myelinating oligodendrocytes in the CNS and 
Schwann cells in PNS; and “Golli” MBP variants (the 
“Golli” prefix is an abbreviation for gene expressed in 
the oligodendrocyte lineage) that are found, besides the 
neuroglia, in the immune tissues (Campagnoni et al., 
1993; Fritz and Kalvakolanu, 1995). Golli-MBP protein 

molecules (33–35 kDa), unlike classical MBP isoforms, 
include a 130-amino acid golli domain that is encoded 
by I-III exons, whose mRNAs are transcribed from 
upstream promoter (Feng et al., 2000). These isoforms 
are not normal components of the myelin sheath since 
they are mainly localized in the nuclei and cell bodies of 
oligodendrocyte precursors cells (OPC). Mainly the ex-
pression of Golli-MBP isoforms is detected during em-
bryogenesis and followed by the expression of the classic 
MBP. The exact function of the Golli isoforms is not fully 
understood. However, several studies have shown that 
Golli-MBP mediates the entry of Ca2+ ions into oligo-
dendrocytes through voltage-dependent ion channels 
in a depolarized state, and it is also involved in the dif-
ferentiation and migration of OPC during myelination  
(Jacobs et al., 2005). The nuclear localization of Golli-MBP  
is explained by its binding to transcription factors (Fer-
nandes et al., 2004); however, its role in the regulation of 
gene expression is still controversial.

Classical MBP protein is represented by six ma-
jor isoforms in mice and four in humans (Harauz and 
Boggs, 2013). These proteins are derived from alterna-
tive splicing of a single MBP mRNA, consisting of seven 
downstream exons of the Golli gene complex. The pro-
duction level of various MBP isoforms is determined 
by the developmental stage of oligodendrocytes, for 
instance, isoforms encoded by mRNA with exon-II, 
which correspond to 17.22, 20.2, and 21.5 kDa in mice, 
are produced in the onset of myelin formation (Smith 
et al., 2013). The exon-II negative MBP variants (14 and 
18.5 kDa in mice), in contrast, present later in develop-
ment (Pedraza, Fidler, Staugaitis, and Colman, 1997). 
Also, exon-II containing MBP isoforms are not involved 
in the compact myelin formation. At the same time,  
other exon-II negative variants of MBP (14 and 18.5 kDa 
in mice) are present in myelin sheath composition (Al-
linquant, Staugaitis, D’Urso and Colman, 1991). Prob-
ably this heterogeneity of MBP isoforms is necessary for 
developmental regulation of myelinogenesis. 

Among other things, the diversity of MBP post-
translational modifications is another determining fac-
tor of its heterogeneity, the role of which is unknown 
or poorly understood (Kim et al., 2003). Some protein 
post-translational modifications are reversible while 
others are not. To date, it is well known that MBP in vivo 
undergoes five forms of post-translational modification: 
acetylation, methylation, phosphorylation, citrullina-
tion and deamidation (Boggs, 2006). Modification of 
the MBP protein contributes to the formation of “charge 
isomers”, which always give many bands on electropho-
resis. Normally, human MBP 18.5-kDa occurs as a series 
of C1–C8 isomers in order of decreasing total positive 
charge (Zand et al., 1998). The C2 isomer corresponds to 
deamidated MBP (Kim et al., 2003), while C3–C6 can be 
modified by combinations of deamidation, phosphory-
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lation, and citrullination (deimination); the last two 
types of modification are expected to have particular 
functional significance (Boggs, 2006). Covalent attach-
ment of phosphate groups to serine and threonine resi-
dues of MBP occurs in response to various extracellular 
signals, with the greatest changes observed in mature 
myelin (Zand et al., 1998). Phosphorylation of MBP in 
the myelin sheath changes in response to neural action 
potential, and in oligodendrocyte culture in response to 
extracellular ligands and depolarization (Murray and 
Steck, 1984; Boggs, 2006). It is assumed that phosphory-
lation of MBP isoforms containing the sequence encod-
ed by exon-II can inhibit their transport into the nucleus  
(Pedraza et al., 1997). Reducing the cationic charge of 
MBP by phosphorylation influences protein conforma-
tions as well as protein — lipid and protein — protein 
interactions. Phosphorylated MBP has a decreased abil-
ity to assemble actin in vitro (Boggs et al., 2006), but 
an enhanced ability to polymerize and bundle tubu-
lin (Harauz and Libich, 2009). It is believed that MBP 
phosphorylation is not a spontaneous process, since 
the degree of protein modification changes during the 
development of the organism, ageing and pathological 
processes. For instance, the level of MBP phosphoryla-
tion in the brain of patients with multiple sclerosis (MS) 
is significantly reduced (Kim et al., 2003).

Removal of arginyl residues by peptidylarginine 
deiminase (PAD) leads to the formation of citrulline — 
an important irreversible modification of MBP (Kim et 
al., 2003). In the C8 isoform, at least 6 of the 19 Arg resi-
dues are citrullinated, which reduces the positive charge 
of the protein from +19 to +13 — this, in turn, leads to 
disruption of protein folding, weakening of the contact 
of MBP molecules with phospholipids, and degradation 
by proteases such as cathepsin-D (Vassall et al., 2016). 
The proportion of MBP protein presented in a citrulli-
nated isoform is significantly higher in children than in 
adults. These data give reasons to believe that they play 
a regulatory role in the formation of the myelin sheath 
rather than in its functioning. For example, a healthy 
brain normally contains 20 % of citrullinated forms of 
MBP, while an increase of their quantity can serve as a 
marker of the development of multiple sclerosis (Boggs, 
2006). In addition, MBP has recently been identified as 
a target for citrullination in the brains of prion-infected 
patients with Creutzfeldt-Jakob disease and patients 
with Alzheimer’s disease (Ishigami et al., 2005; Jang et 
al., 2010).

Although post-translational modifications of MBP 
are distributed along the entire length of the protein se-
quence, their highest frequency is limited to regions that 
are presumably disordered. Post-translational modi-
fication hotspots are mostly represented in the N- and 
C-terminal regions of MBP, which correspond to exons 
I and V–VII, respectively (Harauz and Libich, 2009). 

These modifications, especially phosphorylation and 
citrullination, contribute to a decrease in the total pro-
tein charge. The stability of the multilayer proteolipid 
myelin sheath is determined by the initial electrostatic 
interactions of MBP with membrane lipids (Raasakka 
et al., 2017; Vassall, Bamm and Harauz, 2015). In this 
regard, it can be assumed that due to a decrease in the 
forces of intramolecular electrostatic repulsion medi-
ated by modification, the protein undergoes conforma-
tional changes, which can affect its ability to bind to the 
membrane, and these changes, in turn, affect both the 
formation of myelin and its stabilization. For instance, in 
the MS brain, deiminated as well as methylated variants 
of MBP are often found (Kim et al., 2003). For this rea-
son, some researchers classify demyelination as a “post-
translational disease”.

Role of MBP in myelination dynamics 
throughout life

White matter generation begins in late embryonic and 
the first six postnatal weeks in rodents. Myelin-forming 
oligodendrocytes arise from multipotent NG2-progeni-
tor cells, also called oligodendrocyte precursor cells 
(OPCs), which persist throughout life within the adult 
brain parenchyma and make up around 5 % of the glial 
cell population (Dawson, Levine, and Reynolds, 2000; 
Levine, Reynolds, and Fawcett, 2001). Since myelin acts 
as an insulator for the transmission of action potential 
along the axon, an active process of myelination occurs 
in the early postembryonic stages of development dur-
ing active cognitive processes; this is necessary for ac-
celerating information transfer in neural circuits and 
sustaining axons’ activity (Hasegawa et al., 1992). My-
elin sheaths are formed only around the axons of actively 
functioning neurons, thus in adult cortex, areas remain 
with unmyelinated or partially myelinated axons. The 
learning process of a child and an adult, associated with 
the activation of certain neurons, is accompanied by de 
novo myelination. (Monje, 2018; Williamson and Lyons, 
2018). For instance, human studies provide compelling 
evidence of a link between adaptive myelination and 
motor learning, like juggling (Scholz, Klein, Behrens 
and Johansen-Berg, 2009) or piano practicing (Steele 
et al., 2013). Elevated motor circuit activity entails not 
only generation of new oligodendrocytes (McKenzie et 
al., 2014) but also increased expression of MBP in white 
matter areas underlying the motor cortex (Sampaio-
Baptista et al., 2013). MBP production is proposed to 
modulate WM plasticity in response to learning-induced 
neuronal activity by regulating the myelin sheath thick-
ness (Martini and Schachner, 1997). It is worth noting 
that activity-regulated myelination is not restricted to 
the motor system, and also includes non-motor learn-
ing, as it was revealed in the studies of effects of adult 
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secondary language learning (Schlegel, Rudelson and 
Tse, 2012). Thus, de novo myelination is supposed to be 
an important form of the neuron circuits plasticity. 

Myelination, as a developmentally regulated pro-
cess, in general requires coordinated expression of many 
genes, including MBP. As mentioned above, MBP is an 
upstream product of the Golli-MBP gene complex, ex-
pression of which is differently regulated both during 
development and within specific tissues (Campagnoni et 
al., 1993). Golli-MBP mRNAs are prenatally expressed 
in oligodendrocytes (Campagnoni et al., 1993)  as well 
as some neuronal populations (Landry et al., 1996, 
Pribyl et al., 1996). Also, its messenger transcript vari-
ants were found in the human fetal spinal cord, thymus, 
and spleen (Pribyl et al., 1993). For this reason, the func-
tion of Golli-MBP isoforms extends beyond the regula-
tion of myelin formation and includes oligodendrocyte 
proliferation and migration (Jacobs et al., 2005; Paez et 
al., 2011). Due to this functional ambiguity and spatial 
distribution in early-developmental stages, Golli-MBP 
has been called a “molecular link” between the nervous 
and immune system (Pribyl et al.,1993). Expression of 
the classic MBP isoforms, in contrast, dominates in lat-
er stages of CNS development. In the human prenatal 
brain development, there were two distinguished peri-
ods of MBP expression: one in onset and the other dur-
ing myelination (Zecević, Andjelković, Matthieu and 
Tosić, 1998). In the mouse brain the peak accumulation 
of mRNAs encoding MBP occurred in the third post-
natal week, thereafter its level declined to a much lower 
steady state (Zeller et al., 1984). Notably, in the mouse 
CNS a positive correlation was observed between the 
MBP production level and CNS myelin sheath thickness, 
which emphasizes MBP as an essential limiting factor in 
myelination (Shine et al., 1992). However, the ratios of 
MBP isoforms vary during development too. The level 
of expression of exon-II positive MBP messenger RNAs, 
coding 21.5 and 17 kDa polypeptides, dominates at ear-
ly postnatal ages, while exon-II negative isoforms, i.e., 
18.5 and 14 kDa, are present in the more mature brain 
(Carson, Nielson and Barbarese et al., 1983). Since exon-
II containing MBP molecules are not an integral part of 
compact myelin, it is believed that these isoforms may 
play a regulatory role in the process of oligodendro-
cyte proliferation via a mechanism that relies on their 
dynamic nuclear import and export (Pedraza, Fidler, 
Staugaitis and Colman, 1997). Moreover, these mRNAs 
serve as precursors in biogenesis of myelin-forming 
exon-II negative MBP isoforms, which are obtained via 
splicing out exon-II of the primary transcript (Campa-
gnoni et al., 1993). Among other things, an increase of 
exon-II containing MBP transcripts coincides with the 
earliest histological signs of remyelination  — the pro-
cess of myelin sheath recovery of previously demyelin-
ated nerve fibers. A 13-fold higher level of expression 

of exon-II containing MBP transcripts was noted at the 
beginning of remyelination relative to control white 
matter mRNAs level. In the later stages of myelin recov-
ery these molecules were replaced by exon-II negative 
spliced variants (Campagnoni et al., 1993). Thus, the 
dynamics of the expression of different forms of MBP 
during remyelination coincide with myelination at the 
early stages of CNS development. Nevertheless, despite 
an abundance of MBP isoforms produced through de-
velopment, it is supposed that the shortest 14 kDa MBP 
variant might be sufficient for normal development and 
functioning of myelin. Studies on homozygous shiverer 
(shi/shi) mice have shown that transgenic production of 
the small 14  kDa MBP isoform partly recovered indi-
viduals from the shiverer phenotype with elimination of 
tremor and increased lifespan (Kimura et al., 1989). 

The content of myelin across the lifespan is not con-
stant. In the human brain, total white matter volume 
reaches its peak by the age of 30 and then declines with 
ageing (Miller et al., 2012), correlating with cognitive im-
pairment that mostly affects working executive memory 
and the slowing of processing speed (Peters, 2002). Under 
the microscope, age-related degenerative abnormalities in 
myelin sheaths are revealed as myelin balloons (Feldman 
and Peters, 1998) and splits of the lamellae at the major 
dense line (Peters, 2002). Reasons for this are not clear, 
however, this could be a consequence of a complex of 
factors, such as reduced OPC differentiation (Sim, Zhao, 
Penderis and Franklin, 2002), differential vulnerability of 
oligodendrocytes to accumulation of DNA damage and 
oxidative stress (Tse and Herrup, 2017), altered lipid me-
tabolism (Lefèvre-Arbogast et al., 2021), and decreased 
nutrient and energy availability for myelinating cells 
(Sams, 2021). In addition, senescence-dependent abnor-
malities in myelin are often caused by a decrease in the 
expression level of various genes, including MBP, which 
serves as a robust indicator of brain age. Studies on the 
human visual cortex of healthy people have shown that 
classic MBP isoforms gradually increase up to 42  years 
and then decline during ageing, while Golli-MBP protein 
production, in contrast, increases (Siu, Balsor, Jones and 
Murphy, 2015). Significant age-related reduction in MBP 
levels was revealed in specific layers of the hippocampus 
(Ahn et al., 2017) — the part of the limbic system critical 
for learning and memory. In addition, overall age-related 
decline of MBP was identified in the corpus callosum and 
in the dorsal column of the spinal cord in aged rats (Xie, 
Zhang, Fu and Chen, 2013). Taking into consideration 
the importance of MBP in sustaining myelin, this age-
related protein downregulation obstructs further myelin 
formation de novo and myelin remodeling, which leads to 
reduction in the conduction velocity of nerve fibers and 
diminution in neural connectivity. 

It is important to note that myelin breakdown 
through ageing is associated with astrocytes and mi-
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croglia activation, which are involved, among other 
things, in the degradation of myelin components (Xie, 
Zhang, Fu and Chen, 2013). The inclusions of MBP 
and proteolipid protein (PLP) were identified within 
microglial cells of ageing wild-type mice (i. e., up to 
24 months old). Also, western blot analysis of purified 
microglia from 12-month-old mice revealed sarcosyl-
insoluble high molecular weight aggregates of MBP  
(Safaiyan et al., 2016; Thériault and Rivest, 2016). Based 
on these results, it was assumed that microglia partici-
pate in myelin debris uptake that accumulates in the 
ageing brain. Lysosomal degradation plays a special 
role within this, because in studies on RAB7 knockout 
mice with impaired lysosomal activity, MBP-rich puncta 
in microglia appeared earlier than in wild-type ageing 
mice (i. e., at 9 months old rather than 18 months old). 
A significant accumulation of MBP aggregates in ageing 
microglia indicates impaired clearance capacity. It is still 
not completely known whether this is a consequence of 
the senescence of microglia itself or if the accumulation 
of MBP aggregates is caused by the overloading of mye-
lin debris in the cellular environment, which normal 
cells cannot cope with utilizing. In some ways this im-
paired microglial degradative capacity is reminiscent of 
aberrant accumulation of amyloid proteins in microglial 
cells during amyloid-induced neurodegenerative disor-
ders, such as Alzheimer’s (Paresce, Chung and Maxfield, 
1997) or Huntington diseases (Franklin, Clarke and  
Patani, 2021), which can be explained by the high stabi-
lity and resistance of amyloid fibrils to enzymatic pro-
teolysis (Kushnirov, Dergalev and Alexandrov, 2020; 
Schönfelder et al., 2021). 

Models of MBP folding within compact 
myelin

There are various data and ideas about how exactly 
MBP connects the opposite membranes of myelin and 
contributes to its compaction. Difficulties in the study 
of these issues are primarily related to the fact that the 
formation of compact myelin occurs only in vivo, when 
the processes of oligodendrocytes are wrapped around 
axons. All attempts to obtain three-dimensional crystals 
of 18.5 kDa MBP suitable for X-ray diffractometry have 
failed, because after removal from tissues, the native 
form of the protein adopts a random coil conformation 
and persists as a population of structurally non-identical 
molecules (Sedzik and Kirschner, 1992). Spectroscopic 
studies showed that MBP in aqueous solution has a 
disordered conformation while its secondary structure 
changes in the presence of lipids or detergents: SDS (so-
dium dodecyl sulfate) or DPC (dodecylphosphocho-
line) (Polverini et al., 1999). In vitro studies show that 
different MBP isoforms can interact with a variety of 
proteins, including cytoskeletal proteins (Bamm et al., 

2011; Boggs et al., 2014). At the same time, analysis of 
the structure of myelin membranes shows that MBP dis-
places other proteins in the major dense line (Zuchero 
et al., 2015). The mRNA of membrane-associated MBP 
isoforms is trafficked to the oligodendrocyte processes 
plasmalemma, where it is translated and quickly con-
nects to the inner membrane sheets (Bakhti, Aggarwal 
and Simons, 2014; Seiberlich et al., 2015).

The interaction of MBP with the membrane is main-
ly based on electrostatic forces between the positively 
charged amino acid residues of MBP and the negatively 
charged head groups of the inner leaflet lipids, phospha-
tidylserine and phosphatidylinositol 4,5-bisphosphate 
(Riccio et al., 2000; Nawaz et al., 2009). By binding to 
the cytosolic membrane surfaces, opposite charges are 
neutralized, allowing other forces such as hydrogen 
bonding and hydrophobic factors to be unmasked. 
Membrane binding switches the properties of MBP, 
thereby promoting self-interaction into a tightly packed 
protein phase that forms the major dense line and binds 
the cytoplasmic surfaces of the bilayers tightly together 
(Kattnig et al, 2012; Muruganandam et al., 2013). Such a 
phase transition from a soluble to a polymerized pool of 
molecules is frequently observed for many structurally 
disordered proteins, in particular those engaged in RNA 
binding (Calabretta and Richard, 2015). 

An important biochemical feature of the compact 
myelin composition is a low ratio (0.25) of proteins to 
lipids, in comparison with the plasma membranes of 
other cells (ratios ranging from 1.0 to 4.0) (Agarwal et 
al., 2011). Moreover, studies on the oligodendrocyte 
cell culture of mutant shiverer mice have shown that 
the amount of protein in the underdeveloped myelin 
sheets is significantly higher than in the mature myelin 
of wild-type individuals (Aggarwal et al., 2011). It is be-
lieved that an MBP-formed molecular sieve serves as a 
diffusion barrier for most cytosolic proteins, including 
2’3’-cyclic nucleotide 3’-phosphodiesterase (CNPase) 
and myelin-associated glycoprotein (MAG) (Aggarwal 
et al., 2011), and other cellular compartments, to gene-
rate oligodendrocyte flat processes. For efficient myelin 
compaction, it is reasonable to coat the entire cytosolic 
surface of the oligodendrocyte membrane with MBP 
molecules, which requires accurate regulation of tar-
geted delivery of large amounts of protein. The mem-
brane-associated translation of the MBP protein in the 
processes of oligodendrocytes promotes its rapid adhe-
sion to the membrane and conformational stabilization, 
which is accompanied by flattening of the processes 
(Simons and Nave, 2016). The MBP assembling within 
sheaths during myelination, in turn, leads to the disas-
sembly of the actin cytoskeleton (Zuchero et al., 2015). 
The binding of MBP molecules to membrane phospho-
lipids causes the competitive displacement of gelzolin 
and cofilin factors, which, being in the cytoplasm after 
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dissociation with the membrane, triggers depolymer-
ization of the actin cytoskeleton (Zuchero et al., 2015). 
These intracellular molecular rearrangements ultimately 
lead to the formation of lipid-saturated isolating myelin 
sheets containing mainly extracellular PLP and intracel-
lular MBP proteins (Aggarwal et al., 2013).

Transmission electron microscopy studies of MBP/
C1 particles adhering to the lipid monolayer combined 
with three-dimensional reconstruction showed that 
MBP particles form subtle variations of the basic “C” 
shape with a diameter of approximately 11 nm in a low 
salt buffer which mimics the physiological conditions 
(Beniac et al., 1997). The authors also proposed a model 
of the molecule topology, which is consistent with ear-
lier three-dimensional models, according to which the 
MBP comprised five β-sheets in antiparallel configura-
tion and a large proportion of irregular coil (Ridsdale 
et al., 1997). Later, spectroscopic studies, including 
multidimensional NMR spectroscopy, of both the full-
length 18.5 kDa MBP and their peptides revealed three 
segments with a strong propensity to form α-helices 
within a phospholipid environment. Note that all of 
these models describing the putative structure of MBP 
are based on the study of the structure of a protein not 
bound to the membrane. According to in vitro studies 
based on membrane mimetic model systems, including 
MD simulations, it has been suggested that the MBP is 
packed into the major dense line of myelin in a hairpin 
conformation where different α-helical segments inter-
act simultaneously with apposing membrane leaflets 
(Harauz and Libich, 2009). However, this model does 
not provide a clear mechanism or dynamics of the global 
protein folding in myelin itself. 

According to another model, the binding of MBP 
to opposite membrane surfaces induces its phase transi-
tion into amyloid conformation (Fig. 1D) (Aggarwal et 
al., 2013). The authors demonstrated that myelin bun-
dles colocalize with amyloid-specific dye Thioflavin S 
in the brain of wild-type mice, whereas MBP-deficient 
shiverer mice with underdeveloped myelin bundles were 
not stained with Thioflavin S. Note that Thioflavin stain-
ing is not rigorous and sufficient evidence of the amy-
loid structure of the protein. Also, the authors of this 
work demonstrated that 14  kDa MBP variant and its 
two short fragments form fibrils in vitro. Despite TEM-
visible fibrillar morphology, the presence of a cross-beta 
structure, which is a distinctive fundamental feature of 
amyloid folding, has not been studied. The authors sug-
gested that the attachment of MBP to the membrane 
promotes it to disorder-to-order transition due to the 
neutralization of the positive charge in MBP, which in-
duces its self-assembly by loss of electrostatic repulsion. 
This may contribute to the formation of amyloid mesh-
work, in other words a “molecular sieve”, the generation 
of which causes extrusion of cytoplasm excess, the con-

vergence of leaflets together, and formation of the major 
dense line as a result. Earlier it was shown that hexahis-
tidine tagged 18.5 kDa MBP forms “tubular” structures 
on binary monolayers containing nickel-chelating lipids 
(Ishiyama et al., 2001). However, the amyloid nature of 
these structures has not been tested either. The hypoth-
esis postulating the formation of MBP amyloid fibrils 
looks attractive. The presence of an amyloid network 
within the flattened processes of oligodendrocytes can 
promote reliable isolation of axons and rapid transmis-
sion of nerve impulses. A number of studies convinc-
ingly show that proteins can function in the brain in an 
amyloid form and perform vital functions (Maji et al., 
2009; Sopova et al., 2019; Galkin and Sysoev, 2021). 

Role of MBP in pathological demyelination

The diseases characterized by damage of myelinated 
covers of nerve fibers in the human CNS are usually 
grouped into a family of so-called demyelinating dis-
eases. These pathologies can be caused by different fac-
tors including inflammatory processes, viral infection, 
acquired metabolic derangements, ischaemic damage, 
etc. (Love, 2006). Among demyelinating diseases, the 
most common is multiple sclerosis (MS)  — the auto-
immune pathology that commonly affects young and 
middle-aged adults. MS-mediated myelin degrada-
tion leads to disruption of neuron circuits, resulting in 
a range of neurological and psychiatric symptoms, in-
cluding cognitive and motor impairment, all of which 
are determined by the locations of the lesions within the 
nervous system. The exact etiology of MS is currently 
unclear, but risk factors include bacterial and viral in-
fections (Marrodan, Alessandro, Farez and Correale, 
2019). Apparently, abnormal immune response to an 
infectious agent causes activation of microglial cells that 
destroy the blood–brain barrier and myelin sheaths. The 
destruction of myelin leads to the induction of an auto-
immune reaction to a number of proteins, in particular 
MBP (Lehmann, Rottlaender and Kuerten, 2015). MBP-
specific antibodies in the blood of patients are one of the 
main indicators of active demyelination in MS (Cohen, 
Herndon and McKhann, 1976; Whitaker, 1977). Trau-
matic brain injuries also provoke myelin destruction, 
causing the accumulation of MBP in the cerebrospi-
nal fluid and blood, which leads to the development of 
MS. Myelin damage in MS promotes proteolysis of MBP, 
resulting in its cleavage into separate fragments, some 
of which are resistant to further cleavage. Interestingly, 
the most immunogenic epitope of this protein in MS 
(Whitaker, 1997) can form amyloid fibrils according to 
bioinformatic predictions (Aggarwal et al., 2013). It can 
be assumed that the MBP fragments forming amyloid 
aggregates are resistant to proteolysis and provoke an 
autoimmune response during myelin degradation. 
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It should be noted that MS is accompanied by mod-
ifications of the MBP. C1, the least modified and most 
cationic isoform, is the most abundant form of MBP in 
healthy adult humans; C8, a less cationic isoform with 
extensive citrullination of arginyl residues, has an in-
creased level in the brain in individuals with MS (Mos-
carello, Mastronardi and Wood, 2006). Moreover, the 
severity of MS strongly correlates with the deimination 
level — 18 % against 45 % in a normal and chronic MS 
brain, respectively. Furthermore, in the rapidly progres-
sive and aggressive Marburg variant of MS, the MBP 
citrullination level reaches 90 % (Musse, Boggs and Ha-
rauz, 2006). As mentioned earlier, the high positive net 
charge provides adhesion and stabilization of molecules 
within phospholipid composition of compact multi-
layers, which is necessary for myelin retention. When 
MBP become less cationic it is supposed to be unable to 
carry out this function. In all likelihood, modifications 
of MBP in MS are not a cause but a consequence of the 
disease. 

Conclusion

The myelin sheaths are unique structures that ensure the 
functioning of the most actively working neurons. Mod-
ern knowledge about the structure of myelin is far from 
complete, since this structure is formed only in vivo as a 
result of the interaction of processes of oligodendrocytes 
with axons. MBP is a key protein for myelin compac-
tion and function. In this review, we discussed current 
data and hypotheses about the functional role of MBP, 
its modifications and conformational changes in the 
human brain in health and disease. Based on the data 
obtained in vivo, it can be concluded that this protein 
binds the opposite membranes of the flattened processes 
of oligodendrocytes and displaces other proteins from 
the region of the major dense line. Moreover, binding to 
membrane lipids provokes aggregation of MBP, which 
contributes to the compaction of myelin. So far, we can 
only assume which conformational changes in MBP 
occur during the formation of compact myelin. In our 
opinion, the most reasonable and attractive hypothesis 
is that MBP molecules inside the processes of oligoden-
drocytes form an amyloid network, which contributes 
to the reliable isolation of axons associated with myelin. 
MBP also plays an important role in the development 
of multiple sclerosis, which is characterized by myelin 
degradation and induction of an autoimmune response. 
It is interesting to note that in multiple sclerosis, the 
most immunogenic epitope of MBP has potentially am-
yloidogenic properties. Further studies of the structural 
properties of MBP in vivo will provide progress in un-
derstanding the organization and functioning of myelin 
sheaths in health and disease.
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