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Abstract

This study presents the results of polydispersity analysis of soil-like bodies from 
two various polar regions using the laser light scattering method. The differ-
ences in the particle size distribution of cryoconite samples from the Anuchin 
Glacier (Antarctica) and the Mushketov Glacier (Arctic) are described. The sam-
ples obtained from the Mushketov Glacier are characterized by a finer particle 
size distribution than samples collected on the Anuchin Glacier. While compar-
ing our results with previously published studies, it was found that the method 
of laser light scattering shows a lower content of small fractions (<0.05 mm) 
compared to the classical methods of sedimentation, since these methods are 
based on fundamentally different physical principles. The laser method used 
requires low amounts of samples (0.2–0.5 g), while the classical sedimentary 
method uses a higher gravimetric portion of cryoconite (5–10 g), which is critical 
for field sampling.
Keywords: soloids, cryoconites, Anuchin Glacier, Mushketov Glacier

Introduction

The surface of glaciers is never completely clean, and is highly susceptible to spa-
tial and temporal fluctuations (Dumont, Durand, Arnaud and Six, 2012; Petrakov 
et al., 2019). Glaciers can accumulate on their surface dust particles of various 
origin, both natural and anthropogenic. The origin of sediments of aeolian or 
englaciar (Hildes, Clarke, Flowers and Marshall, 2004; Naoko Nagatsuka et al., 
2016; Zawierucha et al., 2019) genesis can be revealed by analyzing their chemi-
cal, mineralogical and polydisperse composition, as well as by analyzing the me-
teorological and landscape features of subglacial areas (Glazovskaya, 1952; Ruth, 
Wagenbach, Steffensen and Bigler, 2003; Lee et al., 2008; Kutuzov et al., 2014).

The polydispersity or particle-size distribution of the solid phase of soils and 
soil-like bodies (in particular, cryoconites) influences many physical, chemical 
and biological properties of soils. Polydispersity has a decisive influence on the 
formation of water–air and thermal regimes of soils and their sorption capacity 
(Kachinsky, 1958; Kowalski and Andrianova, 1970; Gagarina, 2004; Shein, 2005, 
2009; Shein and Madi, 2018).

In current studies, classical sedimentation methods (Kachinsky, 1958; 
EV. Shein, 2009) to determine polydispersity are increasingly used in conjunction 
with the more advanced method of laser light scattering (diffraction) (Gee and 
Or, 2002; Mukhametova, Abakumov and Rumin, 2013; Shein and Madi, 2018).

The use of the laser diffractometry method in the analysis of polydispersity 
of primitive mineral soils and soil-like bodies of the Arctic and Antarctic is of 
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particular importance, since the classical sedimentologi-
cal methods of analysis overestimate the data on silt and 
finely-dispersed dust content. Correct values of silt and 
clay content are crucial for understanding the processes 
of soil formation in polar and high-mountain regions 
and for understanding the level of absorption capacity 
of soils and soil-like bodies (Glazovskaya, 1958; Shein, 
2005; Abakumov, Pomelov, Krylenkov and Vlasov, 2008; 
Abakumov, 2010). 

On the surface of polar and high-mountain glaciers, 
ice shelves or sea ice you can frequently find dark-col-
ored clusters of surface dust; these are called cryoconites 
(Mueller and Pollard, 2004; Nozomu Takeuchi and Li, 
2008; Joseph Cook, Edwards, Takeuchi, and Irvine-Fynn, 
2016). Cryoconites are sediments of predominantly aeo-
lian genesis; material in cryoconites can also accumulate 
as a result of landslides of mineral and organic matter 
from valley walls, and supraglacial and englacial en-
trainment (MacDonell and Fitzsimons, 2008; Wientjes 
et al., 2011; Shishkov et al., 2016; Li et al., 2017).

In places of accumulation of dark-colored fine-
grained sand, cryoconites form on the glacier surface, 
which can absorb a much greater amount of solar radia-
tion (Hodson et al., 2008; MacDonell and Fitzsimons, 
2008; Cook, Edwards, Takeuchi and Irvine-Fynn, 2016; 
Abakumov, Gijanski, Chigray and Polyakov, 2020). As a 
result of the significant difference in albedo between the 
clear pure glacier surface and the dark-colored cryoco-
nites, active thawing of the glacier body and formation of 
cryoconite holes (Fig. 1) begin under these dust accumu-
lations (McIntyre, 1984; Wharton Jr, McKay, Simmons Jr 
and Parker, 1985; MacDonell and Fitzsimons, 2008).

Normally, cryoconite holes do not reach the size 
of 10 cm vertically and horizontally, but in some cases 

there are holes even up to 1 meter (Fountain et al., 2004; 
Mueller and Pollard, 2004; Gajda, 2008).

A cryoconite hole is a water-filled cylindrical de-
pression of tube form with nearly vertical or D-shaped 
sides (McIntyre, 1984; Wharton Jr, McKay, Simmons Jr 
and Parker, 1985). Cryoconites consist not only of min-
eral components (85–95 %), but also of organic mat-
ter  — they can contain the plant remnants of mosses, 
algae, bacteria and lichens (Takeuchi, Kohshima and 
Seko, 2001; Takeuchi, 2002; Cook, Edwards, Takeuchi 
and Irvine-Fynn, 2016).

The presence of organic matter is responsible for 
the dark color of cryoconites (Cook, Edwards, Takeuchi, 
and Irvine-Fynn, 2016). A microclimate is formed in 
cryoconite holes, which contributes to the growth of pri-
mary producers such as cyanobacteria and green algae, 
which subsequently enrich the cryoconite with biogenic 
materials (Langford, Hodson, Banwart and Bøggild, 
2010; Nagatsuka, Takeuchi, Uetake and Shimada, 2014; 
Weisleitner et al., 2020). Many authors have noted the 
rich biodiversity of the microbiome developing in cryo-
conite holes. Cryoconite holes are a favorable environ-
ment for the development of cyanobacteria, Bacteroide-
tes, Actinobacteria, Proteobacteria and some other bac-
teria species (Cook et al., 2010; Langford, Hodson, Ban-
wart and Bøggild, 2010; Cameron, Hodson and Osborn, 
2012; Cook, Edwards, Takeuchi and Irvine-Fynn, 2016; 
Weisleitner et al., 2019; Weisleitner et al., 2020). The 
combination of all these factors makes the organomin-
eral compounds of cryoconites a unique soil-forming 
structure that remains on the bedrock after the retreat 
and thawing of the glacier (Singh et al., 2013; Shishkov, 
Zazovskaya, Mergelov and Dolgikh, 2017; Abakumov, 
Gijanski, Chigray, and Polyakov, 2020).

Fig. 1. Cryoconites in sampling area. A — Cryoconite material on Mushketova Glacier (Cape Baranova, Russian Arctic); B — Cryoconite hole 
founded in Untersee Oasis (Anuchin Glacier, Queen Maud Land, East Antarctida).
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Cryoconites are of particular interest to study not 
only in terms of their unique pedogenic, bioaccumulat-
ing and organogenic properties. Cryoconite material 
includes dust from distant continental deserts or agri-
cultural lands, particles from volcanic eruptions or in-
dustrial emissions and soot due to its aeolian origin. The 
analysis of the particle size distribution of soloids (Go-
ryachkin, Mergelov and Targulian, 2019) allows us to 
establish their genesis in relation to the source of aeolian 
material (Bizzotto, Villa, Vaj, and Vighi, 2009; Tieber et 
al., 2009; Mauro et al., 2016). This makes cryoconites a 
geochemical indicator of transboundary anthropogenic 
impact on nival-glacial and periglacial areas. 

According to other studies, cryoconites are able 
to accumulate radionuclides of anthropogenic origin 
(Tieber et al., 2009; Łokas et al., 2018; Usyagina, Ilyin, 
Meshcheryakov, and Valuyskaya, 2019; Baccolo et al., 
2020), potentially toxic elements (Singh et al., 2013; Fer-
rario et al., 2017; Owens, Blake, and Millward, 2019), 
polycyclic aromatic hydrocarbons and other synthetic 
organic compounds (Li et al., 2017; Weiland-Bräuer, 
Fischer, Schramm, and Schmitz, 2017).

The aim of this work is to compare the polydis-
perse composition of soil-like bodies of polar regions. 
To achieve this goal, the following objectives were set: 
determine the polydisperse composition of cryoconite 
material using the method of laser diffraction; compare 
the results with previous studies; identify patterns bet
ween the grain-size distribution of soil-like bodies and 
features of glacial landscapes.

Materials and methods

Polar expeditions have resulted in cryoconite samples 
collected from the Mushketov Glacier (Bolshevik Island, 
Severnaya Zemlya Archipelago, 23 km south of the Cape 
Baranova Arctic Station) and the Anuchin Glacier (Lake 
Untersee, Queen Maud Land, East Antarctica, 90  km 
south of the Russian Antarctic station Novolazarevs-
kaya).

Detailed maps of the study areas can be seen in Fi
gures 2 and 3.

The Mushketov Glacier is a glacial dome with 
an area of about 89 km2 and an ice thickness of about 

Fig. 2. Regional setting and sampling points at the Mushketov Glacier (“Topographic”, February 19, 2012).
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160 m, located on the surface of the upper denudation 
leveling (Bolshiyanov et al., 2016). The island is com-
posed of the Upper Proterozoic terrigenous complex 
(sandstones, siltstones, granodiorites). Average annual 
air temperature is –14 °C. The most commonly distrib-
uted plants are Saxifraga cernua, S. hyperborea and Stel-
laria edwardsii; mosses Polytrichastrum alpinum and 
Sanionia uncinata; and lichen Stereocaulon rivulorum 
(Bolshiyanov and Makeev, 1995; Matveyeva, 2006). The 
area is characterized by stable winds mainly from the 
southern direction with an average speed of 10–15 m/s 
(Manousakas et al., 2020).

The Anuchin Glacier is part of the ice cap of Ant-
arctica, the surface of the glacier has southern expo-
sure, and the surface area of the glacier is 34 km2. The 
coverage of cryoconite holes on the Anuchin Glacier 
is 3.5 % (1.2 km2) on average, with highest density ob-
served near the glacier-lake interface in the southwest-
ern part of the glacier (Weisleitner et al., 2019). The 
glacial surface has a pronounced cell-polygonal char-
acter. Southerly winds prevail, with an average daily 
maximum of 15 m/s (Levitan et al., 2011; Weisleitner et 

al., 2019). No regular vegetation was found close to the 
sampling points.

After collection, the samples were air dried and 
transported to the laboratory of the Department of Ap-
plied Ecology of SPBU for further analysis. Before the 
analysis, the field samples were put through a sieve with 
a diameter of 2 mm, and weighed. The polydispersity of 
soil-like bodies was analyzed by the laser light scattering 
(diffraction) method according to the Russian method 
“GPM 1.2.1.0008.15 Determination of particle size dis-
tribution by laser light diffraction” with repeated mea-
surements for each sample (GPM, 2016).

The method is based on the principle that particles 
of a given size diffract light at a certain angle that in-
creases with decreasing particle size. This method allows 
detection of particles of the size from 0.1 µm to 2000 µm 
(Gee and Or, 2002; Domkin, 2011; Uspenskaya, Syroesh-
kin, Pleteneva and Dobrovolsky, 2016). The laser diffrac-
tion method is more effective for measuring sand and 
silt fractions compared to sedimentation methods for 
analyzing the particle-size distribution of soils (Shein, 
2009; Shein and Madi, 2018).

Fig. 3. Study area and sampling points at the Anuchin Glacier (Matsuoka, Skoglund, and Roth, 2018)



202	 BIOLOGICAL  COMMUNICATIONS,  vol. 66,  issue 3,  July–September,  2021 | https://doi.org/10.21638/spbu03.2021.302

Samples were placed in 10 ml of 4% Na4P2O7 solu-
tion for peptization of colloids before analysis, followed 
by grinding.

The processed sample was separated on a sieve with 
a diameter of 0.25 mm. Particles remaining on the sieve 
were washed into a bowl and dried to a constant weight 
at 105 °C, after which they were weighed on an analyti-
cal scale. The mass of the sample was found from the 
difference of masses, and the percentage of 1–0.25 mm 
fraction was calculated.

Fraction distribution in the range of 0.03–250 µm 
was determined on a Shimadzu SALD-2201 (Japan) de-
vice. Blank measurement was carried out with distilled 
water. The refractive index of 3.0–0.2i was used to pro-
cess the results. Measurement on the diffractometer was 
carried out in at least threefold repeats.

Statistical data processing and visualization of the 
results were performed using Statsoft Statistica v12.5, 
TriQuick, and QGIS 3.16.

Results and discussions 

In some studies cryoconites classify as a specific type of 
soil — soloids or soil-like bodies (Targulian, Mergelov and 
Goryachkin, 2017; Goryachkin, Mergelov and Targulian, 
2019). This assumption allows us to consider cryoconites 
as Lithic skeletal and mineral soils and to use all the fun-
damental principles of classical soil science to study them.

As previously mentioned, cryoconites can be geo-
chemical indicators of transboundary anthropogenic im-
pact on nival-glacial and periglacial areas. The particle-
size distribution, specific surface area of soil colloids, and 
microaggregate composition play an important function 
in the sorption capacity of soils (EV Shein, 2005), includ-
ing the accumulation of pollutants in soils and soloids. It 

is known that a significant part of trace elements is accu-
mulated in the fine-graded (<0.005 mm) fraction due to 
the high absorption capacity of the clay fraction (Kowal-
ski and Andrianova, 1970; Gagarina, 2004).

Results of polydispersity analysis

The results of the polydispersity analysis of cryoconites 
are shown in Table 1, with classification into fractional 
classes according to Kachinsky (1937). We can see that 
cryoconites from two different study areas have a differ-
ent particle-size distribution.

Samples from the Anuchin Glacier (East Antarc-
tica) are characterized by sandy composition. In all 
selected cryoconite samples, the content of sand frac-
tions dominates. The minimum content of average sand 
was in sample U3 — 76.31 %; the maximum in U5 — 
97.12 %. The content of fine sand in the samples varies 
from 1.84 % in U5 to 15.35 % in U3. The percentage of 
finer fractions (medium and fine dust) in all samples is 
less than one percent, except for U3, which had 1.21 % 
medium dust and 2.10 % small silt. The percentage of 
large silt in all samples is <5 %. The content of clay par-
ticles in all samples was <1 %.

Cryoconites from the Mushketov Glacier (Russian 
Arctic) are more finely dispersed compared to samples 
from the Anuchin Glacier. In the particle-size distribu-
tion, there is a large fraction of fine sands and coarse 
dust. The small sand content varies from 42.95 % in 
B2 to 54.05 % in B6. The minimum content of large silt 
was found in sample B6  — 20.80 %; the maximum in 
the sample B3  — 49.19 %. The percentage of medium 
sand fraction was <15 %. The maximum fraction of me-
dium sand was found in samples B1, B3, and B6 at 11.71, 
14.56, and 15.88 %, respectively. Medium and small silt 

Table 1. Contents of particle size classes, % (± 95 % Confidence Interval) (Kachinsky 1937)

    Medium sand  
(>0.25 mm)

Fine sand  
(0.25–0.05 mm)

Large silt  
(0.05–0.01 mm)

Medium silt  
(0.01–0.005 mm)

Fine silt  
(0.005–0.001 mm)

Сlay  
(<0.001 mm)

An
uc

hi
n 

G
la

ci
er

U1 88.94±0.11 7.87±0.20 2.29±0.10 0.35±0.03 0.44±0.05 0.12±0.05

U2 85.17±0.28 10.31±0.38 2.91±0.33 0.63±0.08 0.87±0.15 0.11±0.10

U3 76.31±0.21 15.35±0.46 4.46±0.61 1.21±0.05 2.10±0.08 0.57±0.11

U4 94.52±0.07 3.80±0.06 1.15±0.04 0.23±0.01 0.25±0.01 0.06±0.03

U5 97.12±0.03 1.84±0.03 0.70±0.02 0.14±0.00 0.17±0.01 0.03±0.01

M
us

hk
et

ov
 G

la
ci

er

B1 11.71±1.62 50.78±0.83 25.62±1.07 5.46±0.27 5.30±0.31 1.12±0.90

B2 2.46±0.84 42.95±1.15 39.49±1.23 7.75±0.32 5.92±0.29 1.43±1.42

B3 14.56±2.90 49.19±2.68 24.20±0.66 5.89±0.03 5.80±0.32 0.36±0.44

B4 5.04±1.07 52.35±2.86 29.99±1.51 6.36±0.55 5.66±0.67 0.60±0.26

B5 2.77±0.37 47.87±2.04 34.00±1.23 7.48±0.40 6.77±0.54 1.11±1.07

B6 15.88±1.65 54.05±1.58 20.80±0.19 4.30±0.07 4.43±0.20 0.54±0.24
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content in all samples was <8 %. The percentage of the 
clay fraction ranges from 0.36 % in B3 to 1.43 % in B2.

Cluster analysis of the obtained data using the 
(Ward, 1963) method with the Euclidean metric statis-
tically confirmed the difference in the particle-size dis-
tribution in the two study areas. As you can see in the 
diagram in Figure 4, the data were divided into two clus-
ters. One cluster — points U1–U5, contains all samples 
obtained from the Anuchin Glacier (East Antarctica). 
The second cluster — points B1–B6, contains all samples 
obtained from the Mushketov Glacier (Russian Arctic).

To understand which textural classes the studied 
cryoconite samples relate to, a ternary plot of particle 
sizes (Figs. 5 and 6) was constructed for each study area. 
Classification of texture classes was performed accord-
ing to the triangular diagram (Jahn et al., 2006). To con-
struct the plots, the total percentages of sand, % (medi-
um sand + fine sand), silt, % (large + medium + fine silt) 
and сlay, % were pre-calculated.

As can be seen in the ternary plot (Fig. 3), the mate-
rial from the cryoconite holes collected at the Anuchin 
glacier can be classified as sand. A more detailed con-
sideration shows that the content of clay particles for 
all samples (except for U3) is <1 %. The content of sand 
fraction varies from 91 % in U3 to 99 % in U5.

The samples collected from the Mushketov Glacier 
are very different from the material from the Anuchin 
Glacier. The cryoconite material from the Mushketov 
Glacier is finer. According to the textural class (Fig. 4), 
samples B1, B3, B4, and B6  belong to Sandy Loam; 
B2 and B5 — to Loam (WRB, 2015).

The highest variability is in the sand and silt frac-
tions. The sand fraction varies from 45 % in B2 to 70 % in 
B6. The variability of the silt fraction ranged from 25 to 
47 % for samples B6 and B2, respectively.

Discussions

Cryoconites have an important role in the formation 
and regulation of the current climatic situation. The ac-
cumulation rate and quantity of cryoconite material on 
the surface of glaciers is directly related to their deg-
radation (Wharton Jr, McKay, Simmons Jr and Parker, 
1985; Podgorny and Grenfell, 1996; Fountain et al., 
2004) and the intensity of aeolian processes (Glazovs-
kaya, 1952). Since the accumulation of matter in cryo-
conite holes is mainly related to aeolian processes, it 
is important to understand the primary nature of the 
origin of the particles that accumulate on the glacier 
surface. Cryoconite material can play the role of a geo-

Fig. 4. Cluster Tree Diagram for 11 samples of cryoconites from cape Baranov (B1–6) and Untersee oasis (U1–5). For cluster analysis we used 
Ward's method with Euclidean distance metrics.
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chemical indicator of anthropogenic impact on glacial 
areas. By understanding the nature of the origin of the 
cryoconite material, it is possible to assess the degree 
of influence of the anthropogenic factor on the melt-
ing of glaciers. In this context, it is important to obtain 
reliable data on the particle-size distribution of sedi-
ments of aeolian genesis (Glazovskaya, 1952). The set-
ting of traps on the glacier surfaces will assist to collect 
and sample migratory material of various origin (dust, 
fluvial grains). Since black carbon particles of anthro-
pogenic origin (which are emitted by incomplete com-
bustion of coal, wood, and fossil fuels (Goldberg, 1985; 
Masiello, 2004; Ramanathan and Carmichael, 2008; 
Baccolo et al., 2020) accumulate predominantly in clay 

particles (Glazovskaya, 1958; Ukalska-Jaruga, Smreczak 
and Klimkowicz-Pawlas, 2019), the quantitative evalua-
tion of grain size distribution becomes quite important 
for glacier surface retreat rate.

As mentioned earlier, the use of classical sedimen-
tation methods to estimate the particle-size distribution 
often overestimates the percentage of fine fractions in 
comparison with the results obtained by laser diffrac-
tometry (Abakumov, Pomelov, Krylenkov and Vlasov, 
2008; Shein, 2009; Shein and Madi, 2018).

Some researchers have already studied the parti-
cle-size distribution of cryoconite and moraine aggre-
gates around Lake Untersee and the Anuchin Glacier 
(Levitan et al., 2011; Weisleitner et al., 2019; Weisleitner 

Fig. 5. Ternary plot of particle sizes for cryoconite samples from Anuchin Glacier (fractional content, %).
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et al., 2020). For the Mushketov Glacier area, it appears 
that we performed this analysis for the first time. 

Weisleitner et al. (2020) used the wet sieving method. 
It should be noted that their study area is very close to 
our sampling sites. They investigated samples of material 
from cryoconite holes on the Anuchin Glacier in the Anu
chin North of Ridge (ANR) and on the glacier along the 
medial moraine (AMH, AML). Levitan et al. (2011) re-
searched the particle-size distribution of moraine depos-
its and “dirty ice” in the vicinity of Lake Untersee and 
the Anuchin Glacier using the classical sedimentation 
(water-mechanical) method. We made a comparison of 
our results with the results published earlier (Levitan et 
al., 2011; Weisleitner et al., 2020; Weisleitner et al., 2020); 
a comparative diagram can be seen in Figure 7.

The results obtained during our research differ sig-
nificantly from the results of previously published inves-
tigations. The use of laser diffractometry showed a lower 
percentage of fine fractions (<0.01 mm). Mostly the per-
centage fraction <0.01 mm is less than 2 %. The results 
of other studies significantly varied, up to 4.5 % with the 
wet sieving method (Weisleitner et al., 2020) and up to 
12.3 % with the classical sedimentation method (Levitan 
et al., 2011).

Conclusions 

The variations in the polydisperse composition of 
cryoconites can be associated with differences in the 
conditions of cryoconite hole formation and the in-

Fig. 6. Ternary plot of particle sizes for cryoconite samples from Mushketov Glacier (fractional content, %).
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fluence of local landscapes on aeolian sedimentation 
processes. The Anuchin Glacier and Lake Untersee 
are surrounded by the Gruber Mountains, which may 
limit aeolian mass transfer processes. The cryoconite 
material in the cryoconite holes on the Anuchin Gla-
cier is characterized by a dominance of heavy fractions 
(medium sand, >0.25  mm). Accumulation of mate-
rial occurs mainly as a result of landslides from glacier  
valley walls. 

The mass transfer of fine fractions is not limited. 
Cryoconite holes on the Mushketov Glacier may be 
much more active in accumulating material of aeo-
lian or englacial genesis. Probably, the accumulation 
of particles on the glacier has been taking place for a 
long time. The specific location of Bolshevik Island 
makes it highly affected by the transport of particles 
as a result of the polar circulation of air masses. Wind 
currents, as a result of the polar circulation, can bring 
in fine particles both from the mainland and from the 
more northern islands of the Severnaya Zemlya ar-
chipelago. Silt and clay fractions can be transported 
from the mainland or neighboring islands and eas-
ily deposited on the glacier surface and accumulate in 
the cryoconite holes. Therefore, the polydisperse com-
position of cryoconite material from the Mushketov 
Glacier is dominated by small sand and silt fractions  
(0.25–0.01 mm).
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